Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkOpSpan.h"
      8 #include "SkPathOpsPoint.h"
      9 #include "SkPathWriter.h"
     10 #include "SkTSort.h"
     11 
     12 // wrap path to keep track of whether the contour is initialized and non-empty
     13 SkPathWriter::SkPathWriter(SkPath& path)
     14     : fPathPtr(&path)
     15 {
     16     init();
     17 }
     18 
     19 void SkPathWriter::close() {
     20     if (fCurrent.isEmpty()) {
     21         return;
     22     }
     23     SkASSERT(this->isClosed());
     24 #if DEBUG_PATH_CONSTRUCTION
     25     SkDebugf("path.close();\n");
     26 #endif
     27     fCurrent.close();
     28     fPathPtr->addPath(fCurrent);
     29     fCurrent.reset();
     30     init();
     31 }
     32 
     33 void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) {
     34     this->update(pt2);
     35 #if DEBUG_PATH_CONSTRUCTION
     36     SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n",
     37             pt1.fX, pt1.fY, pt2->fPt.fX, pt2->fPt.fY, weight);
     38 #endif
     39     fCurrent.conicTo(pt1, pt2->fPt, weight);
     40 }
     41 
     42 void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) {
     43     this->update(pt3);
     44 #if DEBUG_PATH_CONSTRUCTION
     45     SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
     46             pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3->fPt.fX, pt3->fPt.fY);
     47 #endif
     48     fCurrent.cubicTo(pt1, pt2, pt3->fPt);
     49 }
     50 
     51 bool SkPathWriter::deferredLine(const SkOpPtT* pt) {
     52     SkASSERT(fFirstPtT);
     53     SkASSERT(fDefer[0]);
     54     if (fDefer[0] == pt) {
     55         // FIXME: why we're adding a degenerate line? Caller should have preflighted this.
     56         return true;
     57     }
     58     if (pt->contains(fDefer[0])) {
     59         // FIXME: why we're adding a degenerate line?
     60         return true;
     61     }
     62     if (this->matchedLast(pt)) {
     63         return false;
     64     }
     65     if (fDefer[1] && this->changedSlopes(pt)) {
     66         this->lineTo();
     67         fDefer[0] = fDefer[1];
     68     }
     69     fDefer[1] = pt;
     70     return true;
     71 }
     72 
     73 void SkPathWriter::deferredMove(const SkOpPtT* pt) {
     74     if (!fDefer[1]) {
     75         fFirstPtT = fDefer[0] = pt;
     76         return;
     77     }
     78     SkASSERT(fDefer[0]);
     79     if (!this->matchedLast(pt)) {
     80         this->finishContour();
     81         fFirstPtT = fDefer[0] = pt;
     82     }
     83 }
     84 
     85 void SkPathWriter::finishContour() {
     86     if (!this->matchedLast(fDefer[0])) {
     87         if (!fDefer[1]) {
     88           return;
     89         }
     90         this->lineTo();
     91     }
     92     if (fCurrent.isEmpty()) {
     93         return;
     94     }
     95     if (this->isClosed()) {
     96         this->close();
     97     } else {
     98         SkASSERT(fDefer[1]);
     99         fEndPtTs.push(fFirstPtT);
    100         fEndPtTs.push(fDefer[1]);
    101         fPartials.push_back(fCurrent);
    102         this->init();
    103     }
    104 }
    105 
    106 void SkPathWriter::init() {
    107     fCurrent.reset();
    108     fFirstPtT = fDefer[0] = fDefer[1] = nullptr;
    109 }
    110 
    111 bool SkPathWriter::isClosed() const {
    112     return this->matchedLast(fFirstPtT);
    113 }
    114 
    115 void SkPathWriter::lineTo() {
    116     if (fCurrent.isEmpty()) {
    117         this->moveTo();
    118     }
    119 #if DEBUG_PATH_CONSTRUCTION
    120     SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY);
    121 #endif
    122     fCurrent.lineTo(fDefer[1]->fPt);
    123 }
    124 
    125 bool SkPathWriter::matchedLast(const SkOpPtT* test) const {
    126     if (test == fDefer[1]) {
    127         return true;
    128     }
    129     if (!test) {
    130         return false;
    131     }
    132     if (!fDefer[1]) {
    133         return false;
    134     }
    135     return test->contains(fDefer[1]);
    136 }
    137 
    138 void SkPathWriter::moveTo() {
    139 #if DEBUG_PATH_CONSTRUCTION
    140     SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY);
    141 #endif
    142     fCurrent.moveTo(fFirstPtT->fPt);
    143 }
    144 
    145 void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) {
    146     this->update(pt2);
    147 #if DEBUG_PATH_CONSTRUCTION
    148     SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
