1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/gdb-jit.h" 6 7 #include <memory> 8 9 #include "src/base/bits.h" 10 #include "src/base/platform/platform.h" 11 #include "src/bootstrapper.h" 12 #include "src/frames-inl.h" 13 #include "src/frames.h" 14 #include "src/global-handles.h" 15 #include "src/messages.h" 16 #include "src/objects.h" 17 #include "src/ostreams.h" 18 #include "src/snapshot/natives.h" 19 #include "src/splay-tree-inl.h" 20 21 namespace v8 { 22 namespace internal { 23 namespace GDBJITInterface { 24 25 #ifdef ENABLE_GDB_JIT_INTERFACE 26 27 #ifdef __APPLE__ 28 #define __MACH_O 29 class MachO; 30 class MachOSection; 31 typedef MachO DebugObject; 32 typedef MachOSection DebugSection; 33 #else 34 #define __ELF 35 class ELF; 36 class ELFSection; 37 typedef ELF DebugObject; 38 typedef ELFSection DebugSection; 39 #endif 40 41 class Writer BASE_EMBEDDED { 42 public: 43 explicit Writer(DebugObject* debug_object) 44 : debug_object_(debug_object), 45 position_(0), 46 capacity_(1024), 47 buffer_(reinterpret_cast<byte*>(malloc(capacity_))) { 48 } 49 50 ~Writer() { 51 free(buffer_); 52 } 53 54 uintptr_t position() const { 55 return position_; 56 } 57 58 template<typename T> 59 class Slot { 60 public: 61 Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { } 62 63 T* operator-> () { 64 return w_->RawSlotAt<T>(offset_); 65 } 66 67 void set(const T& value) { 68 *w_->RawSlotAt<T>(offset_) = value; 69 } 70 71 Slot<T> at(int i) { 72 return Slot<T>(w_, offset_ + sizeof(T) * i); 73 } 74 75 private: 76 Writer* w_; 77 uintptr_t offset_; 78 }; 79 80 template<typename T> 81 void Write(const T& val) { 82 Ensure(position_ + sizeof(T)); 83 *RawSlotAt<T>(position_) = val; 84 position_ += sizeof(T); 85 } 86 87 template<typename T> 88 Slot<T> SlotAt(uintptr_t offset) { 89 Ensure(offset + sizeof(T)); 90 return Slot<T>(this, offset); 91 } 92 93 template<typename T> 94 Slot<T> CreateSlotHere() { 95 return CreateSlotsHere<T>(1); 96 } 97 98 template<typename T> 99 Slot<T> CreateSlotsHere(uint32_t count) { 100 uintptr_t slot_position = position_; 101 position_ += sizeof(T) * count; 102 Ensure(position_); 103 return SlotAt<T>(slot_position); 104 } 105 106 void Ensure(uintptr_t pos) { 107 if (capacity_ < pos) { 108 while (capacity_ < pos) capacity_ *= 2; 109 buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_)); 110 } 111 } 112 113 DebugObject* debug_object() { return debug_object_; } 114 115 byte* buffer() { return buffer_; } 116 117 void Align(uintptr_t align) { 118 uintptr_t delta = position_ % align; 119 if (delta == 0) return; 120 uintptr_t padding = align - delta; 121 Ensure(position_ += padding); 122 DCHECK((position_ % align) == 0); 123 } 124 125 void WriteULEB128(uintptr_t value) { 126 do { 127 uint8_t byte = value & 0x7F; 128 value >>= 7; 129 if (value != 0) byte |= 0x80; 130 Write<uint8_t>(byte); 131 } while (value != 0); 132 } 133 134 void WriteSLEB128(intptr_t value) { 135 bool more = true; 136 while (more) { 137 int8_t byte = value & 0x7F; 138 bool byte_sign = byte & 0x40; 139 value >>= 7; 140 141 if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { 142 more = false; 143 } else { 144 byte |= 0x80; 145 } 146 147 Write<int8_t>(byte); 148 } 149 } 150 151 void WriteString(const char* str) { 152 do { 153 Write<char>(*str); 154 } while (*str++); 155 } 156 157 private: 158 template<typename T> friend class Slot; 159 160 template<typename T> 161 T* RawSlotAt(uintptr_t offset) { 162 DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); 163 return reinterpret_cast<T*>(&buffer_[offset]); 164 } 165 166 DebugObject* debug_object_; 167 uintptr_t position_; 168 uintptr_t capacity_; 169 byte* buffer_; 170 }; 171 172 class ELFStringTable; 173 174 template<typename THeader> 175 class DebugSectionBase : public ZoneObject { 176 public: 177 virtual ~DebugSectionBase() { } 178 179 virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) { 180 uintptr_t start = writer->position(); 181 if (WriteBodyInternal(writer)) { 182 uintptr_t end = writer->position(); 183 header->offset = static_cast<uint32_t>(start); 184 #if defined(__MACH_O) 185 header->addr = 0; 186 #endif 187 header->size = end - start; 188 } 189 } 190 191 virtual bool WriteBodyInternal(Writer* writer) { 192 return false; 193 } 194 195 typedef THeader Header; 196 }; 197 198 199 struct MachOSectionHeader { 200 char sectname[16]; 201 char segname[16]; 202 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 203 uint32_t addr; 204 uint32_t size; 205 #else 206 uint64_t addr; 207 uint64_t size; 208 #endif 209 uint32_t offset; 210 uint32_t align; 211 uint32_t reloff; 212 uint32_t nreloc; 213 uint32_t flags; 214 uint32_t reserved1; 215 uint32_t reserved2; 216 }; 217 218 219 class MachOSection : public DebugSectionBase<MachOSectionHeader> { 220 public: 221 enum Type { 222 S_REGULAR = 0x0u, 223 S_ATTR_COALESCED = 0xbu, 224 S_ATTR_SOME_INSTRUCTIONS = 0x400u, 225 S_ATTR_DEBUG = 0x02000000u, 226 S_ATTR_PURE_INSTRUCTIONS = 0x80000000u 227 }; 228 229 MachOSection(const char* name, const char* segment, uint32_t align, 230 uint32_t flags) 231 : name_(name), segment_(segment), align_(align), flags_(flags) { 232 if (align_ != 0) { 233 DCHECK(base::bits::IsPowerOfTwo32(align)); 234 align_ = WhichPowerOf2(align_); 235 } 236 } 237 238 virtual ~MachOSection() { } 239 240 virtual void PopulateHeader(Writer::Slot<Header> header) { 241 header->addr = 0; 242 header->size = 0; 243 header->offset = 0; 244 header->align = align_; 245 header->reloff = 0; 246 header->nreloc = 0; 247 header->flags = flags_; 248 header->reserved1 = 0; 249 header->reserved2 = 0; 250 memset(header->sectname, 0, sizeof(header->sectname)); 251 memset(header->segname, 0, sizeof(header->segname)); 252 DCHECK(strlen(name_) < sizeof(header->sectname)); 253 DCHECK(strlen(segment_) < sizeof(header->segname)); 254 strncpy(header->sectname, name_, sizeof(header->sectname)); 255 strncpy(header->segname, segment_, sizeof(header->segname)); 256 } 257 258 private: 259 const char* name_; 260 const char* segment_; 261 uint32_t align_; 262 uint32_t flags_; 263 }; 264 265 266 struct ELFSectionHeader { 267 uint32_t name; 268 uint32_t type; 269 uintptr_t flags; 270 uintptr_t address; 271 uintptr_t offset; 272 uintptr_t size; 273 uint32_t link; 274 uint32_t info; 275 uintptr_t alignment; 276 uintptr_t entry_size; 277 }; 278 279 280 #if defined(__ELF) 281 class ELFSection : public DebugSectionBase<ELFSectionHeader> { 282 public: 283 enum Type { 284 TYPE_NULL = 0, 285 TYPE_PROGBITS = 1, 286 TYPE_SYMTAB = 2, 287 TYPE_STRTAB = 3, 288 TYPE_RELA = 4, 289 TYPE_HASH = 5, 290 TYPE_DYNAMIC = 6, 291 TYPE_NOTE = 7, 292 TYPE_NOBITS = 8, 293 TYPE_REL = 9, 294 TYPE_SHLIB = 10, 295 TYPE_DYNSYM = 11, 296 TYPE_LOPROC = 0x70000000, 297 TYPE_X86_64_UNWIND = 0x70000001, 298 TYPE_HIPROC = 0x7fffffff, 299 TYPE_LOUSER = 0x80000000, 300 TYPE_HIUSER = 0xffffffff 301 }; 302 303 enum Flags { 304 FLAG_WRITE = 1, 305 FLAG_ALLOC = 2, 306 FLAG_EXEC = 4 307 }; 308 309 enum SpecialIndexes { 310 INDEX_ABSOLUTE = 0xfff1 311 }; 312 313 ELFSection(const char* name, Type type, uintptr_t align) 314 : name_(name), type_(type), align_(align) { } 315 316 virtual ~ELFSection() { } 317 318 void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab); 319 320 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 321 uintptr_t start = w->position(); 322 if (WriteBodyInternal(w)) { 323 uintptr_t end = w->position(); 324 header->offset = start; 325 header->size = end - start; 326 } 327 } 328 329 virtual bool WriteBodyInternal(Writer* w) { 330 return false; 331 } 332 333 uint16_t index() const { return index_; } 334 void set_index(uint16_t index) { index_ = index; } 335 336 protected: 337 virtual void PopulateHeader(Writer::Slot<Header> header) { 338 header->flags = 0; 339 header->address = 0; 340 header->offset = 0; 341 header->size = 0; 342 header->link = 0; 343 header->info = 0; 344 header->entry_size = 0; 345 } 346 347 private: 348 const char* name_; 349 Type type_; 350 uintptr_t align_; 351 uint16_t index_; 352 }; 353 #endif // defined(__ELF) 354 355 356 #if defined(__MACH_O) 357 class MachOTextSection : public