Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_simplifier.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "class_linker-inl.h"
     21 #include "escape.h"
     22 #include "intrinsics.h"
     23 #include "mirror/class-inl.h"
     24 #include "sharpening.h"
     25 #include "scoped_thread_state_change-inl.h"
     26 
     27 namespace art {
     28 
     29 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
     30  public:
     31   InstructionSimplifierVisitor(HGraph* graph,
     32                                CodeGenerator* codegen,
     33                                OptimizingCompilerStats* stats)
     34       : HGraphDelegateVisitor(graph),
     35         codegen_(codegen),
     36         stats_(stats) {}
     37 
     38   void Run();
     39 
     40  private:
     41   void RecordSimplification() {
     42     simplification_occurred_ = true;
     43     simplifications_at_current_position_++;
     44     MaybeRecordStat(kInstructionSimplifications);
     45   }
     46 
     47   void MaybeRecordStat(MethodCompilationStat stat) {
     48     if (stats_ != nullptr) {
     49       stats_->RecordStat(stat);
     50     }
     51   }
     52 
     53   bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     54   bool TryReplaceWithRotate(HBinaryOperation* instruction);
     55   bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     56   bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     57   bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
     58 
     59   bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
     60   // `op` should be either HOr or HAnd.
     61   // De Morgan's laws:
     62   // ~a & ~b = ~(a | b)  and  ~a | ~b = ~(a & b)
     63   bool TryDeMorganNegationFactoring(HBinaryOperation* op);
     64   bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
     65   bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
     66 
     67   void VisitShift(HBinaryOperation* shift);
     68 
     69   void VisitEqual(HEqual* equal) OVERRIDE;
     70   void VisitNotEqual(HNotEqual* equal) OVERRIDE;
     71   void VisitBooleanNot(HBooleanNot* bool_not) OVERRIDE;
     72   void VisitInstanceFieldSet(HInstanceFieldSet* equal) OVERRIDE;
     73   void VisitStaticFieldSet(HStaticFieldSet* equal) OVERRIDE;
     74   void VisitArraySet(HArraySet* equal) OVERRIDE;
     75   void VisitTypeConversion(HTypeConversion* instruction) OVERRIDE;
     76   void VisitNullCheck(HNullCheck* instruction) OVERRIDE;
     77   void VisitArrayLength(HArrayLength* instruction) OVERRIDE;
     78   void VisitCheckCast(HCheckCast* instruction) OVERRIDE;
     79   void VisitAdd(HAdd* instruction) OVERRIDE;
     80   void VisitAnd(HAnd* instruction) OVERRIDE;
     81   void VisitCondition(HCondition* instruction) OVERRIDE;
     82   void VisitGreaterThan(HGreaterThan* condition) OVERRIDE;
     83   void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) OVERRIDE;
     84   void VisitLessThan(HLessThan* condition) OVERRIDE;
     85   void VisitLessThanOrEqual(HLessThanOrEqual* condition) OVERRIDE;
     86   void VisitBelow(HBelow* condition) OVERRIDE;
     87   void VisitBelowOrEqual(HBelowOrEqual* condition) OVERRIDE;
     88   void VisitAbove(HAbove* condition) OVERRIDE;
     89   void VisitAboveOrEqual(HAboveOrEqual* condition) OVERRIDE;
     90   void VisitDiv(HDiv* instruction) OVERRIDE;
     91   void VisitMul(HMul* instruction) OVERRIDE;
     92   void VisitNeg(HNeg* instruction) OVERRIDE;
     93   void VisitNot(HNot* instruction) OVERRIDE;
     94   void VisitOr(HOr* instruction) OVERRIDE;
     95   void VisitShl(HShl* instruction) OVERRIDE;
     96   void VisitShr(HShr* instruction) OVERRIDE;
     97   void VisitSub(HSub* instruction) OVERRIDE;
     98   void VisitUShr(HUShr* instruction) OVERRIDE;
     99   void VisitXor(HXor* instruction) OVERRIDE;
    100   void VisitSelect(HSelect* select) OVERRIDE;
    101   void VisitIf(HIf* instruction) OVERRIDE;
    102   void VisitInstanceOf(HInstanceOf* instruction) OVERRIDE;
    103   void VisitInvoke(HInvoke* invoke) OVERRIDE;
    104   void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE;
    105 
    106   bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
    107 
    108   void SimplifyRotate(HInvoke* invoke, bool is_left, Primitive::Type type);
    109   void SimplifySystemArrayCopy(HInvoke* invoke);
    110   void SimplifyStringEquals(HInvoke* invoke);
    111   void SimplifyCompare(HInvoke* invoke, bool is_signum, Primitive::Type type);
    112   void SimplifyIsNaN(HInvoke* invoke);
    113   void SimplifyFP2Int(HInvoke* invoke);
    114   void SimplifyStringCharAt(HInvoke* invoke);
    115   void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
    116   void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
    117   void SimplifyReturnThis(HInvoke* invoke);
    118   void SimplifyAllocationIntrinsic(HInvoke* invoke);
    119   void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
    120 
    121   CodeGenerator* codegen_;
    122   OptimizingCompilerStats* stats_;
    123   bool simplification_occurred_ = false;
    124   int simplifications_at_current_position_ = 0;
    125   // We ensure we do not loop infinitely. The value should not be too high, since that
    126   // would allow looping around the same basic block too many times. The value should
    127   // not be too low either, however, since we want to allow revisiting a basic block
    128   // with many statements and simplifications at least once.