    149             pt1.fX, pt1.fY, pt2->fPt.fX, pt2->fPt.fY);
    150 #endif
    151     fCurrent.quadTo(pt1, pt2->fPt);
    152 }
    153 
    154 void SkPathWriter::update(const SkOpPtT* pt) {
    155     if (!fDefer[1]) {
    156         this->moveTo();
    157     } else if (!this->matchedLast(fDefer[0])) {
    158         this->lineTo();
    159     }
    160     fDefer[0] = fDefer[1] = pt;  // set both to know that there is not a pending deferred line
    161 }
    162 
    163 bool SkPathWriter::someAssemblyRequired() {
    164     this->finishContour();
    165     return fEndPtTs.count() > 0;
    166 }
    167 
    168 bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const {
    169     if (matchedLast(fDefer[0])) {
    170         return false;
    171     }
    172     SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt;
    173     SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt;
    174     return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX;
    175 }
    176 
    177 class DistanceLessThan {
    178 public:
    179     DistanceLessThan(double* distances) : fDistances(distances) { }
    180     double* fDistances;
    181     bool operator()(const int one, const int two) {
    182         return fDistances[one] < fDistances[two];
    183     }
    184 };
    185 
    186     /*
    187         check start and end of each contour
    188         if not the same, record them
    189         match them up
    190         connect closest
    191         reassemble contour pieces into new path
    192     */
    193 void SkPathWriter::assemble() {
    194 #if DEBUG_SHOW_TEST_NAME
    195     SkDebugf("</div>\n");
    196 #endif
    197     if (!this->someAssemblyRequired()) {
    198         return;
    199     }
    200 #if DEBUG_PATH_CONSTRUCTION
    201     SkDebugf("%s\n", __FUNCTION__);
    202 #endif
    203     SkOpPtT const* const* runs = fEndPtTs.begin();  // starts, ends of partial contours
    204     int endCount = fEndPtTs.count(); // all starts and ends
    205     SkASSERT(endCount > 0);
    206     SkASSERT(endCount == fPartials.count() * 2);
    207 #if DEBUG_ASSEMBLE
    208     for (int index = 0; index < endCount; index += 2) {
    209         const SkOpPtT* eStart = runs[index];
    210         const SkOpPtT* eEnd = runs[index + 1];
    211         SkASSERT(eStart != eEnd);
    212         SkASSERT(!eStart->contains(eEnd));
    213         SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__,
    214                 eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY);
    215     }
    216 #endif
    217     SkTDArray<int> sLink, eLink;
    218     int linkCount = endCount / 2; // number of partial contours
    219     sLink.append(linkCount);
    220     eLink.append(linkCount);
    221     int rIndex, iIndex;
    222     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
    223         sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
    224     }
    225     const int entries = endCount * (endCount - 1) / 2;  // folded triangle
    226     SkSTArray<8, double, true> distances(entries);
    227     SkSTArray<8, int, true> sortedDist(entries);
    228     SkSTArray<8, int, true> distLookup(entries);
    229     int rRow = 0;
    230     int dIndex = 0;
    231     for (rIndex = 0; rIndex < endCount - 1; ++rIndex) {
    232         const SkOpPtT* oPtT = runs[rIndex];
    233         for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) {
    234             const SkOpPtT* iPtT = runs[iIndex];
    235             double dx = iPtT->fPt.fX - oPtT->fPt.fX;
    236             double dy = iPtT->fPt.fY - oPtT->fPt.fY;
    237             double dist = dx * dx + dy * dy;
    238             distLookup.push_back(rRow + iIndex);
    239             distances.push_back(dist);  // oStart distance from iStart
    240             sortedDist.push_back(dIndex++);
    241         }
    242         rRow += endCount;
    243     }
    244     SkASSERT(dIndex == entries);
    245     SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
    246     int remaining = linkCount;  // number of start/end pairs
    247     for (rIndex = 0; rIndex < entries; ++rIndex) {
    248         int pair = sortedDist[rIndex];
    249         pair = distLookup[pair];
    250         int row = pair / endCount;
    251         int col = pair - row * endCount;
    252         int ndxOne = row >> 1;
    253         bool endOne = row & 1;
    254         int* linkOne = endOne ? eLink.begin() : sLink.begin();
    255         if (linkOne[ndxOne] != SK_MaxS32) {
    256             continue;
