Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2016 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkFixedAlloc_DEFINED
      9 #define SkFixedAlloc_DEFINED
     10 
     11 #include "SkRefCnt.h"
     12 #include "SkTFitsIn.h"
     13 #include "SkTypes.h"
     14 #include <cstddef>
     15 #include <new>
     16 #include <type_traits>
     17 #include <utility>
     18 #include <vector>
     19 
     20 // SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed
     21 // to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an
     22 // (optional) user-provided block of memory, and when that's exhausted it allocates on the heap,
     23 // starting with an allocation of extraSize bytes.  If your data (plus a small overhead) fits in
     24 // the user-provided block, SkArenaAlloc never uses the heap, and if it fits in extraSize bytes,
     25 // it'll use the heap only once.  If you pass extraSize = 0, it allocates blocks for each call to
     26 // make<T>.
     27 //
     28 // Examples:
     29 //
     30 //   char block[mostCasesSize];
     31 //   SkArenaAlloc arena(block, almostAllCasesSize);
     32 //
     33 // If mostCasesSize is too large for the stack, you can use the following pattern.
     34 //
     35 //   std::unique_ptr<char[]> block{new char[mostCasesSize]};
     36 //   SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize);
     37 //
     38 // If the program only sometimes allocates memory, use the following.
     39 //
     40 //   SkArenaAlloc arena(nullptr, 0, almostAllCasesSize);
     41 //
     42 // The storage does not necessarily need to be on the stack. Embedding the storage in a class also
     43 // works.
     44 //
     45 //   class Foo {
     46 //       char storage[mostCasesSize];
     47 //       SkArenaAlloc arena (storage, almostAllCasesSize);
     48 //   };
     49 //
     50 // In addition, the system is optimized to handle POD data including arrays of PODs (where
     51 // POD is really data with no destructors). For POD data it has zero overhead per item, and a
     52 // typical block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4 bytes.
     53 // For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There is an
     54 // addition overhead when switching from POD data to non-POD data of typically 8 bytes.
     55 //
     56 // If additional blocks are needed they are increased exponentially. This strategy bounds the
     57 // recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using
     58 // the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48
     59 // there are 71 allocations.
     60 class SkArenaAlloc {
     61 public:
     62     SkArenaAlloc(char* block, size_t size, size_t extraSize = 0);
     63 
     64     template <size_t kSize>
     65     SkArenaAlloc(char (&block)[kSize], size_t extraSize = kSize)
     66         : SkArenaAlloc(block, kSize, extraSize)
     67     {}
     68 
     69     SkArenaAlloc(size_t extraSize)
     70         : SkArenaAlloc(nullptr, 0, extraSize)
     71     {}
     72 
     73     ~SkArenaAlloc();
     74 
     75     template <typename T, typename... Args>
     76     T* make(Args&&... args) {
     77         uint32_t size      = SkTo<uint32_t>(sizeof(T));
     78         uint32_t alignment = SkTo<uint32_t>(alignof(T));
     79         char* objStart;
     80         if (skstd::is_trivially_destructible<T>::value) {
     81             objStart = this->allocObject(size, alignment);
     82             fCursor = objStart + size;
     83         } else {
     84             objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment);
     85             // Can never be UB because max value is alignof(T).
     86             uint32_t padding = SkTo<uint32_t>(objStart - fCursor);
     87 
     88             // Advance to end of object to install footer.
     89             fCursor = objStart + size;
     90             FooterAction* releaser = [](char* objEnd) {
     91                 char* objStart = objEnd - (sizeof(T) + sizeof(Footer));
     92                 ((T*)objStart)->~T();
     93                 return objStart;
     94             };
     95             this->installFooter(releaser, padding);
     96         }
     97 
     98         // This must be last to make objects with nested use of this allocator work.
     99         return new(objStart) T(std::forward<Args>(args)...);
    100     }
    101 
    102     template <typename T, typename... Args>
    103     sk_sp<T> makeSkSp(Args&&... args) {
    104         SkASSERT(SkTFitsIn<uint32_t>(sizeof(T)));
    105 
    106         // The arena takes a ref for itself to account for the destructor. The sk_sp count can't
    107         // become zero or the sk_sp will try to call free on the pointer.