    129   static constexpr int kMaxSamePositionSimplifications = 50;
    130 };
    131 
    132 void InstructionSimplifier::Run() {
    133   InstructionSimplifierVisitor visitor(graph_, codegen_, stats_);
    134   visitor.Run();
    135 }
    136 
    137 void InstructionSimplifierVisitor::Run() {
    138   // Iterate in reverse post order to open up more simplifications to users
    139   // of instructions that got simplified.
    140   for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
    141     // The simplification of an instruction to another instruction may yield
    142     // possibilities for other simplifications. So although we perform a reverse
    143     // post order visit, we sometimes need to revisit an instruction index.
    144     do {
    145       simplification_occurred_ = false;
    146       VisitBasicBlock(block);
    147     } while (simplification_occurred_ &&
    148              (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
    149     simplifications_at_current_position_ = 0;
    150   }
    151 }
    152 
    153 namespace {
    154 
    155 bool AreAllBitsSet(HConstant* constant) {
    156   return Int64FromConstant(constant) == -1;
    157 }
    158 
    159 }  // namespace
    160 
    161 // Returns true if the code was simplified to use only one negation operation
    162 // after the binary operation instead of one on each of the inputs.
    163 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
    164   DCHECK(binop->IsAdd() || binop->IsSub());
    165   DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
    166   HNeg* left_neg = binop->GetLeft()->AsNeg();
    167   HNeg* right_neg = binop->GetRight()->AsNeg();
    168   if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
    169       !right_neg->HasOnlyOneNonEnvironmentUse()) {
    170     return false;
    171   }
    172   // Replace code looking like
    173   //    NEG tmp1, a
    174   //    NEG tmp2, b
    175   //    ADD dst, tmp1, tmp2
    176   // with
    177   //    ADD tmp, a, b
    178   //    NEG dst, tmp
    179   // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
    180   // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
    181   // while the later yields `-0.0`.
    182   if (!Primitive::IsIntegralType(binop->GetType())) {
    183     return false;
    184   }
    185   binop->ReplaceInput(left_neg->GetInput(), 0);
    186   binop->ReplaceInput(right_neg->GetInput(), 1);
    187   left_neg->GetBlock()->RemoveInstruction(left_neg);
    188   right_neg->GetBlock()->RemoveInstruction(right_neg);
    189   HNeg* neg = new (GetGraph()->GetArena()) HNeg(binop->GetType(), binop);
    190   binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
    191   binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
    192   RecordSimplification();
    193   return true;
    194 }
    195 
    196 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
    197   DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
    198   Primitive::Type type = op->GetType();
    199   HInstruction* left = op->GetLeft();
    200   HInstruction* right = op->GetRight();
    201 
    202   // We can apply De Morgan's laws if both inputs are Not's and are only used
    203   // by `op`.
    204   if (((left->IsNot() && right->IsNot()) ||
    205        (left->IsBooleanNot() && right->IsBooleanNot())) &&
    206       left->HasOnlyOneNonEnvironmentUse() &&
    207       right->HasOnlyOneNonEnvironmentUse()) {
    208     // Replace code looking like
    209     //    NOT nota, a
    210     //    NOT notb, b
    211     //    AND dst, nota, notb (respectively OR)
    212     // with
    213     //    OR or, a, b         (respectively AND)
    214     //    NOT dest, or
    215     HInstruction* src_left = left->InputAt(0);
    216     HInstruction* src_right = right->InputAt(0);
    217     uint32_t dex_pc = op->GetDexPc();
    218 
    219     // Remove the negations on the inputs.