MachOSection { 358 public: 359 MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size) 360 : MachOSection("__text", "__TEXT", align, 361 MachOSection::S_REGULAR | 362 MachOSection::S_ATTR_SOME_INSTRUCTIONS | 363 MachOSection::S_ATTR_PURE_INSTRUCTIONS), 364 addr_(addr), 365 size_(size) {} 366 367 protected: 368 virtual void PopulateHeader(Writer::Slot<Header> header) { 369 MachOSection::PopulateHeader(header); 370 header->addr = addr_; 371 header->size = size_; 372 } 373 374 private: 375 uintptr_t addr_; 376 uintptr_t size_; 377 }; 378 #endif // defined(__MACH_O) 379 380 381 #if defined(__ELF) 382 class FullHeaderELFSection : public ELFSection { 383 public: 384 FullHeaderELFSection(const char* name, 385 Type type, 386 uintptr_t align, 387 uintptr_t addr, 388 uintptr_t offset, 389 uintptr_t size, 390 uintptr_t flags) 391 : ELFSection(name, type, align), 392 addr_(addr), 393 offset_(offset), 394 size_(size), 395 flags_(flags) { } 396 397 protected: 398 virtual void PopulateHeader(Writer::Slot<Header> header) { 399 ELFSection::PopulateHeader(header); 400 header->address = addr_; 401 header->offset = offset_; 402 header->size = size_; 403 header->flags = flags_; 404 } 405 406 private: 407 uintptr_t addr_; 408 uintptr_t offset_; 409 uintptr_t size_; 410 uintptr_t flags_; 411 }; 412 413 414 class ELFStringTable : public ELFSection { 415 public: 416 explicit ELFStringTable(const char* name) 417 : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) { 418 } 419 420 uintptr_t Add(const char* str) { 421 if (*str == '\0') return 0; 422 423 uintptr_t offset = size_; 424 WriteString(str); 425 return offset; 426 } 427 428 void AttachWriter(Writer* w) { 429 writer_ = w; 430 offset_ = writer_->position(); 431 432 // First entry in the string table should be an empty string. 433 WriteString(""); 434 } 435 436 void DetachWriter() { 437 writer_ = NULL; 438 } 439 440 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 441 DCHECK(writer_ == NULL); 442 header->offset = offset_; 443 header->size = size_; 444 } 445 446 private: 447 void WriteString(const char* str) { 448 uintptr_t written = 0; 449 do { 450 writer_->Write(*str); 451 written++; 452 } while (*str++); 453 size_ += written; 454 } 455 456 Writer* writer_; 457 458 uintptr_t offset_; 459 uintptr_t size_; 460 }; 461 462 463 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, 464 ELFStringTable* strtab) { 465 header->name = static_cast<uint32_t>(strtab->Add(name_)); 466 header->type = type_; 467 header->alignment = align_; 468 PopulateHeader(header); 469 } 470 #endif // defined(__ELF) 471 472 473 #if defined(__MACH_O) 474 class MachO BASE_EMBEDDED { 475 public: 476 explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { } 477 478 uint32_t AddSection(MachOSection* section) { 479 sections_.Add(section, zone_); 480 return sections_.length() - 1; 481 } 482 483 void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) { 484 Writer::Slot<MachOHeader> header = WriteHeader(w); 485 uintptr_t load_command_start = w->position(); 486 Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w, 487 code_start, 488 code_size); 489 WriteSections(w, cmd, header, load_command_start); 490 } 491 492 private: 493 struct MachOHeader { 494 uint32_t magic; 495 uint32_t cputype; 496 uint32_t cpusubtype; 497 uint32_t filetype; 498 uint32_t ncmds; 499 uint32_t sizeofcmds; 500 uint32_t flags; 501 #if V8_TARGET_ARCH_X64 502 uint32_t reserved; 503 #endif 504 }; 505 506 struct MachOSegmentCommand { 507 uint32_t cmd; 508 uint32_t cmdsize; 509 char segname[16]; 510 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 511 uint32_t vmaddr; 512 uint32_t vmsize; 513 uint32_t fileoff; 514 uint32_t filesize; 515 #else 516 uint64_t vmaddr; 517 uint64_t vmsize; 518 uint64_t fileoff; 519 uint64_t filesize; 520 #endif 521 uint32_t maxprot; 522 uint32_t initprot; 523 uint32_t nsects; 524 uint32_t flags; 525 }; 526 527 enum MachOLoadCommandCmd { 528 LC_SEGMENT_32 = 0x00000001u, 529 LC_SEGMENT_64 = 0x00000019u 530 }; 531 532 533 Writer::Slot<MachOHeader> WriteHeader(Writer* w) { 534 DCHECK(w->position() == 0); 535 Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>(); 536 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 537 header->magic = 0xFEEDFACEu; 538 header->cputype = 7; // i386 539 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 540 #elif V8_TARGET_ARCH_X64 541 header->magic = 0xFEEDFACFu; 542 header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI 543 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 544 header->reserved = 0; 545 #else 546 #error Unsupported target architecture. 547 #endif 548 header->filetype = 0x1; // MH_OBJECT 549 header->ncmds = 1; 550 header->sizeofcmds = 0; 551 header->flags = 0; 552 return header; 553 } 554 555 556 Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w, 557 uintptr_t code_start, 558 uintptr_t code_size) { 559 Writer::Slot<MachOSegmentCommand> cmd = 560 w->CreateSlotHere<MachOSegmentCommand>(); 561 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 562 cmd->cmd = LC_SEGMENT_32; 563 #else 564 cmd->cmd = LC_SEGMENT_64; 565 #endif 566 cmd->vmaddr = code_start; 567 cmd->vmsize = code_size; 568 cmd->fileoff = 0; 569 cmd->filesize = 0; 570 cmd->maxprot = 7; 571 cmd->initprot = 7; 572 cmd->flags = 0; 573 cmd->nsects = sections_.length(); 574 memset(cmd->segname, 0, 16); 575 cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) * 576 cmd->nsects; 577 return cmd; 578 } 579 580 581 void WriteSections(Writer* w, 582 Writer::Slot<MachOSegmentCommand> cmd, 583 Writer::Slot<MachOHeader> header, 584 uintptr_t load_command_start) { 585 Writer::Slot<MachOSection::Header> headers = 586 w->CreateSlotsHere<MachOSection::Header>(sections_.length()); 587 cmd->fileoff = w->position(); 588 header->sizeofcmds = 589 static_cast<uint32_t>(w->position() - load_command_start); 590 for (int section = 0; section < sections_.length(); ++section) { 591 sections_[section]->PopulateHeader(headers.at(section)); 592 sections_[section]->WriteBody(headers.at(section), w); 593 } 594 cmd->filesize = w->position() - (uintptr_t)cmd->fileoff; 595 } 596 597 Zone* zone_; 598 ZoneList<MachOSection*> sections_; 599 }; 600 #endif // defined(__MACH_O) 601 602 603 #if defined(__ELF) 604 class ELF BASE_EMBEDDED { 605 public: 606 explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) { 607 sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone); 608 sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone); 609 } 610 611 void Write(Writer* w) { 612 WriteHeader(w); 613 WriteSectionTable(w); 614 WriteSections(w); 615 } 616 617 ELFSection* SectionAt(uint32_t index) { 618 return sections_[index]; 619 } 620 621 uint32_t AddSection(ELFSection* section) { 622 sections_.Add(section, zone_); 623 section->set_index(sections_.length() - 1); 624 return sections_.length() - 1; 625 } 626 627 private: 628 struct ELFHeader { 629 uint8_t ident[16]; 630 uint16_t type; 631 uint16_t machine; 632 uint32_t version; 633 uintptr_t entry; 634 uintptr_t pht_offset; 635 uintptr_t sht_offset; 636 uint32_t flags; 637 uint16_t header_size; 638 uint16_t pht_entry_size; 639 uint16_t pht_entry_num; 640 uint16_t sht_entry_size; 641 uint16_t sht_entry_num; 642 uint16_t sht_strtab_index; 643 }; 644 645 646 void WriteHeader(Writer* w) { 647 DCHECK(w->position() == 0); 648 Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); 649 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \ 650 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT)) 651 const uint8_t ident[16] = 652 { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 653 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 654 (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN) 655 const uint8_t ident[16] = 656 { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 657 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX 658 const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0, 659 0, 0, 0, 0, 0, 0, 0, 0}; 660 #elif V8_TARGET_ARCH_S390X 661 const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 3, 662 0, 0, 0, 0, 0, 0, 0, 0}; 663 #elif V8_TARGET_ARCH_S390 664 const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 1, 2, 1, 3, 665 0, 0, 0, 0, 0, 0, 0, 0}; 666 #else 667 #error Unsupported target architecture. 