Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "mem2reg"
     29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/DerivedTypes.h"
     32 #include "llvm/Function.h"
     33 #include "llvm/Instructions.h"
     34 #include "llvm/IntrinsicInst.h"
     35 #include "llvm/Metadata.h"
     36 #include "llvm/Analysis/AliasSetTracker.h"
     37 #include "llvm/Analysis/DebugInfo.h"
     38 #include "llvm/Analysis/DIBuilder.h"
     39 #include "llvm/Analysis/Dominators.h"
     40 #include "llvm/Analysis/InstructionSimplify.h"
     41 #include "llvm/Analysis/ValueTracking.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/ADT/DenseMap.h"
     44 #include "llvm/ADT/SmallPtrSet.h"
     45 #include "llvm/ADT/SmallVector.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/ADT/STLExtras.h"
     48 #include "llvm/Support/CFG.h"
     49 #include <algorithm>
     50 #include <queue>
     51 using namespace llvm;
     52 
     53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     54 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     55 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     56 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     57 
     58 namespace llvm {
     59 template<>
     60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
     61   typedef std::pair<BasicBlock*, unsigned> EltTy;
     62   static inline EltTy getEmptyKey() {
     63     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
     64   }
     65   static inline EltTy getTombstoneKey() {
     66     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
     67   }
     68   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
     69     return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
     70   }
     71   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
     72     return LHS == RHS;
     73   }
     74 };
     75 }
     76 
     77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
     78 /// This is true if there are only loads and stores to the alloca.
     79 ///
     80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     81   // FIXME: If the memory unit is of pointer or integer type, we can permit
     82   // assignments to subsections of the memory unit.
     83 
     84   // Only allow direct and non-volatile loads and stores...
     85   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
     86        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
     87     const User *U = *UI;
     88     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     89       // Note that atomic loads can be transformed; atomic semantics do
     90       // not have any meaning for a local alloca.
     91       if (LI->isVolatile())
     92         return false;
     93     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     94       if (SI->getOperand(0) == AI)
     95         return false;   // Don't allow a store OF the AI, only INTO the AI.
     96       // Note that atomic stores can be transformed; atomic semantics do
     97       // not have any meaning for a local alloca.
     98       if (SI->isVolatile())
     99         return false;
    100     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
    101       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
    102           II->getIntrinsicID() != Intrinsic::lifetime_end)
    103         return false;
    104     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    105       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
    106         return false;
    107       if (!onlyUsedByLifetimeMarkers(BCI))
    108         return false;
    109     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    110       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
    111         return false;
    112       if (!GEPI->hasAllZeroIndices())
    113         return false;
    114       if (!onlyUsedByLifetimeMarkers(GEPI))
    115         return false;
    116     } else {
    117       return false;
    118     }
    119   }
    120 
    121   return true;
    122 }
    123 
    124 namespace {
    125   struct AllocaInfo;
    126 
    127   // Data package used by RenamePass()
    128   class RenamePassData {
    129   public:
    130     typedef std::vector<Value *> ValVector;
    131 
    132     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
    133     RenamePassData(BasicBlock *B, BasicBlock *P,
    134                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
    135     BasicBlock *BB;
    136     BasicBlock *Pred;
    137     ValVector Values;
    138 
    139     void swap(RenamePassData &RHS) {
    140       std::swap(BB, RHS.BB);
    141       std::swap(Pred, RHS.Pred);
    142       Values.swap(RHS.Values);
    143     }
    144   };
    145 
    146   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
    147   /// load/store instructions in the block that directly load or store an alloca.
    148   ///
    149   /// This functionality is important because it avoids scanning large basic
    150   /// blocks multiple times when promoting many allocas in the same block.
    151   class LargeBlockInfo {
    152     /// InstNumbers - For each instruction that we track, keep the index of the
    153     /// instruction.  The index starts out as the number of the instruction from
    154     /// the start of the block.
    155     DenseMap<const Instruction *, unsigned> InstNumbers;
    156   public:
    157 
    158     /// isInterestingInstruction - This code only looks at accesses to allocas.
    159     static bool isInterestingInstruction(const Instruction *I) {
    160       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    161              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    162     }
    163 
    164     /// getInstructionIndex - Get or calculate the index of the specified
    165     /// instruction.
    166     unsigned getInstructionIndex(const Instruction *I) {
    167       assert(isInterestingInstruction(I) &&
    168              "Not a load/store to/from an alloca?");
    169 
    170       // If we already have this instruction number, return it.
    171       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    172       if (It != InstNumbers.end()) return It->second;
    173 
    174       // Scan the whole block to get the instruction.  This accumulates
    175       // information for every interesting instruction in the block, in order to
    176       // avoid gratuitus rescans.