    220     left->ReplaceWith(src_left);
    221     right->ReplaceWith(src_right);
    222     left->GetBlock()->RemoveInstruction(left);
    223     right->GetBlock()->RemoveInstruction(right);
    224 
    225     // Replace the `HAnd` or `HOr`.
    226     HBinaryOperation* hbin;
    227     if (op->IsAnd()) {
    228       hbin = new (GetGraph()->GetArena()) HOr(type, src_left, src_right, dex_pc);
    229     } else {
    230       hbin = new (GetGraph()->GetArena()) HAnd(type, src_left, src_right, dex_pc);
    231     }
    232     HInstruction* hnot;
    233     if (left->IsBooleanNot()) {
    234       hnot = new (GetGraph()->GetArena()) HBooleanNot(hbin, dex_pc);
    235     } else {
    236       hnot = new (GetGraph()->GetArena()) HNot(type, hbin, dex_pc);
    237     }
    238 
    239     op->GetBlock()->InsertInstructionBefore(hbin, op);
    240     op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
    241 
    242     RecordSimplification();
    243     return true;
    244   }
    245 
    246   return false;
    247 }
    248 
    249 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
    250   DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
    251   HInstruction* shift_amount = instruction->GetRight();
    252   HInstruction* value = instruction->GetLeft();
    253 
    254   int64_t implicit_mask = (value->GetType() == Primitive::kPrimLong)
    255       ? kMaxLongShiftDistance
    256       : kMaxIntShiftDistance;
    257 
    258   if (shift_amount->IsConstant()) {
    259     int64_t cst = Int64FromConstant(shift_amount->AsConstant());
    260     if ((cst & implicit_mask) == 0) {
    261       // Replace code looking like
    262       //    SHL dst, value, 0
    263       // with
    264       //    value
    265       instruction->ReplaceWith(value);
    266       instruction->GetBlock()->RemoveInstruction(instruction);
    267       RecordSimplification();
    268       return;
    269     }
    270   }
    271 
    272   // Shift operations implicitly mask the shift amount according to the type width. Get rid of
    273   // unnecessary explicit masking operations on the shift amount.
    274   // Replace code looking like
    275   //    AND masked_shift, shift, <superset of implicit mask>
    276   //    SHL dst, value, masked_shift
    277   // with
    278   //    SHL dst, value, shift
    279   if (shift_amount->IsAnd()) {
    280     HAnd* and_insn = shift_amount->AsAnd();
    281     HConstant* mask = and_insn->GetConstantRight();
    282     if ((mask != nullptr) && ((Int64FromConstant(mask) & implicit_mask) == implicit_mask)) {
    283       instruction->ReplaceInput(and_insn->GetLeastConstantLeft(), 1);
    284       RecordSimplification();
    285     }
    286   }
    287 }
    288 
    289 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
    290   return (sub->GetRight() == other &&
    291           sub->GetLeft()->IsConstant() &&
    292           (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
    293 }
    294 
    295 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
    296                                                         HUShr* ushr,
    297                                                         HShl* shl) {
    298   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
    299   HRor* ror = new (GetGraph()->GetArena()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
    300   op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
    301   if (!ushr->HasUses()) {
    302     ushr->GetBlock()->RemoveInstruction(ushr);
    303   }
    304   if (!ushr->GetRight()->HasUses()) {
    305     ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
    306   }
    307   if (!shl->HasUses()) {
    308     shl->GetBlock()->RemoveInstruction(shl);
    309   }
    310   if (!shl->GetRight()->HasUses()) {
    311     shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
    312   }
    313   RecordSimplification();
    314   return true;
    315 }
    316 
    317 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
    318 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
    319   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    320   HInstruction* left = op->GetLeft();
    321   HInstruction* right = op->GetRight();
    322   // If we have an UShr and a Shl (in either order).
    323   if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
    324     HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
    325     HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
    326     DCHECK(Primitive::IsIntOrLongType(ushr->GetType()));
    327     if (ushr->GetType() == shl->GetType() &&
    328         ushr->GetLeft() == shl->GetLeft()) {
    329       if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
    330         // Shift distances are both constant, try replacing with Ror if they
    331         // add up to the register size.