668 #endif 669 memcpy(header->ident, ident, 16); 670 header->type = 1; 671 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 672 header->machine = 3; 673 #elif V8_TARGET_ARCH_X64 674 // Processor identification value for x64 is 62 as defined in 675 // System V ABI, AMD64 Supplement 676 // http://www.x86-64.org/documentation/abi.pdf 677 header->machine = 62; 678 #elif V8_TARGET_ARCH_ARM 679 // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at 680 // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf 681 header->machine = 40; 682 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 683 // Set to EM_PPC64, defined as 21, in Power ABI, 684 // Join the next 4 lines, omitting the spaces and double-slashes. 685 // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/ 686 // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf? 687 // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t= 688 // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr 689 header->machine = 21; 690 #elif V8_TARGET_ARCH_S390 691 // Processor identification value is 22 (EM_S390) as defined in the ABI: 692 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691 693 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599 694 header->machine = 22; 695 #else 696 #error Unsupported target architecture. 697 #endif 698 header->version = 1; 699 header->entry = 0; 700 header->pht_offset = 0; 701 header->sht_offset = sizeof(ELFHeader); // Section table follows header. 702 header->flags = 0; 703 header->header_size = sizeof(ELFHeader); 704 header->pht_entry_size = 0; 705 header->pht_entry_num = 0; 706 header->sht_entry_size = sizeof(ELFSection::Header); 707 header->sht_entry_num = sections_.length(); 708 header->sht_strtab_index = 1; 709 } 710 711 void WriteSectionTable(Writer* w) { 712 // Section headers table immediately follows file header. 713 DCHECK(w->position() == sizeof(ELFHeader)); 714 715 Writer::Slot<ELFSection::Header> headers = 716 w->CreateSlotsHere<ELFSection::Header>(sections_.length()); 717 718 // String table for section table is the first section. 719 ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1)); 720 strtab->AttachWriter(w); 721 for (int i = 0, length = sections_.length(); 722 i < length; 723 i++) { 724 sections_[i]->PopulateHeader(headers.at(i), strtab); 725 } 726 strtab->DetachWriter(); 727 } 728 729 int SectionHeaderPosition(uint32_t section_index) { 730 return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; 731 } 732 733 void WriteSections(Writer* w) { 734 Writer::Slot<ELFSection::Header> headers = 735 w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); 736 737 for (int i = 0, length = sections_.length(); 738 i < length; 739 i++) { 740 sections_[i]->WriteBody(headers.at(i), w); 741 } 742 } 743 744 Zone* zone_; 745 ZoneList<ELFSection*> sections_; 746 }; 747 748 749 class ELFSymbol BASE_EMBEDDED { 750 public: 751 enum Type { 752 TYPE_NOTYPE = 0, 753 TYPE_OBJECT = 1, 754 TYPE_FUNC = 2, 755 TYPE_SECTION = 3, 756 TYPE_FILE = 4, 757 TYPE_LOPROC = 13, 758 TYPE_HIPROC = 15 759 }; 760 761 enum Binding { 762 BIND_LOCAL = 0, 763 BIND_GLOBAL = 1, 764 BIND_WEAK = 2, 765 BIND_LOPROC = 13, 766 BIND_HIPROC = 15 767 }; 768 769 ELFSymbol(const char* name, 770 uintptr_t value, 771 uintptr_t size, 772 Binding binding, 773 Type type, 774 uint16_t section) 775 : name(name), 776 value(value), 777 size(size), 778 info((binding << 4) | type), 779 other(0), 780 section(section) { 781 } 782 783 Binding binding() const { 784 return static_cast<Binding>(info >> 4); 785 } 786 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \ 787 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \ 788 (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT)) 789 struct SerializedLayout { 790 SerializedLayout(uint32_t name, 791 uintptr_t value, 792 uintptr_t size, 793 Binding binding, 794 Type type, 795 uint16_t section) 796 : name(name), 797 value(value), 798 size(size), 799 info((binding << 4) | type), 800 other(0), 801 section(section) { 802 } 803 804 uint32_t name; 805 uintptr_t value; 806 uintptr_t size; 807 uint8_t info; 808 uint8_t other; 809 uint16_t section; 810 }; 811 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 812 (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X 813 struct SerializedLayout { 814 SerializedLayout(uint32_t name, 815 uintptr_t value, 816 uintptr_t size, 817 Binding binding, 818 Type type, 819 uint16_t section) 820 : name(name), 821 info((binding << 4) | type), 822 other(0), 823 section(section), 824 value(value), 825 size(size) { 826 } 827 828 uint32_t name; 829 uint8_t info; 830 uint8_t other; 831 uint16_t section; 832 uintptr_t value; 833 uintptr_t size; 834 }; 835 #endif 836 837 void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) { 838 // Convert symbol names from strings to indexes in the string table. 839 s->name = static_cast<uint32_t>(t->Add(name)); 840 s->value = value; 841 s->size = size; 842 s->info = info; 843 s->other = other; 844 s->section = section; 845 } 846 847 private: 848 const char* name; 849 uintptr_t value; 850 uintptr_t size; 851 uint8_t info; 852 uint8_t other; 853 uint16_t section; 854 }; 855 856 857 class ELFSymbolTable : public ELFSection { 858 public: 859 ELFSymbolTable(const char* name, Zone* zone) 860 : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), 861 locals_(1, zone), 862 globals_(1, zone) { 863 } 864 865 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 866 w->Align(header->alignment); 867 int total_symbols = locals_.length() + globals_.length() + 1; 868 header->offset = w->position(); 869 870 Writer::Slot<ELFSymbol::SerializedLayout> symbols = 871 w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols); 872 873 header->size = w->position() - header->offset; 874 875 // String table for this symbol table should follow it in the section table. 876 ELFStringTable* strtab = 877 static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1)); 878 strtab->AttachWriter(w); 879 symbols.at(0).set(ELFSymbol::SerializedLayout(0, 880 0, 881 0, 882 ELFSymbol::BIND_LOCAL, 883 ELFSymbol::TYPE_NOTYPE, 884 0)); 885 WriteSymbolsList(&locals_, symbols.at(1), strtab); 886 WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab); 887 strtab->DetachWriter(); 888 } 889 890 void Add(const ELFSymbol& symbol, Zone* zone) { 891 if (symbol.binding() == ELFSymbol::BIND_LOCAL) { 892 locals_.Add(symbol, zone); 893 } else { 894 globals_.Add(symbol, zone); 895 } 896 } 897 898 protected: 899 virtual void PopulateHeader(Writer::Slot<Header> header) { 900 ELFSection::PopulateHeader(header); 901 // We are assuming that string table will follow symbol table. 902 header->link = index() + 1; 903 header->info = locals_.length() + 1; 904 header->entry_size = sizeof(ELFSymbol::SerializedLayout); 905 } 906 907 private: 908 void WriteSymbolsList(const ZoneList<ELFSymbol>* src, 909 Writer::Slot<ELFSymbol::SerializedLayout> dst, 910 ELFStringTable* strtab) { 911 for (int i = 0, len = src->length(); 912 i < len; 913 i++) { 914 src->at(i).Write(dst.at(i), strtab); 915 } 916 } 917 918 ZoneList<ELFSymbol> locals_; 919 ZoneList<ELFSymbol> globals_; 920 }; 921 #endif // defined(__ELF) 922 923 924 class LineInfo : public Malloced { 925 public: 926 LineInfo() : pc_info_(10) {} 927 928 void SetPosition(intptr_t pc, int pos, bool is_statement) { 929 AddPCInfo(PCInfo(pc, pos, is_statement)); 930 } 931 932 struct PCInfo { 933 PCInfo(intptr_t pc, int pos, bool is_statement) 934 : pc_(pc), pos_(pos), is_statement_(is_statement) {} 935 936 intptr_t pc_; 937 int pos_; 938 bool is_statement_; 939 }; 940 941 List<PCInfo>* pc_info() { return &pc_info_; } 942 943 private: 944 void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); } 945 946 List<PCInfo> pc_info_; 947 }; 948 949 950 class CodeDescription BASE_EMBEDDED { 951 public: 952 #if V8_TARGET_ARCH_X64 953 enum StackState { 954 POST_RBP_PUSH, 955 POST_RBP_SET, 956 POST_RBP_POP, 957 STACK_STATE_MAX 958 }; 959 #endif 960 