    177       const BasicBlock *BB = I->getParent();
    178       unsigned InstNo = 0;
    179       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
    180            BBI != E; ++BBI)
    181         if (isInterestingInstruction(BBI))
    182           InstNumbers[BBI] = InstNo++;
    183       It = InstNumbers.find(I);
    184 
    185       assert(It != InstNumbers.end() && "Didn't insert instruction?");
    186       return It->second;
    187     }
    188 
    189     void deleteValue(const Instruction *I) {
    190       InstNumbers.erase(I);
    191     }
    192 
    193     void clear() {
    194       InstNumbers.clear();
    195     }
    196   };
    197 
    198   struct PromoteMem2Reg {
    199     /// Allocas - The alloca instructions being promoted.
    200     ///
    201     std::vector<AllocaInst*> Allocas;
    202     DominatorTree &DT;
    203     DIBuilder *DIB;
    204 
    205     /// AST - An AliasSetTracker object to update.  If null, don't update it.
    206     ///
    207     AliasSetTracker *AST;
    208 
    209     /// AllocaLookup - Reverse mapping of Allocas.
    210     ///
    211     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
    212 
    213     /// NewPhiNodes - The PhiNodes we're adding.
    214     ///
    215     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
    216 
    217     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
    218     /// it corresponds to.
    219     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
    220 
    221     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
    222     /// each alloca that is of pointer type, we keep track of what to copyValue
    223     /// to the inserted PHI nodes here.
    224     ///
    225     std::vector<Value*> PointerAllocaValues;
    226 
    227     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
    228     /// intrinsic that describes it, if any, so that we can convert it to a
    229     /// dbg.value intrinsic if the alloca gets promoted.
    230     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
    231 
    232     /// Visited - The set of basic blocks the renamer has already visited.
    233     ///
    234     SmallPtrSet<BasicBlock*, 16> Visited;
    235 
    236     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
    237     /// non-determinstic behavior.
    238     DenseMap<BasicBlock*, unsigned> BBNumbers;
    239 
    240     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
    241     DenseMap<DomTreeNode*, unsigned> DomLevels;
    242 
    243     /// BBNumPreds - Lazily compute the number of predecessors a block has.
    244     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
    245   public:
    246     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
    247                    AliasSetTracker *ast)
    248       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
    249     ~PromoteMem2Reg() {
    250       delete DIB;
    251     }
    252 
    253     void run();
    254 
    255     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
    256     ///
    257     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
    258       return DT.dominates(BB1, BB2);
    259     }
    260 
    261   private:
    262     void RemoveFromAllocasList(unsigned &AllocaIdx) {
    263       Allocas[AllocaIdx] = Allocas.back();
    264       Allocas.pop_back();
    265       --AllocaIdx;
    266     }
    267 
    268     unsigned getNumPreds(const BasicBlock *BB) {
    269       unsigned &NP = BBNumPreds[BB];
    270       if (NP == 0)
    271         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
    272       return NP-1;
    273     }
    274 
    275     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    276                                  AllocaInfo &Info);
    277     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    278                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    279                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
    280 
    281     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    282                                   LargeBlockInfo &LBI);
    283     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    284                                   LargeBlockInfo &LBI);
    285 
    286     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    287                     RenamePassData::ValVector &IncVals,
    288                     std::vector<RenamePassData> &Worklist);
    289     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    290   };
    291 
    292   struct AllocaInfo {
    293     SmallVector<BasicBlock*, 32> DefiningBlocks;
    294     SmallVector<BasicBlock*, 32> UsingBlocks;
    295 
    296     StoreInst  *OnlyStore;
    297     BasicBlock *OnlyBlock;
    298     bool OnlyUsedInOneBlock;
    299 
    300     Value *AllocaPointerVal;
    301     DbgDeclareInst *DbgDeclare;
    302 
    303     void clear() {
    304       DefiningBlocks.clear();
    305       UsingBlocks.clear();
    306       OnlyStore = 0;
    307       OnlyBlock = 0;
    308       OnlyUsedInOneBlock = true;
    309       AllocaPointerVal = 0;
    310       DbgDeclare = 0;
    311     }
    312 
    313     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
    314     /// ivars.
    315     void AnalyzeAlloca(AllocaInst *AI) {
    316       clear();
    317 
    318       // As we scan the uses of the alloca instruction, keep track of stores,
    319       // and decide whether all of the loads and stores to the alloca are within
    320       // the same basic block.
    321       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    322            UI != E;)  {
    323         Instruction *User = cast<Instruction>(*UI++);
    324 
    325         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    326           // Remember the basic blocks which define new values for the alloca
    327           DefiningBlocks.push_back(SI->getParent());
    328           AllocaPointerVal = SI->getOperand(0);
    329           OnlyStore = SI;
    330         } else {
    331           LoadInst *LI = cast<LoadInst>(User);
    332           // Otherwise it must be a load instruction, keep track of variable
    333           // reads.