    257         }
    258         int ndxTwo = col >> 1;
    259         bool endTwo = col & 1;
    260         int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
    261         if (linkTwo[ndxTwo] != SK_MaxS32) {
    262             continue;
    263         }
    264         SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
    265         bool flip = endOne == endTwo;
    266         linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
    267         linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
    268         if (!--remaining) {
    269             break;
    270         }
    271     }
    272     SkASSERT(!remaining);
    273 #if DEBUG_ASSEMBLE
    274     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
    275         int s = sLink[rIndex];
    276         int e = eLink[rIndex];
    277         SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
    278                 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
    279     }
    280 #endif
    281     rIndex = 0;
    282     do {
    283         bool forward = true;
    284         bool first = true;
    285         int sIndex = sLink[rIndex];
    286         SkASSERT(sIndex != SK_MaxS32);
    287         sLink[rIndex] = SK_MaxS32;
    288         int eIndex;
    289         if (sIndex < 0) {
    290             eIndex = sLink[~sIndex];
    291             sLink[~sIndex] = SK_MaxS32;
    292         } else {
    293             eIndex = eLink[sIndex];
    294             eLink[sIndex] = SK_MaxS32;
    295         }
    296         SkASSERT(eIndex != SK_MaxS32);
    297 #if DEBUG_ASSEMBLE
    298         SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
    299                     sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
    300                     eIndex < 0 ? ~eIndex : eIndex);
    301 #endif
    302         do {
    303             const SkPath& contour = fPartials[rIndex];
    304             if (forward) {
    305                 fPathPtr->addPath(contour,
    306                         first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode);
    307             } else {
    308                 SkASSERT(!first);
    309                 fPathPtr->reversePathTo(contour);
    310             }
    311             if (first) {
    312                 first = false;
    313             }
    314 #if DEBUG_ASSEMBLE
    315             SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
    316                 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
    317                 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
    318 #endif
    319             if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
    320                 fPathPtr->close();
    321                 break;
    322             }
    323             if (forward) {
    324                 eIndex = eLink[rIndex];
    325                 SkASSERT(eIndex != SK_MaxS32);
    326                 eLink[rIndex] = SK_MaxS32;
    327                 if (eIndex >= 0) {
    328                     SkASSERT(sLink[eIndex] == rIndex);
    329                     sLink[eIndex] = SK_MaxS32;
    330                 } else {
    331                     SkASSERT(eLink[~eIndex] == ~rIndex);
    332                     eLink[~eIndex] = SK_MaxS32;
    333                 }
    334             } else {
    335                 eIndex = sLink[rIndex];
    336                 SkASSERT(eIndex != SK_MaxS32);
    337                 sLink[rIndex] = SK_MaxS32;
    338                 if (eIndex >= 0) {
    339                     SkASSERT(eLink[eIndex] == rIndex);
    340                     eLink[eIndex] = SK_MaxS32;
    341                 } else {
    342                     SkASSERT(sLink[~eIndex] == ~rIndex);
    343                     sLink[~eIndex] = SK_MaxS32;
    344                 }
    345             }
    346             rIndex = eIndex;
    347             if (rIndex < 0) {
    348                 forward ^= 1;
    349                 rIndex = ~rIndex;
    350             }
    351         } while (true);
    352         for (rIndex = 0; rIndex < linkCount; ++rIndex) {
    353             if (sLink[rIndex] != SK_MaxS32) {
    354                 break;
    355             }
    356         }
    357     } while (rIndex < linkCount);
    358 #if DEBUG_ASSEMBLE
    359     for (rIndex = 0; rIndex < linkCount; ++rIndex) {
    360        SkASSERT(sLink[rIndex] == SK_MaxS32);
    361        SkASSERT(eLink[rIndex] == SK_MaxS32);
    362     }
    363 #endif
    364     return;
    365 }
    366