961 CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared, 962 LineInfo* lineinfo) 963 : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {} 964 965 const char* name() const { 966 return name_; 967 } 968 969 LineInfo* lineinfo() const { return lineinfo_; } 970 971 bool is_function() const { 972 Code::Kind kind = code_->kind(); 973 return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION; 974 } 975 976 bool has_scope_info() const { return shared_info_ != NULL; } 977 978 ScopeInfo* scope_info() const { 979 DCHECK(has_scope_info()); 980 return shared_info_->scope_info(); 981 } 982 983 uintptr_t CodeStart() const { 984 return reinterpret_cast<uintptr_t>(code_->instruction_start()); 985 } 986 987 uintptr_t CodeEnd() const { 988 return reinterpret_cast<uintptr_t>(code_->instruction_end()); 989 } 990 991 uintptr_t CodeSize() const { 992 return CodeEnd() - CodeStart(); 993 } 994 995 bool has_script() { 996 return shared_info_ != NULL && shared_info_->script()->IsScript(); 997 } 998 999 Script* script() { return Script::cast(shared_info_->script()); } 1000 1001 bool IsLineInfoAvailable() { 1002 return has_script() && script()->source()->IsString() && 1003 script()->HasValidSource() && script()->name()->IsString() && 1004 lineinfo_ != NULL; 1005 } 1006 1007 #if V8_TARGET_ARCH_X64 1008 uintptr_t GetStackStateStartAddress(StackState state) const { 1009 DCHECK(state < STACK_STATE_MAX); 1010 return stack_state_start_addresses_[state]; 1011 } 1012 1013 void SetStackStateStartAddress(StackState state, uintptr_t addr) { 1014 DCHECK(state < STACK_STATE_MAX); 1015 stack_state_start_addresses_[state] = addr; 1016 } 1017 #endif 1018 1019 std::unique_ptr<char[]> GetFilename() { 1020 return String::cast(script()->name())->ToCString(); 1021 } 1022 1023 int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; } 1024 1025 1026 private: 1027 const char* name_; 1028 Code* code_; 1029 SharedFunctionInfo* shared_info_; 1030 LineInfo* lineinfo_; 1031 #if V8_TARGET_ARCH_X64 1032 uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; 1033 #endif 1034 }; 1035 1036 #if defined(__ELF) 1037 static void CreateSymbolsTable(CodeDescription* desc, 1038 Zone* zone, 1039 ELF* elf, 1040 int text_section_index) { 1041 ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone); 1042 ELFStringTable* strtab = new(zone) ELFStringTable(".strtab"); 1043 1044 // Symbol table should be followed by the linked string table. 1045 elf->AddSection(symtab); 1046 elf->AddSection(strtab); 1047 1048 symtab->Add(ELFSymbol("V8 Code", 1049 0, 1050 0, 1051 ELFSymbol::BIND_LOCAL, 1052 ELFSymbol::TYPE_FILE, 1053 ELFSection::INDEX_ABSOLUTE), 1054 zone); 1055 1056 symtab->Add(ELFSymbol(desc->name(), 1057 0, 1058 desc->CodeSize(), 1059 ELFSymbol::BIND_GLOBAL, 1060 ELFSymbol::TYPE_FUNC, 1061 text_section_index), 1062 zone); 1063 } 1064 #endif // defined(__ELF) 1065 1066 1067 class DebugInfoSection : public DebugSection { 1068 public: 1069 explicit DebugInfoSection(CodeDescription* desc) 1070 #if defined(__ELF) 1071 : ELFSection(".debug_info", TYPE_PROGBITS, 1), 1072 #else 1073 : MachOSection("__debug_info", 1074 "__DWARF", 1075 1, 1076 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1077 #endif 1078 desc_(desc) { } 1079 1080 // DWARF2 standard 1081 enum DWARF2LocationOp { 1082 DW_OP_reg0 = 0x50, 1083 DW_OP_reg1 = 0x51, 1084 DW_OP_reg2 = 0x52, 1085 DW_OP_reg3 = 0x53, 1086 DW_OP_reg4 = 0x54, 1087 DW_OP_reg5 = 0x55, 1088 DW_OP_reg6 = 0x56, 1089 DW_OP_reg7 = 0x57, 1090 DW_OP_reg8 = 0x58, 1091 DW_OP_reg9 = 0x59, 1092 DW_OP_reg10 = 0x5a, 1093 DW_OP_reg11 = 0x5b, 1094 DW_OP_reg12 = 0x5c, 1095 DW_OP_reg13 = 0x5d, 1096 DW_OP_reg14 = 0x5e, 1097 DW_OP_reg15 = 0x5f, 1098 DW_OP_reg16 = 0x60, 1099 DW_OP_reg17 = 0x61, 1100 DW_OP_reg18 = 0x62, 1101 DW_OP_reg19 = 0x63, 1102 DW_OP_reg20 = 0x64, 1103 DW_OP_reg21 = 0x65, 1104 DW_OP_reg22 = 0x66, 1105 DW_OP_reg23 = 0x67, 1106 DW_OP_reg24 = 0x68, 1107 DW_OP_reg25 = 0x69, 1108 DW_OP_reg26 = 0x6a, 1109 DW_OP_reg27 = 0x6b, 1110 DW_OP_reg28 = 0x6c, 1111 DW_OP_reg29 = 0x6d, 1112 DW_OP_reg30 = 0x6e, 1113 DW_OP_reg31 = 0x6f, 1114 DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset 1115 }; 1116 1117 enum DWARF2Encoding { 1118 DW_ATE_ADDRESS = 0x1, 1119 DW_ATE_SIGNED = 0x5 1120 }; 1121 1122 bool WriteBodyInternal(Writer* w) { 1123 uintptr_t cu_start = w->position(); 1124 Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); 1125 uintptr_t start = w->position(); 1126 w->Write<uint16_t>(2); // DWARF version. 1127 w->Write<uint32_t>(0); // Abbreviation table offset. 1128 w->Write<uint8_t>(sizeof(intptr_t)); 1129 1130 w->WriteULEB128(1); // Abbreviation code. 1131 w->WriteString(desc_->GetFilename().get()); 1132 w->Write<intptr_t>(desc_->CodeStart()); 1133 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1134 w->Write<uint32_t>(0); 1135 1136 uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start); 1137 w->WriteULEB128(3); 1138 w->Write<uint8_t>(kPointerSize); 1139 w->WriteString("v8value"); 1140 1141 if (desc_->has_scope_info()) { 1142 ScopeInfo* scope = desc_->scope_info(); 1143 w->WriteULEB128(2); 1144 w->WriteString(desc_->name()); 1145 w->Write<intptr_t>(desc_->CodeStart()); 1146 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1147 Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>(); 1148 uintptr_t fb_block_start = w->position(); 1149 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 1150 w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32 1151 #elif V8_TARGET_ARCH_X64 1152 w->Write<uint8_t>(DW_OP_reg6); // and here on x64. 1153 #elif V8_TARGET_ARCH_ARM 1154 UNIMPLEMENTED(); 1155 #elif V8_TARGET_ARCH_MIPS 1156 UNIMPLEMENTED(); 1157 #elif V8_TARGET_ARCH_MIPS64 1158 UNIMPLEMENTED(); 1159 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 1160 w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64. 1161 #elif V8_TARGET_ARCH_S390 1162 w->Write<uint8_t>(DW_OP_reg11); // The frame pointer's here on S390. 1163 #else 1164 #error Unsupported target architecture. 1165 #endif 1166 fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start)); 1167 1168 int params = scope->ParameterCount(); 1169 int slots = scope->StackLocalCount(); 1170 int context_slots = scope->ContextLocalCount(); 1171 // The real slot ID is internal_slots + context_slot_id. 1172 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1173 int locals = scope->StackLocalCount(); 1174 int current_abbreviation = 4; 1175 1176 for (int param = 0; param < params; ++param) { 1177 w->WriteULEB128(current_abbreviation++); 1178 w->WriteString( 1179 scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get()); 1180 w->Write<uint32_t>(ty_offset); 1181 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1182 uintptr_t block_start = w->position(); 1183 w->Write<uint8_t>(DW_OP_fbreg); 1184 w->WriteSLEB128( 1185 JavaScriptFrameConstants::kLastParameterOffset + 1186 kPointerSize * (params - param - 1)); 1187 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1188 } 1189 1190 EmbeddedVector<char, 256> buffer; 1191 StringBuilder builder(buffer.start(), buffer.length()); 1192 1193 for (int slot = 0; slot < slots; ++slot) { 1194 w->WriteULEB128(current_abbreviation++); 1195 builder.Reset(); 1196 builder.AddFormatted("slot%d", slot); 1197 w->WriteString(builder.Finalize()); 1198 } 1199 1200 // See contexts.h for more information. 