    334           UsingBlocks.push_back(LI->getParent());
    335           AllocaPointerVal = LI;
    336         }
    337 
    338         if (OnlyUsedInOneBlock) {
    339           if (OnlyBlock == 0)
    340             OnlyBlock = User->getParent();
    341           else if (OnlyBlock != User->getParent())
    342             OnlyUsedInOneBlock = false;
    343         }
    344       }
    345 
    346       DbgDeclare = FindAllocaDbgDeclare(AI);
    347     }
    348   };
    349 
    350   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
    351 
    352   struct DomTreeNodeCompare {
    353     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
    354       return LHS.second < RHS.second;
    355     }
    356   };
    357 }  // end of anonymous namespace
    358 
    359 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    360   // Knowing that this alloca is promotable, we know that it's safe to kill all
    361   // instructions except for load and store.
    362 
    363   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
    364        UI != UE;) {
    365     Instruction *I = cast<Instruction>(*UI);
    366     ++UI;
    367     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    368       continue;
    369 
    370     if (!I->getType()->isVoidTy()) {
    371       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    372       // Follow the use/def chain to erase them now instead of leaving it for
    373       // dead code elimination later.
    374       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
    375            UI != UE;) {
    376         Instruction *Inst = cast<Instruction>(*UI);
    377         ++UI;
    378         Inst->eraseFromParent();
    379       }
    380     }
    381     I->eraseFromParent();
    382   }
    383 }
    384 
    385 void PromoteMem2Reg::run() {
    386   Function &F = *DT.getRoot()->getParent();
    387 
    388   if (AST) PointerAllocaValues.resize(Allocas.size());
    389   AllocaDbgDeclares.resize(Allocas.size());
    390 
    391   AllocaInfo Info;
    392   LargeBlockInfo LBI;
    393 
    394   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    395     AllocaInst *AI = Allocas[AllocaNum];
    396 
    397     assert(isAllocaPromotable(AI) &&
    398            "Cannot promote non-promotable alloca!");
    399     assert(AI->getParent()->getParent() == &F &&
    400            "All allocas should be in the same function, which is same as DF!");
    401 
    402     removeLifetimeIntrinsicUsers(AI);
    403 
    404     if (AI->use_empty()) {
    405       // If there are no uses of the alloca, just delete it now.
    406       if (AST) AST->deleteValue(AI);
    407       AI->eraseFromParent();
    408 
    409       // Remove the alloca from the Allocas list, since it has been processed
    410       RemoveFromAllocasList(AllocaNum);
    411       ++NumDeadAlloca;
    412       continue;
    413     }
    414 
    415     // Calculate the set of read and write-locations for each alloca.  This is
    416     // analogous to finding the 'uses' and 'definitions' of each variable.
    417     Info.AnalyzeAlloca(AI);
    418 
    419     // If there is only a single store to this value, replace any loads of
    420     // it that are directly dominated by the definition with the value stored.
    421     if (Info.DefiningBlocks.size() == 1) {
    422       RewriteSingleStoreAlloca(AI, Info, LBI);
    423 
    424       // Finally, after the scan, check to see if the store is all that is left.
    425       if (Info.UsingBlocks.empty()) {
    426         // Record debuginfo for the store and remove the declaration's debuginfo.
    427         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    428           if (!DIB)
    429             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
    430           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
    431           DDI->eraseFromParent();
    432         }
    433         // Remove the (now dead) store and alloca.
    434         Info.OnlyStore->eraseFromParent();
    435         LBI.deleteValue(Info.OnlyStore);
    436 
    437         if (AST) AST->deleteValue(AI);
    438         AI->eraseFromParent();
    439         LBI.deleteValue(AI);
    440 
    441         // The alloca has been processed, move on.
    442         RemoveFromAllocasList(AllocaNum);
    443 
    444         ++NumSingleStore;
    445         continue;
    446       }
    447     }
    448 
    449     // If the alloca is only read and written in one basic block, just perform a
    450     // linear sweep over the block to eliminate it.
    451     if (Info.OnlyUsedInOneBlock) {
    452       PromoteSingleBlockAlloca(AI, Info, LBI);
    453 
    454       // Finally, after the scan, check to see if the stores are all that is
    455       // left.
    456       if (Info.UsingBlocks.empty()) {
    457 
    458         // Remove the (now dead) stores and alloca.
    459         while (!AI->use_empty()) {
    460           StoreInst *SI = cast<StoreInst>(AI->use_back());
    461           // Record debuginfo for the store before removing it.