    108         return sk_sp<T>(SkRef(this->make<T>(std::forward<Args>(args)...)));
    109     }
    110 
    111     template <typename T>
    112     T* makeArrayDefault(size_t count) {
    113         uint32_t safeCount = SkTo<uint32_t>(count);
    114         T* array = (T*)this->commonArrayAlloc<T>(safeCount);
    115 
    116         // If T is primitive then no initialization takes place.
    117         for (size_t i = 0; i < safeCount; i++) {
    118             new (&array[i]) T;
    119         }
    120         return array;
    121     }
    122 
    123     template <typename T>
    124     T* makeArray(size_t count) {
    125         uint32_t safeCount = SkTo<uint32_t>(count);
    126         T* array = (T*)this->commonArrayAlloc<T>(safeCount);
    127 
    128         // If T is primitive then the memory is initialized. For example, an array of chars will
    129         // be zeroed.
    130         for (size_t i = 0; i < safeCount; i++) {
    131             new (&array[i]) T();
    132         }
    133         return array;
    134     }
    135 
    136     // Destroy all allocated objects, free any heap allocations.
    137     void reset();
    138 
    139 private:
    140     using Footer = int64_t;
    141     using FooterAction = char* (char*);
    142 
    143     static char* SkipPod(char* footerEnd);
    144     static void RunDtorsOnBlock(char* footerEnd);
    145     static char* NextBlock(char* footerEnd);
    146 
    147     void installFooter(FooterAction* releaser, uint32_t padding);
    148     void installUint32Footer(FooterAction* action, uint32_t value, uint32_t padding);
    149     void installPtrFooter(FooterAction* action, char* ptr, uint32_t padding);
    150 
    151     void ensureSpace(uint32_t size, uint32_t alignment);
    152 
    153     char* allocObject(uint32_t size, uint32_t alignment);
    154 
    155     char* allocObjectWithFooter(uint32_t sizeIncludingFooter, uint32_t alignment);
    156 
    157     template <typename T>
    158     char* commonArrayAlloc(uint32_t count) {
    159         char* objStart;
    160         uint32_t arraySize = SkTo<uint32_t>(count * sizeof(T));
    161         uint32_t alignment = SkTo<uint32_t>(alignof(T));
    162 
    163         if (skstd::is_trivially_destructible<T>::value) {
    164             objStart = this->allocObject(arraySize, alignment);
    165             fCursor = objStart + arraySize;
    166         } else {
    167             uint32_t totalSize = arraySize + sizeof(Footer) + sizeof(uint32_t);
    168             objStart = this->allocObjectWithFooter(totalSize, alignment);
    169 
    170             // Can never be UB because max value is alignof(T).
    171             uint32_t padding = SkTo<uint32_t>(objStart - fCursor);
    172 
    173             // Advance to end of array to install footer.?
    174             fCursor = objStart + arraySize;
    175             this->installUint32Footer(
    176                 [](char* footerEnd) {
    177                     char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t));
    178                     uint32_t count;
    179                     memmove(&count, objEnd, sizeof(uint32_t));
    180                     char* objStart = objEnd - count * sizeof(T);
    181                     T* array = (T*) objStart;
    182                     for (uint32_t i = 0; i < count; i++) {
    183                         array[i].~T();
    184                     }
    185                     return objStart;
    186                 },
    187                 SkTo<uint32_t>(count),
    188                 padding);
    189         }
    190 
    191         return objStart;
    192     }
    193 
    194     char*          fDtorCursor;
    195     char*          fCursor;
    196     char*          fEnd;
    197     char* const    fFirstBlock;
    198     const uint32_t fFirstSize;
    199     const uint32_t fExtraSize;
    200     // Use the Fibonacci sequence as the growth factor for block size. The size of the block
    201     // allocated is fFib0 * fExtraSize. Using 2 ^ n * fExtraSize had too much slop for Android.
    202     uint32_t       fFib0 {1}, fFib1 {1};
    203 };
    204 
    205 #endif//SkFixedAlloc_DEFINED
    206