1201 DCHECK(Context::MIN_CONTEXT_SLOTS == 4); 1202 DCHECK(Context::CLOSURE_INDEX == 0); 1203 DCHECK(Context::PREVIOUS_INDEX == 1); 1204 DCHECK(Context::EXTENSION_INDEX == 2); 1205 DCHECK(Context::NATIVE_CONTEXT_INDEX == 3); 1206 w->WriteULEB128(current_abbreviation++); 1207 w->WriteString(".closure"); 1208 w->WriteULEB128(current_abbreviation++); 1209 w->WriteString(".previous"); 1210 w->WriteULEB128(current_abbreviation++); 1211 w->WriteString(".extension"); 1212 w->WriteULEB128(current_abbreviation++); 1213 w->WriteString(".native_context"); 1214 1215 for (int context_slot = 0; 1216 context_slot < context_slots; 1217 ++context_slot) { 1218 w->WriteULEB128(current_abbreviation++); 1219 builder.Reset(); 1220 builder.AddFormatted("context_slot%d", context_slot + internal_slots); 1221 w->WriteString(builder.Finalize()); 1222 } 1223 1224 for (int local = 0; local < locals; ++local) { 1225 w->WriteULEB128(current_abbreviation++); 1226 w->WriteString( 1227 scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get()); 1228 w->Write<uint32_t>(ty_offset); 1229 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1230 uintptr_t block_start = w->position(); 1231 w->Write<uint8_t>(DW_OP_fbreg); 1232 w->WriteSLEB128( 1233 JavaScriptFrameConstants::kLocal0Offset - 1234 kPointerSize * local); 1235 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1236 } 1237 1238 { 1239 w->WriteULEB128(current_abbreviation++); 1240 w->WriteString("__function"); 1241 w->Write<uint32_t>(ty_offset); 1242 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1243 uintptr_t block_start = w->position(); 1244 w->Write<uint8_t>(DW_OP_fbreg); 1245 w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset); 1246 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1247 } 1248 1249 { 1250 w->WriteULEB128(current_abbreviation++); 1251 w->WriteString("__context"); 1252 w->Write<uint32_t>(ty_offset); 1253 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1254 uintptr_t block_start = w->position(); 1255 w->Write<uint8_t>(DW_OP_fbreg); 1256 w->WriteSLEB128(StandardFrameConstants::kContextOffset); 1257 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1258 } 1259 1260 w->WriteULEB128(0); // Terminate the sub program. 1261 } 1262 1263 w->WriteULEB128(0); // Terminate the compile unit. 1264 size.set(static_cast<uint32_t>(w->position() - start)); 1265 return true; 1266 } 1267 1268 private: 1269 CodeDescription* desc_; 1270 }; 1271 1272 1273 class DebugAbbrevSection : public DebugSection { 1274 public: 1275 explicit DebugAbbrevSection(CodeDescription* desc) 1276 #ifdef __ELF 1277 : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1), 1278 #else 1279 : MachOSection("__debug_abbrev", 1280 "__DWARF", 1281 1, 1282 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1283 #endif 1284 desc_(desc) { } 1285 1286 // DWARF2 standard, figure 14. 1287 enum DWARF2Tags { 1288 DW_TAG_FORMAL_PARAMETER = 0x05, 1289 DW_TAG_POINTER_TYPE = 0xf, 1290 DW_TAG_COMPILE_UNIT = 0x11, 1291 DW_TAG_STRUCTURE_TYPE = 0x13, 1292 DW_TAG_BASE_TYPE = 0x24, 1293 DW_TAG_SUBPROGRAM = 0x2e, 1294 DW_TAG_VARIABLE = 0x34 1295 }; 1296 1297 // DWARF2 standard, figure 16. 1298 enum DWARF2ChildrenDetermination { 1299 DW_CHILDREN_NO = 0, 1300 DW_CHILDREN_YES = 1 1301 }; 1302 1303 // DWARF standard, figure 17. 1304 enum DWARF2Attribute { 1305 DW_AT_LOCATION = 0x2, 1306 DW_AT_NAME = 0x3, 1307 DW_AT_BYTE_SIZE = 0xb, 1308 DW_AT_STMT_LIST = 0x10, 1309 DW_AT_LOW_PC = 0x11, 1310 DW_AT_HIGH_PC = 0x12, 1311 DW_AT_ENCODING = 0x3e, 1312 DW_AT_FRAME_BASE = 0x40, 1313 DW_AT_TYPE = 0x49 1314 }; 1315 1316 // DWARF2 standard, figure 19. 1317 enum DWARF2AttributeForm { 1318 DW_FORM_ADDR = 0x1, 1319 DW_FORM_BLOCK4 = 0x4, 1320 DW_FORM_STRING = 0x8, 1321 DW_FORM_DATA4 = 0x6, 1322 DW_FORM_BLOCK = 0x9, 1323 DW_FORM_DATA1 = 0xb, 1324 DW_FORM_FLAG = 0xc, 1325 DW_FORM_REF4 = 0x13 1326 }; 1327 1328 void WriteVariableAbbreviation(Writer* w, 1329 int abbreviation_code, 1330 bool has_value, 1331 bool is_parameter) { 1332 w->WriteULEB128(abbreviation_code); 1333 w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE); 1334 w->Write<uint8_t>(DW_CHILDREN_NO); 1335 w->WriteULEB128(DW_AT_NAME); 1336 w->WriteULEB128(DW_FORM_STRING); 1337 if (has_value) { 1338 w->WriteULEB128(DW_AT_TYPE); 1339 w->WriteULEB128(DW_FORM_REF4); 1340 w->WriteULEB128(DW_AT_LOCATION); 1341 w->WriteULEB128(DW_FORM_BLOCK4); 1342 } 1343 w->WriteULEB128(0); 1344 w->WriteULEB128(0); 1345 } 1346 1347 bool WriteBodyInternal(Writer* w) { 1348 int current_abbreviation = 1; 1349 bool extra_info = desc_->has_scope_info(); 1350 DCHECK(desc_->IsLineInfoAvailable()); 1351 w->WriteULEB128(current_abbreviation++); 1352 w->WriteULEB128(DW_TAG_COMPILE_UNIT); 1353 w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO); 1354 w->WriteULEB128(DW_AT_NAME); 1355 w->WriteULEB128(DW_FORM_STRING); 1356 w->WriteULEB128(DW_AT_LOW_PC); 1357 w->WriteULEB128(DW_FORM_ADDR); 1358 w->WriteULEB128(DW_AT_HIGH_PC); 1359 w->WriteULEB128(DW_FORM_ADDR); 1360 w->WriteULEB128(DW_AT_STMT_LIST); 1361 w->WriteULEB128(DW_FORM_DATA4); 1362 w->WriteULEB128(0); 1363 w->WriteULEB128(0); 1364 1365 if (extra_info) { 1366 ScopeInfo* scope = desc_->scope_info(); 1367 int params = scope->ParameterCount(); 1368 int slots = scope->StackLocalCount(); 1369 int context_slots = scope->ContextLocalCount(); 1370 // The real slot ID is internal_slots + context_slot_id. 1371 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1372 int locals = scope->StackLocalCount(); 1373 // Total children is params + slots + context_slots + internal_slots + 1374 // locals + 2 (__function and __context). 1375 1376 // The extra duplication below seems to be necessary to keep 1377 // gdb from getting upset on OSX. 1378 w->WriteULEB128(current_abbreviation++); // Abbreviation code. 1379 w->WriteULEB128(DW_TAG_SUBPROGRAM); 1380 w->Write<uint8_t>(DW_CHILDREN_YES); 1381 w->WriteULEB128(DW_AT_NAME); 1382 w->WriteULEB128(DW_FORM_STRING); 1383 w->WriteULEB128(DW_AT_LOW_PC); 1384 w->WriteULEB128(DW_FORM_ADDR); 1385 w->WriteULEB128(DW_AT_HIGH_PC); 1386 w->WriteULEB128(DW_FORM_ADDR); 1387 w->WriteULEB128(DW_AT_FRAME_BASE); 1388 w->WriteULEB128(DW_FORM_BLOCK4); 1389 w->WriteULEB128(0); 1390 w->WriteULEB128(0); 1391 1392 w->WriteULEB128(current_abbreviation++); 1393 w->WriteULEB128(DW_TAG_STRUCTURE_TYPE); 1394 w->Write<uint8_t>(DW_CHILDREN_NO); 1395 w->WriteULEB128(DW_AT_BYTE_SIZE); 1396 w->WriteULEB128(DW_FORM_DATA1); 1397 w->WriteULEB128(DW_AT_NAME); 1398 w->WriteULEB128(DW_FORM_STRING); 1399 w->WriteULEB128(0); 1400 w->WriteULEB128(0); 1401 1402 for (int param = 0; param < params; ++param) { 1403 WriteVariableAbbreviation(w, current_abbreviation++, true, true); 1404 } 1405 1406 for (int slot = 0; slot < slots; ++slot) { 1407 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1408 } 1409 1410 for (int internal_slot = 0; 1411 internal_slot < internal_slots; 1412 ++internal_slot) { 1413 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1414 } 1415 1416 for (int context_slot = 0; 1417 context_slot < context_slots; 1418 ++context_slot) { 1419 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1420 } 1421 1422 for (int local = 0; local < locals; ++local) { 1423 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1424 } 1425 1426 // The function. 1427 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1428 1429 // The context. 1430 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1431 1432 w->WriteULEB128(0); // Terminate the sibling list. 1433 } 1434 1435 w->WriteULEB128(0); // Terminate the table. 1436 return true; 1437 } 1438 1439 private: 1440 CodeDescription* desc_; 1441 }; 1442 1443 1444 class DebugLineSection : public DebugSection { 1445 public: 1446 explicit DebugLineSection(CodeDescription* desc) 1447 #ifdef __ELF 1448 : ELFSection(".debug_line", TYPE_PROGBITS, 1), 1449 #else 1450 : MachOSection("__debug_line", 1451 "__DWARF", 1452 1, 1453 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1454 #endif 1455 desc_(desc) { } 1456 1457 // DWARF2 standard, figure 34. 1458 enum DWARF2Opcodes { 1459 DW_LNS_COPY = 1, 1460 DW_LNS_ADVANCE_PC = 2, 1461 DW_LNS_ADVANCE_LINE = 3, 1462 DW_LNS_SET_FILE = 4, 1463 DW_LNS_SET_COLUMN = 5, 1464 DW_LNS_NEGATE_STMT = 6 1465 }; 1466 1467 // DWARF2 standard, figure 35. 1468 enum DWARF2ExtendedOpcode { 1469 DW_LNE_END_SEQUENCE = 1, 1470 DW_LNE_SET_ADDRESS = 2, 1471 DW_LNE_DEFINE_FILE = 3 1472 }; 1473 1474 bool WriteBodyInternal(Writer* w) { 1475 // Write prologue. 1476 Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); 1477 uintptr_t start = w->position(); 1478 1479 // Used for special opcodes 1480 const int8_t line_base = 1; 1481 const uint8_t line_range = 7; 1482 const int8_t max_line_incr = (line_base + line_range - 1); 1483 const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; 1484 1485 w->Write<uint16_t>(2); // Field version. 