    462           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    463             if (!DIB)
    464               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
    465             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
    466           }
    467           SI->eraseFromParent();
    468           LBI.deleteValue(SI);
    469         }
    470 
    471         if (AST) AST->deleteValue(AI);
    472         AI->eraseFromParent();
    473         LBI.deleteValue(AI);
    474 
    475         // The alloca has been processed, move on.
    476         RemoveFromAllocasList(AllocaNum);
    477 
    478         // The alloca's debuginfo can be removed as well.
    479         if (DbgDeclareInst *DDI = Info.DbgDeclare)
    480           DDI->eraseFromParent();
    481 
    482         ++NumLocalPromoted;
    483         continue;
    484       }
    485     }
    486 
    487     // If we haven't computed dominator tree levels, do so now.
    488     if (DomLevels.empty()) {
    489       SmallVector<DomTreeNode*, 32> Worklist;
    490 
    491       DomTreeNode *Root = DT.getRootNode();
    492       DomLevels[Root] = 0;
    493       Worklist.push_back(Root);
    494 
    495       while (!Worklist.empty()) {
    496         DomTreeNode *Node = Worklist.pop_back_val();
    497         unsigned ChildLevel = DomLevels[Node] + 1;
    498         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    499              CI != CE; ++CI) {
    500           DomLevels[*CI] = ChildLevel;
    501           Worklist.push_back(*CI);
    502         }
    503       }
    504     }
    505 
    506     // If we haven't computed a numbering for the BB's in the function, do so
    507     // now.
    508     if (BBNumbers.empty()) {
    509       unsigned ID = 0;
    510       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    511         BBNumbers[I] = ID++;
    512     }
    513 
    514     // If we have an AST to keep updated, remember some pointer value that is
    515     // stored into the alloca.
    516     if (AST)
    517       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    518 
    519     // Remember the dbg.declare intrinsic describing this alloca, if any.
    520     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    521 
    522     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    523     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    524 
    525     // At this point, we're committed to promoting the alloca using IDF's, and
    526     // the standard SSA construction algorithm.  Determine which blocks need PHI
    527     // nodes and see if we can optimize out some work by avoiding insertion of
    528     // dead phi nodes.
    529     DetermineInsertionPoint(AI, AllocaNum, Info);
    530   }
    531 
    532   if (Allocas.empty())
    533     return; // All of the allocas must have been trivial!
    534 
    535   LBI.clear();
    536 
    537 
    538   // Set the incoming values for the basic block to be null values for all of
    539   // the alloca's.  We do this in case there is a load of a value that has not
    540   // been stored yet.  In this case, it will get this null value.
    541   //
    542   RenamePassData::ValVector Values(Allocas.size());
    543   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    544     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    545 
    546   // Walks all basic blocks in the function performing the SSA rename algorithm
    547   // and inserting the phi nodes we marked as necessary
    548   //
    549   std::vector<RenamePassData> RenamePassWorkList;
    550   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
    551   do {
    552     RenamePassData RPD;
    553     RPD.swap(RenamePassWorkList.back());
    554     RenamePassWorkList.pop_back();
    555     // RenamePass may add new worklist entries.
    556     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    557   } while (!RenamePassWorkList.empty());
    558 
    559   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    560   Visited.clear();
    561 
    562   // Remove the allocas themselves from the function.
    563   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    564     Instruction *A = Allocas[i];
    565 
    566     // If there are any uses of the alloca instructions left, they must be in
    567     // unreachable basic blocks that were not processed by walking the dominator
    568     // tree. Just delete the users now.
    569     if (!A->use_empty())
    570       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    571     if (AST) AST->deleteValue(A);
    572     A->eraseFromParent();
    573   }
    574 
    575   // Remove alloca's dbg.declare instrinsics from the function.
    576   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    577     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    578       DDI->eraseFromParent();
    579 
    580   // Loop over all of the PHI nodes and see if there are any that we can get
    581   // rid of because they merge all of the same incoming values.  This can
    582   // happen due to undef values coming into the PHI nodes.  This process is
    583   // iterative, because eliminating one PHI node can cause others to be removed.
    584   bool EliminatedAPHI = true;
    585   while (EliminatedAPHI) {
    586     EliminatedAPHI = false;
    587 
    588     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    589            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
    590       PHINode *PN = I->second;
    591 
    592       // If this PHI node merges one value and/or undefs, get the value.