1486 Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); 1487 uintptr_t prologue_start = w->position(); 1488 w->Write<uint8_t>(1); // Field minimum_instruction_length. 1489 w->Write<uint8_t>(1); // Field default_is_stmt. 1490 w->Write<int8_t>(line_base); // Field line_base. 1491 w->Write<uint8_t>(line_range); // Field line_range. 1492 w->Write<uint8_t>(opcode_base); // Field opcode_base. 1493 w->Write<uint8_t>(0); // DW_LNS_COPY operands count. 1494 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. 1495 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. 1496 w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. 1497 w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. 1498 w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. 1499 w->Write<uint8_t>(0); // Empty include_directories sequence. 1500 w->WriteString(desc_->GetFilename().get()); // File name. 1501 w->WriteULEB128(0); // Current directory. 1502 w->WriteULEB128(0); // Unknown modification time. 1503 w->WriteULEB128(0); // Unknown file size. 1504 w->Write<uint8_t>(0); 1505 prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); 1506 1507 WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); 1508 w->Write<intptr_t>(desc_->CodeStart()); 1509 w->Write<uint8_t>(DW_LNS_COPY); 1510 1511 intptr_t pc = 0; 1512 intptr_t line = 1; 1513 bool is_statement = true; 1514 1515 List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); 1516 pc_info->Sort(&ComparePCInfo); 1517 1518 int pc_info_length = pc_info->length(); 1519 for (int i = 0; i < pc_info_length; i++) { 1520 LineInfo::PCInfo* info = &pc_info->at(i); 1521 DCHECK(info->pc_ >= pc); 1522 1523 // Reduce bloating in the debug line table by removing duplicate line 1524 // entries (per DWARF2 standard). 1525 intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); 1526 if (new_line == line) { 1527 continue; 1528 } 1529 1530 // Mark statement boundaries. For a better debugging experience, mark 1531 // the last pc address in the function as a statement (e.g. "}"), so that 1532 // a user can see the result of the last line executed in the function, 1533 // should control reach the end. 1534 if ((i+1) == pc_info_length) { 1535 if (!is_statement) { 1536 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1537 } 1538 } else if (is_statement != info->is_statement_) { 1539 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1540 is_statement = !is_statement; 1541 } 1542 1543 // Generate special opcodes, if possible. This results in more compact 1544 // debug line tables. See the DWARF 2.0 standard to learn more about 1545 // special opcodes. 1546 uintptr_t pc_diff = info->pc_ - pc; 1547 intptr_t line_diff = new_line - line; 1548 1549 // Compute special opcode (see DWARF 2.0 standard) 1550 intptr_t special_opcode = (line_diff - line_base) + 1551 (line_range * pc_diff) + opcode_base; 1552 1553 // If special_opcode is less than or equal to 255, it can be used as a 1554 // special opcode. If line_diff is larger than the max line increment 1555 // allowed for a special opcode, or if line_diff is less than the minimum 1556 // line that can be added to the line register (i.e. line_base), then 1557 // special_opcode can't be used. 1558 if ((special_opcode >= opcode_base) && (special_opcode <= 255) && 1559 (line_diff <= max_line_incr) && (line_diff >= line_base)) { 1560 w->Write<uint8_t>(special_opcode); 1561 } else { 1562 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1563 w->WriteSLEB128(pc_diff); 1564 w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); 1565 w->WriteSLEB128(line_diff); 1566 w->Write<uint8_t>(DW_LNS_COPY); 1567 } 1568 1569 // Increment the pc and line operands. 1570 pc += pc_diff; 1571 line += line_diff; 1572 } 1573 // Advance the pc to the end of the routine, since the end sequence opcode 1574 // requires this. 1575 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1576 w->WriteSLEB128(desc_->CodeSize() - pc); 1577 WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); 1578 total_length.set(static_cast<uint32_t>(w->position() - start)); 1579 return true; 1580 } 1581 1582 private: 1583 void WriteExtendedOpcode(Writer* w, 1584 DWARF2ExtendedOpcode op, 1585 size_t operands_size) { 1586 w->Write<uint8_t>(0); 1587 w->WriteULEB128(operands_size + 1); 1588 w->Write<uint8_t>(op); 1589 } 1590 1591 static int ComparePCInfo(const LineInfo::PCInfo* a, 1592 const LineInfo::PCInfo* b) { 1593 if (a->pc_ == b->pc_) { 1594 if (a->is_statement_ != b->is_statement_) { 1595 return b->is_statement_ ? +1 : -1; 1596 } 1597 return 0; 1598 } else if (a->pc_ > b->pc_) { 1599 return +1; 1600 } else { 1601 return -1; 1602 } 1603 } 1604 1605 CodeDescription* desc_; 1606 }; 1607 1608 1609 #if V8_TARGET_ARCH_X64 1610 1611 class UnwindInfoSection : public DebugSection { 1612 public: 1613 explicit UnwindInfoSection(CodeDescription* desc); 1614 virtual bool WriteBodyInternal(Writer* w); 1615 1616 int WriteCIE(Writer* w); 1617 void WriteFDE(Writer* w, int); 1618 1619 void WriteFDEStateOnEntry(Writer* w); 1620 void WriteFDEStateAfterRBPPush(Writer* w); 1621 void WriteFDEStateAfterRBPSet(Writer* w); 1622 void WriteFDEStateAfterRBPPop(Writer* w); 1623 1624 void WriteLength(Writer* w, 1625 Writer::Slot<uint32_t>* length_slot, 1626 int initial_position); 1627 1628 private: 1629 CodeDescription* desc_; 1630 1631 // DWARF3 Specification, Table 7.23 1632 enum CFIInstructions { 1633 DW_CFA_ADVANCE_LOC = 0x40, 1634 DW_CFA_OFFSET = 0x80, 1635 DW_CFA_RESTORE = 0xC0, 1636 DW_CFA_NOP = 0x00, 1637 DW_CFA_SET_LOC = 0x01, 1638 DW_CFA_ADVANCE_LOC1 = 0x02, 1639 DW_CFA_ADVANCE_LOC2 = 0x03, 1640 DW_CFA_ADVANCE_LOC4 = 0x04, 1641 DW_CFA_OFFSET_EXTENDED = 0x05, 1642 DW_CFA_RESTORE_EXTENDED = 0x06, 1643 DW_CFA_UNDEFINED = 0x07, 1644 DW_CFA_SAME_VALUE = 0x08, 1645 DW_CFA_REGISTER = 0x09, 1646 DW_CFA_REMEMBER_STATE = 0x0A, 1647 DW_CFA_RESTORE_STATE = 0x0B, 1648 DW_CFA_DEF_CFA = 0x0C, 1649 DW_CFA_DEF_CFA_REGISTER = 0x0D, 1650 DW_CFA_DEF_CFA_OFFSET = 0x0E, 1651 1652 DW_CFA_DEF_CFA_EXPRESSION = 0x0F, 1653 DW_CFA_EXPRESSION = 0x10, 1654 DW_CFA_OFFSET_EXTENDED_SF = 0x11, 1655 DW_CFA_DEF_CFA_SF = 0x12, 1656 DW_CFA_DEF_CFA_OFFSET_SF = 0x13, 1657 DW_CFA_VAL_OFFSET = 0x14, 1658 DW_CFA_VAL_OFFSET_SF = 0x15, 1659 DW_CFA_VAL_EXPRESSION = 0x16 1660 }; 1661 1662 // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 1663 enum RegisterMapping { 1664 // Only the relevant ones have been added to reduce clutter. 1665 AMD64_RBP = 6, 1666 AMD64_RSP = 7, 1667 AMD64_RA = 16 1668 }; 1669 1670 enum CFIConstants { 1671 CIE_ID = 0, 1672 CIE_VERSION = 1, 1673 CODE_ALIGN_FACTOR = 1, 1674 DATA_ALIGN_FACTOR = 1, 1675 RETURN_ADDRESS_REGISTER = AMD64_RA 1676 }; 1677 }; 1678 1679 1680 void UnwindInfoSection::WriteLength(Writer* w, 1681 Writer::Slot<uint32_t>* length_slot, 1682 int initial_position) { 1683 uint32_t align = (w->position() - initial_position) % kPointerSize; 1684 1685 if (align != 0) { 1686 for (uint32_t i = 0; i < (kPointerSize - align); i++) { 1687 w->Write<uint8_t>(DW_CFA_NOP); 1688 } 1689 } 1690 1691 DCHECK((w->position() - initial_position) % kPointerSize == 0); 1692 length_slot->set(static_cast<uint32_t>(w->position() - initial_position)); 1693 } 1694 1695 1696 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc) 1697 #ifdef __ELF 1698 : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), 1699 #else 1700 : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t), 1701 MachOSection::S_REGULAR), 1702 #endif 1703 desc_(desc) { } 1704 1705 int UnwindInfoSection::WriteCIE(Writer* w) { 1706 Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); 1707 uint32_t cie_position = static_cast<uint32_t>(w->position()); 1708 1709 // Write out the CIE header. Currently no 'common instructions' are 1710 // emitted onto the CIE; every FDE has its own set of instructions. 1711 1712 w->Write<uint32_t>(CIE_ID); 1713 w->Write<uint8_t>(CIE_VERSION); 1714 w->Write<uint8_t>(0); // Null augmentation string. 