    593       if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
    594         if (AST && PN->getType()->isPointerTy())
    595           AST->deleteValue(PN);
    596         PN->replaceAllUsesWith(V);
    597         PN->eraseFromParent();
    598         NewPhiNodes.erase(I++);
    599         EliminatedAPHI = true;
    600         continue;
    601       }
    602       ++I;
    603     }
    604   }
    605 
    606   // At this point, the renamer has added entries to PHI nodes for all reachable
    607   // code.  Unfortunately, there may be unreachable blocks which the renamer
    608   // hasn't traversed.  If this is the case, the PHI nodes may not
    609   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    610   // created, inserting undef values if they are missing any incoming values.
    611   //
    612   for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    613          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
    614     // We want to do this once per basic block.  As such, only process a block
    615     // when we find the PHI that is the first entry in the block.
    616     PHINode *SomePHI = I->second;
    617     BasicBlock *BB = SomePHI->getParent();
    618     if (&BB->front() != SomePHI)
    619       continue;
    620 
    621     // Only do work here if there the PHI nodes are missing incoming values.  We
    622     // know that all PHI nodes that were inserted in a block will have the same
    623     // number of incoming values, so we can just check any of them.
    624     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    625       continue;
    626 
    627     // Get the preds for BB.
    628     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    629 
    630     // Ok, now we know that all of the PHI nodes are missing entries for some
    631     // basic blocks.  Start by sorting the incoming predecessors for efficient
    632     // access.
    633     std::sort(Preds.begin(), Preds.end());
    634 
    635     // Now we loop through all BB's which have entries in SomePHI and remove
    636     // them from the Preds list.
    637     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    638       // Do a log(n) search of the Preds list for the entry we want.
    639       SmallVector<BasicBlock*, 16>::iterator EntIt =
    640         std::lower_bound(Preds.begin(), Preds.end(),
    641                          SomePHI->getIncomingBlock(i));
    642       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
    643              "PHI node has entry for a block which is not a predecessor!");
    644 
    645       // Remove the entry
    646       Preds.erase(EntIt);
    647     }
    648 
    649     // At this point, the blocks left in the preds list must have dummy
    650     // entries inserted into every PHI nodes for the block.  Update all the phi
    651     // nodes in this block that we are inserting (there could be phis before
    652     // mem2reg runs).
    653     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    654     BasicBlock::iterator BBI = BB->begin();
    655     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    656            SomePHI->getNumIncomingValues() == NumBadPreds) {
    657       Value *UndefVal = UndefValue::get(SomePHI->getType());
    658       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    659         SomePHI->addIncoming(UndefVal, Preds[pred]);
    660     }
    661   }
    662 
    663   NewPhiNodes.clear();
    664 }
    665 
    666 
    667 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
    668 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
    669 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
    670 /// would be dead).
    671 void PromoteMem2Reg::
    672 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    673                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    674                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
    675 
    676   // To determine liveness, we must iterate through the predecessors of blocks
    677   // where the def is live.  Blocks are added to the worklist if we need to
    678   // check their predecessors.  Start with all the using blocks.
    679   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    680                                                    Info.UsingBlocks.end());
    681 
    682   // If any of the using blocks is also a definition block, check to see if the
    683   // definition occurs before or after the use.  If it happens before the use,
    684   // the value isn't really live-in.
    685   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    686     BasicBlock *BB = LiveInBlockWorklist[i];
    687     if (!DefBlocks.count(BB)) continue;
    688 
    689     // Okay, this is a block that both uses and defines the value.  If the first
    690     // reference to the alloca is a def (store), then we know it isn't live-in.
    691     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
    692       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    693         if (SI->getOperand(1) != AI) continue;
    694 
    695         // We found a store to the alloca before a load.  The alloca is not
    696         // actually live-in here.
    697         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    698         LiveInBlockWorklist.pop_back();
    699         --i, --e;
    700         break;
    701       }
    702 
    703       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    704         if (LI->getOperand(0) != AI) continue;
    705 
    706         // Okay, we found a load before a store to the alloca.  It is actually
    707         // live into this block.
    708         break;
    709       }
    710     }
    711   }
    712 
    713   // Now that we have a set of blocks where the phi is live-in, recursively add
    714   // their predecessors until we find the full region the value is live.
    715   while (!LiveInBlockWorklist.empty()) {
    716     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    717 
    718     // The block really is live in here, insert it into the set.  If already in
    719     // the set, then it has already been processed.
    720     if (!LiveInBlocks.insert(BB))
    721       continue;
    722 
    723     // Since the value is live into BB, it is either defined in a predecessor or
    724     // live into it to.  Add the preds to the worklist unless they are a
    725     // defining block.
    726     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    727       BasicBlock *P = *PI;
    728 
    729       // The value is not live into a predecessor if it defines the value.
    730       if (DefBlocks.count(P))
    731         continue;
    732 
    733       // Otherwise it is, add to the worklist.
    734       LiveInBlockWorklist.push_back(P);
    735     }
    736   }
    737 }
    738 
    739 /// DetermineInsertionPoint - At this point, we're committed to promoting the
    740 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
    741 /// which blocks need phi nodes and see if we can optimize out some work by
    742 /// avoiding insertion of dead phi nodes.
    743 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    744                                              AllocaInfo &Info) {
    745   // Unique the set of defining blocks for efficient lookup.
    746   SmallPtrSet<BasicBlock*, 32> DefBlocks;
    747   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    748 
    749   // Determine which blocks the value is live in.  These are blocks which lead
    750   // to uses.
    751   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
    752   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    753 
    754   // Use a priority queue keyed on dominator tree level so that inserted nodes
    755   // are handled from the bottom of the dominator tree upwards.
    756   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    757                               DomTreeNodeCompare> IDFPriorityQueue;
    758   IDFPriorityQueue PQ;
    759 
    760   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
    761        E = DefBlocks.end(); I != E; ++I) {
    762     if (DomTreeNode *Node = DT.getNode(*I))
    763       PQ.push(std::make_pair(Node, DomLevels[Node]));
    764   }
    765 
    766   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
    767   SmallPtrSet<DomTreeNode*, 32> Visited;
    768   SmallVector<DomTreeNode*, 32> Worklist;
    769   while (!PQ.empty()) {
    770     DomTreeNodePair RootPair = PQ.top();
    771     PQ.pop();
    772     DomTreeNode *Root = RootPair.first;
    773     unsigned RootLevel = RootPair.second;
    774 
    775     // Walk all dominator tree children of Root, inspecting their CFG edges with
    776     // targets elsewhere on the dominator tree. Only targets whose level is at
    777     // most Root's level are added to the iterated dominance frontier of the
    778     // definition set.
    779 
    780     Worklist.clear();
    781     Worklist.push_back(Root);
    782 
    783     while (!Worklist.empty()) {
    784       DomTreeNode *Node = Worklist.pop_back_val();
    785       BasicBlock *BB = Node->getBlock();
    786 
    787       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    788            ++SI) {
    789         DomTreeNode *SuccNode = DT.getNode(*SI);
    790 
    791         // Quickly skip all CFG edges that are also dominator tree edges instead
    792         // of catching them below.
    793         if (SuccNode->getIDom() == Node)
    794           continue;
    795 
    796         unsigned SuccLevel = DomLevels[SuccNode];
    797         if (SuccLevel > RootLevel)
    798           continue;
    799 
    800         if (!Visited.insert(SuccNode))
    801           continue;
    802 
    803         BasicBlock *SuccBB = SuccNode->getBlock();
    804         if (!LiveInBlocks.count(SuccBB))
    805           continue;
    806 
    807         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    808         if (!DefBlocks.count(SuccBB))
    809           PQ.push(std::make_pair(SuccNode, SuccLevel));
    810       }
    811 
    812       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    813            ++CI) {
    814         if (!Visited.count(*CI))
    815           Worklist.push_back(*CI);
    816       }
    817     }
    818   }
    819 
    820   if (DFBlocks.size() > 1)
    821     std::sort(DFBlocks.begin(), DFBlocks.end());
    822 
    823   unsigned CurrentVersion = 0;
    824   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    825     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    826 }
    827 
    828 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
    829 /// replace any loads of it that are directly dominated by the definition with
    830 /// the value stored.
    831 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
    832                                               AllocaInfo &Info,
    833                                               LargeBlockInfo &LBI) {
    834   StoreInst *OnlyStore = Info.OnlyStore;
    835   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    836   BasicBlock *StoreBB = OnlyStore->getParent();
    837   int StoreIndex = -1;
    838 
    839   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    840   Info.UsingBlocks.clear();
    841 
    842   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
    843     Instruction *UserInst = cast<Instruction>(*UI++);
    844     if (!isa<LoadInst>(UserInst)) {
    845       assert(UserInst == OnlyStore && "Should only have load/stores");
    846       continue;
    847     }
    848     LoadInst *LI = cast<LoadInst>(UserInst);
    849 
    850     // Okay, if we have a load from the alloca, we want to replace it with the
    851     // only value stored to the alloca.  We can do this if the value is
    852     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    853     // to insert the phi nodes as needed.
    854     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
    855       if (LI->getParent() == StoreBB) {
    856         // If we have a use that is in the same block as the store, compare the
    857         // indices of the two instructions to see which one came first.  If the
    858         // load came before the store, we can't handle it.
    859         if (StoreIndex == -1)
    860           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    861 
    862         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    863           // Can't handle this load, bail out.