1715 w->WriteSLEB128(CODE_ALIGN_FACTOR); 1716 w->WriteSLEB128(DATA_ALIGN_FACTOR); 1717 w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); 1718 1719 WriteLength(w, &cie_length_slot, cie_position); 1720 1721 return cie_position; 1722 } 1723 1724 1725 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) { 1726 // The only FDE for this function. The CFA is the current RBP. 1727 Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); 1728 int fde_position = static_cast<uint32_t>(w->position()); 1729 w->Write<int32_t>(fde_position - cie_position + 4); 1730 1731 w->Write<uintptr_t>(desc_->CodeStart()); 1732 w->Write<uintptr_t>(desc_->CodeSize()); 1733 1734 WriteFDEStateOnEntry(w); 1735 WriteFDEStateAfterRBPPush(w); 1736 WriteFDEStateAfterRBPSet(w); 1737 WriteFDEStateAfterRBPPop(w); 1738 1739 WriteLength(w, &fde_length_slot, fde_position); 1740 } 1741 1742 1743 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) { 1744 // The first state, just after the control has been transferred to the the 1745 // function. 1746 1747 // RBP for this function will be the value of RSP after pushing the RBP 1748 // for the previous function. The previous RBP has not been pushed yet. 1749 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1750 w->WriteULEB128(AMD64_RSP); 1751 w->WriteSLEB128(-kPointerSize); 1752 1753 // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, 1754 // and hence omitted from the next states. 1755 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1756 w->WriteULEB128(AMD64_RA); 1757 w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); 1758 1759 // The RBP of the previous function is still in RBP. 1760 w->Write<uint8_t>(DW_CFA_SAME_VALUE); 1761 w->WriteULEB128(AMD64_RBP); 1762 1763 // Last location described by this entry. 1764 w->Write<uint8_t>(DW_CFA_SET_LOC); 1765 w->Write<uint64_t>( 1766 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); 1767 } 1768 1769 1770 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) { 1771 // The second state, just after RBP has been pushed. 1772 1773 // RBP / CFA for this function is now the current RSP, so just set the 1774 // offset from the previous rule (from -8) to 0. 1775 w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); 1776 w->WriteULEB128(0); 1777 1778 // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant 1779 // in this and the next state, and hence omitted in the next state. 1780 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1781 w->WriteULEB128(AMD64_RBP); 1782 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1783 1784 // Last location described by this entry. 1785 w->Write<uint8_t>(DW_CFA_SET_LOC); 1786 w->Write<uint64_t>( 1787 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); 1788 } 1789 1790 1791 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) { 1792 // The third state, after the RBP has been set. 1793 1794 // The CFA can now directly be set to RBP. 1795 w->Write<uint8_t>(DW_CFA_DEF_CFA); 1796 w->WriteULEB128(AMD64_RBP); 1797 w->WriteULEB128(0); 1798 1799 // Last location described by this entry. 1800 w->Write<uint8_t>(DW_CFA_SET_LOC); 1801 w->Write<uint64_t>( 1802 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); 1803 } 1804 1805 1806 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) { 1807 // The fourth (final) state. The RBP has been popped (just before issuing a 1808 // return). 1809 1810 // The CFA can is now calculated in the same way as in the first state. 1811 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1812 w->WriteULEB128(AMD64_RSP); 1813 w->WriteSLEB128(-kPointerSize); 1814 1815 // The RBP 1816 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1817 w->WriteULEB128(AMD64_RBP); 1818 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1819 1820 // Last location described by this entry. 1821 w->Write<uint8_t>(DW_CFA_SET_LOC); 1822 w->Write<uint64_t>(desc_->CodeEnd()); 1823 } 1824 1825 1826 bool UnwindInfoSection::WriteBodyInternal(Writer* w) { 1827 uint32_t cie_position = WriteCIE(w); 1828 WriteFDE(w, cie_position); 1829 return true; 1830 } 1831 1832 1833 #endif // V8_TARGET_ARCH_X64 1834 1835 static void CreateDWARFSections(CodeDescription* desc, 1836 Zone* zone, 1837 DebugObject* obj) { 1838 if (desc->IsLineInfoAvailable()) { 1839 obj->AddSection(new(zone) DebugInfoSection(desc)); 1840 obj->AddSection(new(zone) DebugAbbrevSection(desc)); 1841 obj->AddSection(new(zone) DebugLineSection(desc)); 1842 } 1843 #if V8_TARGET_ARCH_X64 1844 obj->AddSection(new(zone) UnwindInfoSection(desc)); 1845 #endif 1846 } 1847 1848 1849 // ------------------------------------------------------------------- 1850 // Binary GDB JIT Interface as described in 1851 // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html 1852 extern "C" { 1853 typedef enum { 1854 JIT_NOACTION = 0, 1855 JIT_REGISTER_FN, 1856 JIT_UNREGISTER_FN 1857 } JITAction; 1858 1859 struct JITCodeEntry { 1860 JITCodeEntry* next_; 1861 JITCodeEntry* prev_; 1862 Address symfile_addr_; 1863 uint64_t symfile_size_; 1864 }; 1865 1866 struct JITDescriptor { 1867 uint32_t version_; 1868 uint32_t action_flag_; 1869 JITCodeEntry* relevant_entry_; 1870 JITCodeEntry* first_entry_; 1871 }; 1872 1873 // GDB will place breakpoint into this function. 1874 // To prevent GCC from inlining or removing it we place noinline attribute 1875 // and inline assembler statement inside. 1876 void __attribute__((noinline)) __jit_debug_register_code() { 1877 __asm__(""); 1878 } 1879 1880 // GDB will inspect contents of this descriptor. 1881 // Static initialization is necessary to prevent GDB from seeing 1882 // uninitialized descriptor. 1883 JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 1884 1885 #ifdef OBJECT_PRINT 1886 void __gdb_print_v8_object(Object* object) { 1887 OFStream os(stdout); 1888 object->Print(os); 1889 os << std::flush; 1890 } 1891 #endif 1892 } 1893 1894 1895 static JITCodeEntry* CreateCodeEntry(Address symfile_addr, 1896 uintptr_t symfile_size) { 1897 JITCodeEntry* entry = static_cast<JITCodeEntry*>( 1898 malloc(sizeof(JITCodeEntry) + symfile_size)); 1899 1900 entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); 1901 entry->symfile_size_ = symfile_size; 1902 MemCopy(entry->symfile_addr_, symfile_addr, symfile_size); 1903 1904 entry->prev_ = entry->next_ = NULL; 1905 1906 return entry; 1907 } 1908 1909 1910 static void DestroyCodeEntry(JITCodeEntry* entry) { 1911 free(entry); 1912 } 1913 1914 1915 static void RegisterCodeEntry(JITCodeEntry* entry) { 1916 entry->next_ = __jit_debug_descriptor.first_entry_; 1917 if (entry->next_ != NULL) entry->next_->prev_ = entry; 1918 __jit_debug_descriptor.first_entry_ = 1919 __jit_debug_descriptor.relevant_entry_ = entry; 1920 1921 __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; 1922 __jit_debug_register_code(); 1923 } 1924 1925 1926 static void UnregisterCodeEntry(JITCodeEntry* entry) { 1927 if (entry->prev_ != NULL) { 1928 entry->prev_->next_ = entry->next_; 1929 } else { 1930 __jit_debug_descriptor.first_entry_ = entry->next_; 1931 } 1932 1933 if (entry->next_ != NULL) { 1934 entry->next_->prev_ = entry->prev_; 1935 } 1936 1937 __jit_debug_descriptor.relevant_entry_ = entry; 1938 __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; 1939 __jit_debug_register_code(); 1940 } 1941 1942 1943 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) { 1944 #ifdef __MACH_O 1945 Zone zone(isolate->allocator(), ZONE_NAME); 1946 MachO mach_o(&zone); 1947 Writer w(&mach_o); 1948 1949 mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment, 1950 desc->CodeStart(), 1951 desc->CodeSize())); 1952 1953 CreateDWARFSections(desc, &zone, &mach_o); 1954 1955 mach_o.Write(&w, desc->CodeStart(), desc->CodeSize()); 1956 #else 1957 Zone zone(isolate->allocator(), ZONE_NAME); 1958 ELF elf(&zone); 1959 Writer w(&elf); 1960 1961 int text_section_index = elf.AddSection( 1962 new(&zone) FullHeaderELFSection( 1963 ".text", 1964 ELFSection::TYPE_NOBITS, 1965 kCodeAlignment, 1966 desc->CodeStart(), 1967 0, 1968 desc->CodeSize(), 1969 ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); 1970 1971 CreateSymbolsTable(desc, &zone, &elf, text_section_index); 1972 1973 CreateDWARFSections(desc, &zone, &elf); 1974 1975 elf.Write(&w); 1976 #endif 1977 1978 return CreateCodeEntry(w.buffer(), w.position()); 1979 } 1980 1981 1982 struct AddressRange { 1983 