    864           Info.UsingBlocks.push_back(StoreBB);
    865           continue;
    866         }
    867 
    868       } else if (LI->getParent() != StoreBB &&
    869                  !dominates(StoreBB, LI->getParent())) {
    870         // If the load and store are in different blocks, use BB dominance to
    871         // check their relationships.  If the store doesn't dom the use, bail
    872         // out.
    873         Info.UsingBlocks.push_back(LI->getParent());
    874         continue;
    875       }
    876     }
    877 
    878     // Otherwise, we *can* safely rewrite this load.
    879     Value *ReplVal = OnlyStore->getOperand(0);
    880     // If the replacement value is the load, this must occur in unreachable
    881     // code.
    882     if (ReplVal == LI)
    883       ReplVal = UndefValue::get(LI->getType());
    884     LI->replaceAllUsesWith(ReplVal);
    885     if (AST && LI->getType()->isPointerTy())
    886       AST->deleteValue(LI);
    887     LI->eraseFromParent();
    888     LBI.deleteValue(LI);
    889   }
    890 }
    891 
    892 namespace {
    893 
    894 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
    895 /// first element of a pair.
    896 struct StoreIndexSearchPredicate {
    897   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
    898                   const std::pair<unsigned, StoreInst*> &RHS) {
    899     return LHS.first < RHS.first;
    900   }
    901 };
    902 
    903 }
    904 
    905 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
    906 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
    907 /// potentially useless PHI nodes by just performing a single linear pass over
    908 /// the basic block using the Alloca.
    909 ///
    910 /// If we cannot promote this alloca (because it is read before it is written),
    911 /// return true.  This is necessary in cases where, due to control flow, the
    912 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    913 /// this is potentially correct:
    914 ///
    915 ///   for (...) { if (c) { A = undef; undef = B; } }
    916 ///
    917 /// ... so long as A is not used before undef is set.
    918 ///
    919 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    920                                               LargeBlockInfo &LBI) {
    921   // The trickiest case to handle is when we have large blocks. Because of this,
    922   // this code is optimized assuming that large blocks happen.  This does not
    923   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    924   // make it efficient to get the index of various operations in the block.
    925 
    926   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    927   Info.UsingBlocks.clear();
    928 
    929   // Walk the use-def list of the alloca, getting the locations of all stores.
    930   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
    931   StoresByIndexTy StoresByIndex;
    932 
    933   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    934        UI != E; ++UI)
    935     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    936       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    937 
    938   // If there are no stores to the alloca, just replace any loads with undef.
    939   if (StoresByIndex.empty()) {
    940     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
    941       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
    942         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    943         if (AST && LI->getType()->isPointerTy())
    944           AST->deleteValue(LI);
    945         LBI.deleteValue(LI);
    946         LI->eraseFromParent();
    947       }
    948     return;
    949   }
    950 
    951   // Sort the stores by their index, making it efficient to do a lookup with a
    952   // binary search.
    953   std::sort(StoresByIndex.begin(), StoresByIndex.end());
    954 
    955   // Walk all of the loads from this alloca, replacing them with the nearest
    956   // store above them, if any.
    957   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    958     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    959     if (!LI) continue;
    960 
    961     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    962 
    963     // Find the nearest store that has a lower than this load.
    964     StoresByIndexTy::iterator I =
    965       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    966                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
    967                        StoreIndexSearchPredicate());
    968 
    969     // If there is no store before this load, then we can't promote this load.
    970     if (I == StoresByIndex.begin()) {
    971       // Can't handle this load, bail out.
    972       Info.UsingBlocks.push_back(LI->getParent());
    973       continue;
    974     }
    975 
    976     // Otherwise, there was a store before this load, the load takes its value.
    977     --I;
    978     LI->replaceAllUsesWith(I->second->getOperand(0));
    979     if (AST && LI->getType()->isPointerTy())
    980       AST->deleteValue(LI);
    981     LI->eraseFromParent();
    982     LBI.deleteValue(LI);
    983   }
    984 }
    985 
    986 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
    987 // Alloca returns true if there wasn't already a phi-node for that variable
    988 //
    989 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    990                                   unsigned &Version) {
    991   // Look up the basic-block in question.
    992   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
    993 
    994   // If the BB already has a phi node added for the i'th alloca then we're done!
    995   if (PN) return false;
    996 
    997   // Create a PhiNode using the dereferenced type... and add the phi-node to the
    998   // BasicBlock.
    999   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
   1000                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
   1001                        BB->begin());
   1002   ++NumPHIInsert;
   1003   PhiToAllocaMap[PN] = AllocaNo;
   1004 
   1005   if (AST && PN->getType()->isPointerTy())
   1006     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
   1007 
   1008   return true;
   1009 }
   1010 
   1011 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
   1012 // stores to the allocas which we are promoting.  IncomingVals indicates what
   1013 // value each Alloca contains on exit from the predecessor block Pred.
   1014 //
   1015 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
   1016                                 RenamePassData::ValVector &IncomingVals,
   1017                                 std::vector<RenamePassData> &Worklist) {
   1018 NextIteration:
   1019   // If we are inserting any phi nodes into this BB, they will already be in the
   1020   // block.
   1021   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
   1022     // If we have PHI nodes to update, compute the number of edges from Pred to
   1023     // BB.
   1024     if (PhiToAllocaMap.count(APN)) {
   1025       // We want to be able to distinguish between PHI nodes being inserted by
   1026       // this invocation of mem2reg from those phi nodes that already existed in
   1027       // the IR before mem2reg was run.  We determine that APN is being inserted
   1028       // because it is missing incoming edges.  All other PHI nodes being
   1029       // inserted by this pass of mem2reg will have the same number of incoming
   1030       // operands so far.  Remember this count.
   1031       unsigned NewPHINumOperands = APN->getNumOperands();
   1032 
   1033       unsigned NumEdges = 0;
   1034       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
   1035         if (*I == BB)
   1036           ++NumEdges;
   1037       assert(NumEdges && "Must be at least one edge from Pred to BB!");
   1038 
   1039       // Add entries for all the phis.
   1040       BasicBlock::iterator PNI = BB->begin();
   1041       do {
   1042         unsigned AllocaNo = PhiToAllocaMap[APN];
   1043 
   1044         // Add N incoming values to the PHI node.
   1045         for (unsigned i = 0; i != NumEdges; ++i)
   1046           APN->addIncoming(IncomingVals[AllocaNo], Pred);
   1047 
   1048         // The currently active variable for this block is now the PHI.
   1049         IncomingVals[AllocaNo] = APN;
   1050 
   1051         // Get the next phi node.
   1052         ++PNI;
   1053         APN = dyn_cast<PHINode>(PNI);
   1054         if (APN == 0) break;
   1055 
   1056         // Verify that it is missing entries.  If not, it is not being inserted
   1057         // by this mem2reg invocation so we want to ignore it.
   1058       } while (APN->getNumOperands() == NewPHINumOperands);
   1059     }
   1060   }
   1061 
   1062   // Don't revisit blocks.
   1063   if (!Visited.insert(BB)) return;
   1064 
   1065   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
   1066     Instruction *I = II++; // get the instruction, increment iterator
   1067 
   1068     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1069       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1070       if (!Src) continue;
   1071 
   1072       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
   1073       if (AI == AllocaLookup.end()) continue;
   1074 
   1075       Value *V = IncomingVals[AI->second];
   1076 
   1077       // Anything using the load now uses the current value.
   1078       LI->replaceAllUsesWith(V);
   1079       if (AST && LI->getType()->isPointerTy())
   1080         AST->deleteValue(LI);
   1081       BB->getInstList().erase(LI);
   1082     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1083       // Delete this instruction and mark the name as the current holder of the
   1084       // value
   1085       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1086       if (!Dest) continue;
   1087 
   1088       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1089       if (ai == AllocaLookup.end())
   1090         continue;
   1091 
   1092       // what value were we writing?
   1093       IncomingVals[ai->second] = SI->getOperand(0);
   1094       // Record debuginfo for the store before removing it.
   1095       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
   1096         if (!DIB)
   1097           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
   1098         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1099       }
   1100       BB->getInstList().erase(SI);
   1101     }
   1102   }
   1103 
   1104   // 'Recurse' to our successors.
   1105   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1106   if (I == E) return;
   1107 
   1108   // Keep track of the successors so we don't visit the same successor twice
   1109   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
   1110 
   1111   // Handle the first successor without using the worklist.
   1112   VisitedSuccs.insert(*I);
   1113   Pred = BB;
   1114   BB = *I;
   1115   ++I;
   1116 
   1117   for (; I != E; ++I)
   1118     if (VisitedSuccs.insert(*I))
   1119       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1120 
   1121   goto NextIteration;
   1122 }
   1123 
   1124 /// PromoteMemToReg - Promote the specified list of alloca instructions into
   1125 /// scalar registers, inserting PHI nodes as appropriate.  This function does
   1126 /// not modify the CFG of the function at all.  All allocas must be from the
   1127 /// same function.
   1128 ///
   1129 /// If AST is specified, the specified tracker is updated to reflect changes
   1130 /// made to the IR.
   1131 ///
   1132 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
   1133                            DominatorTree &DT, AliasSetTracker *AST) {
   1134   // If there is nothing to do, bail out...
   1135   if (Allocas.empty()) return;
   1136 
   1137   PromoteMem2Reg(Allocas, DT, AST).run();
   1138 }
   1139