Address start; 1984 Address end; 1985 }; 1986 1987 struct SplayTreeConfig { 1988 typedef AddressRange Key; 1989 typedef JITCodeEntry* Value; 1990 static const AddressRange kNoKey; 1991 static Value NoValue() { return NULL; } 1992 static int Compare(const AddressRange& a, const AddressRange& b) { 1993 // ptrdiff_t probably doesn't fit in an int. 1994 if (a.start < b.start) return -1; 1995 if (a.start == b.start) return 0; 1996 return 1; 1997 } 1998 }; 1999 2000 const AddressRange SplayTreeConfig::kNoKey = {0, 0}; 2001 typedef SplayTree<SplayTreeConfig> CodeMap; 2002 2003 static CodeMap* GetCodeMap() { 2004 static CodeMap* code_map = NULL; 2005 if (code_map == NULL) code_map = new CodeMap(); 2006 return code_map; 2007 } 2008 2009 2010 static uint32_t HashCodeAddress(Address addr) { 2011 static const uintptr_t kGoldenRatio = 2654435761u; 2012 uintptr_t offset = OffsetFrom(addr); 2013 return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio); 2014 } 2015 2016 static base::HashMap* GetLineMap() { 2017 static base::HashMap* line_map = NULL; 2018 if (line_map == NULL) { 2019 line_map = new base::HashMap(); 2020 } 2021 return line_map; 2022 } 2023 2024 2025 static void PutLineInfo(Address addr, LineInfo* info) { 2026 base::HashMap* line_map = GetLineMap(); 2027 base::HashMap::Entry* e = 2028 line_map->LookupOrInsert(addr, HashCodeAddress(addr)); 2029 if (e->value != NULL) delete static_cast<LineInfo*>(e->value); 2030 e->value = info; 2031 } 2032 2033 2034 static LineInfo* GetLineInfo(Address addr) { 2035 void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr)); 2036 return static_cast<LineInfo*>(value); 2037 } 2038 2039 2040 static void AddUnwindInfo(CodeDescription* desc) { 2041 #if V8_TARGET_ARCH_X64 2042 if (desc->is_function()) { 2043 // To avoid propagating unwinding information through 2044 // compilation pipeline we use an approximation. 2045 // For most use cases this should not affect usability. 2046 static const int kFramePointerPushOffset = 1; 2047 static const int kFramePointerSetOffset = 4; 2048 static const int kFramePointerPopOffset = -3; 2049 2050 uintptr_t frame_pointer_push_address = 2051 desc->CodeStart() + kFramePointerPushOffset; 2052 2053 uintptr_t frame_pointer_set_address = 2054 desc->CodeStart() + kFramePointerSetOffset; 2055 2056 uintptr_t frame_pointer_pop_address = 2057 desc->CodeEnd() + kFramePointerPopOffset; 2058 2059 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2060 frame_pointer_push_address); 2061 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2062 frame_pointer_set_address); 2063 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2064 frame_pointer_pop_address); 2065 } else { 2066 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2067 desc->CodeStart()); 2068 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2069 desc->CodeStart()); 2070 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2071 desc->CodeEnd()); 2072 } 2073 #endif // V8_TARGET_ARCH_X64 2074 } 2075 2076 2077 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER; 2078 2079 2080 // Remove entries from the splay tree that intersect the given address range, 2081 // and deregister them from GDB. 2082 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) { 2083 DCHECK(range.start < range.end); 2084 CodeMap::Locator cur; 2085 if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) { 2086 // Skip entries that are entirely less than the range of interest. 2087 while (cur.key().end <= range.start) { 2088 // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater 2089 // than _or equal to_ the given key, so we have to advance our key to get 2090 // the next one. 2091 AddressRange new_key; 2092 new_key.start = cur.key().end; 2093 new_key.end = 0; 2094 if (!map->FindLeastGreaterThan(new_key, &cur)) return; 2095 } 2096 // Evict intersecting ranges. 2097 while (cur.key().start < range.end) { 2098 AddressRange old_range = cur.key(); 2099 JITCodeEntry* old_entry = cur.value(); 2100 2101 UnregisterCodeEntry(old_entry); 2102 DestroyCodeEntry(old_entry); 2103 2104 CHECK(map->Remove(old_range)); 2105 if (!map->FindLeastGreaterThan(old_range, &cur)) return; 2106 } 2107 } 2108 } 2109 2110 2111 // Insert the entry into the splay tree and register it with GDB. 2112 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range, 2113 JITCodeEntry* entry, bool dump_if_enabled, 2114 const char* name_hint) { 2115 #if defined(DEBUG) && !V8_OS_WIN 2116 static int file_num = 0; 2117 if (FLAG_gdbjit_dump && dump_if_enabled) { 2118 static const int kMaxFileNameSize = 64; 2119 char file_name[64]; 2120 2121 SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o", 2122 (name_hint != NULL) ? name_hint : "", file_num++); 2123 WriteBytes(file_name, entry->symfile_addr_, 2124 static_cast<int>(entry->symfile_size_)); 2125 } 2126 #endif 2127 2128 CodeMap::Locator cur; 2129 CHECK(map->Insert(range, &cur)); 2130 cur.set_value(entry); 2131 2132 RegisterCodeEntry(entry); 2133 } 2134 2135 2136 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared, 2137 LineInfo* lineinfo) { 2138 DisallowHeapAllocation no_gc; 2139 2140 CodeMap* code_map = GetCodeMap(); 2141 AddressRange range; 2142 range.start = code->address(); 2143 range.end = code->address() + code->CodeSize(); 2144 RemoveJITCodeEntries(code_map, range); 2145 2146 CodeDescription code_desc(name, code, shared, lineinfo); 2147 2148 if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { 2149 delete lineinfo; 2150 return; 2151 } 2152 2153 AddUnwindInfo(&code_desc); 2154 Isolate* isolate = code->GetIsolate(); 2155 JITCodeEntry* entry = CreateELFObject(&code_desc, isolate); 2156 2157 delete lineinfo; 2158 2159 const char* name_hint = NULL; 2160 bool should_dump = false; 2161 if (FLAG_gdbjit_dump) { 2162 if (strlen(FLAG_gdbjit_dump_filter) == 0) { 2163 name_hint = name; 2164 should_dump = true; 2165 } else if (name != NULL) { 2166 name_hint = strstr(name, FLAG_gdbjit_dump_filter); 2167 should_dump = (name_hint != NULL); 2168 } 2169 } 2170 AddJITCodeEntry(code_map, range, entry, should_dump, name_hint); 2171 } 2172 2173 2174 void EventHandler(const v8::JitCodeEvent* event) { 2175 if (!FLAG_gdbjit) return; 2176 base::LockGuard<base::Mutex> lock_guard(mutex.Pointer()); 2177 switch (event->type) { 2178 case v8::JitCodeEvent::CODE_ADDED: { 2179 Address addr = reinterpret_cast<Address>(event->code_start); 2180 Code* code = Code::GetCodeFromTargetAddress(addr); 2181 LineInfo* lineinfo = GetLineInfo(addr); 2182 EmbeddedVector<char, 256> buffer; 2183 StringBuilder builder(buffer.start(), buffer.length()); 2184 builder.AddSubstring(event->name.str, static_cast<int>(event->name.len)); 2185 // It's called UnboundScript in the API but it's a SharedFunctionInfo. 2186 SharedFunctionInfo* shared = 2187 event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script); 2188 AddCode(builder.Finalize(), code, shared, lineinfo); 2189 break; 2190 } 2191 case v8::JitCodeEvent::CODE_MOVED: 2192 // Enabling the GDB JIT interface should disable code compaction. 2193 UNREACHABLE(); 2194 break; 2195 case v8::JitCodeEvent::CODE_REMOVED: 2196 // Do nothing. Instead, adding code causes eviction of any entry whose 2197 // address range intersects the address range of the added code. 2198 break; 2199 case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: { 2200 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2201 line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset), 2202 static_cast<int>(event->line_info.pos), 2203 event->line_info.position_type == 2204 v8::JitCodeEvent::STATEMENT_POSITION); 2205 break; 2206 } 2207 case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: { 2208 v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event); 2209 mutable_event->user_data = new LineInfo(); 2210 break; 2211 } 2212 case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: { 2213 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2214 PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info); 2215 break; 2216 } 2217 } 2218 } 2219 #endif 2220 } // namespace GDBJITInterface 2221 } // namespace internal 2222 } // namespace v8 2223