    332         return TryReplaceWithRotateConstantPattern(op, ushr, shl);
    333       } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
    334         // Shift distances are potentially of the form x and (reg_size - x).
    335         return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
    336       } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
    337         // Shift distances are potentially of the form d and -d.
    338         return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
    339       }
    340     }
    341   }
    342   return false;
    343 }
    344 
    345 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
    346 //    UShr dst, x,   #rdist
    347 //    Shl  tmp, x,   #ldist
    348 //    OP   dst, dst, tmp
    349 // or like (x >>> #rdist OP x << #-ldist):
    350 //    UShr dst, x,   #rdist
    351 //    Shl  tmp, x,   #-ldist
    352 //    OP   dst, dst, tmp
    353 // with
    354 //    Ror  dst, x,   #rdist
    355 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
    356                                                                        HUShr* ushr,
    357                                                                        HShl* shl) {
    358   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    359   size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
    360   size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
    361   size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
    362   if (((ldist + rdist) & (reg_bits - 1)) == 0) {
    363     ReplaceRotateWithRor(op, ushr, shl);
    364     return true;
    365   }
    366   return false;
    367 }
    368 
    369 // Replace code looking like (x >>> -d OP x << d):
    370 //    Neg  neg, d
    371 //    UShr dst, x,   neg
    372 //    Shl  tmp, x,   d
    373 //    OP   dst, dst, tmp
    374 // with
    375 //    Neg  neg, d
    376 //    Ror  dst, x,   neg
    377 // *** OR ***
    378 // Replace code looking like (x >>> d OP x << -d):
    379 //    UShr dst, x,   d
    380 //    Neg  neg, d
    381 //    Shl  tmp, x,   neg
    382 //    OP   dst, dst, tmp
    383 // with
    384 //    Ror  dst, x,   d
    385 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
    386                                                                           HUShr* ushr,
    387                                                                           HShl* shl) {
    388   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    389   DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
    390   bool neg_is_left = shl->GetRight()->IsNeg();
    391   HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
    392   // And the shift distance being negated is the distance being shifted the other way.
    393   if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
    394     ReplaceRotateWithRor(op, ushr, shl);
    395   }
    396   return false;
    397 }
    398 
    399 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
    400 //    UShr dst, x,     d
    401 //    Sub  ld,  #bits, d
    402 //    Shl  tmp, x,     ld
    403 //    OP   dst, dst,   tmp
    404 // with
    405 //    Ror  dst, x,     d
    406 // *** OR ***
    407 // Replace code looking like (x >>> (#bits - d) OP x << d):
    408 //    Sub  rd,  #bits, d
    409 //    UShr dst, x,     rd
    410 //    Shl  tmp, x,     d
    411 //    OP   dst, dst,   tmp
    412 // with
    413 //    Neg  neg, d
    414 //    Ror  dst, x,     neg
    415 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
    416                                                                           HUShr* ushr,
    417                                                                           HShl* shl) {
    418   DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
    419   DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
    420   size_t reg_bits = Primitive::ComponentSize(ushr->GetType()) * kBitsPerByte;
    421   HInstruction* shl_shift = shl->GetRight();
    422   HInstruction* ushr_shift = ushr->GetRight();
    423   if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
    424       (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
    425     return ReplaceRotateWithRor(op, ushr, shl);
    426   }
    427   return false;
    428 }
    429 
    430 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
    431   HInstruction* obj = null_check->InputAt(0);
    432   if (!obj->CanBeNull()) {
    433     null_check->ReplaceWith(obj);
    434     null_check->GetBlock()->RemoveInstruction(null_check);
    435     if (stats_ != nullptr) {
    436       stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
    437     }
    438   }
    439 }
    440 
    441 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
    442   if (!input->CanBeNull()) {
    443     return true;
    444   }
    445 
    446   for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
    447     HInstruction* user = use.GetUser();
    448     if (user->IsNullCheck() && user->StrictlyDominates(at)) {
    449       return true;
    450     }
    451   }
    452 
    453   return false;
    454 }
    455 
    456 // Returns whether doing a type test between the class of `object` against `klass` has
    457 // a statically known outcome. The result of the test is stored in `outcome`.
    458 static bool TypeCheckHasKnownOutcome(HLoadClass* klass, HInstruction* object, bool* outcome) {
    459   DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
    460   ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
    461   ScopedObjectAccess soa(Thread::Current());
    462   if (!obj_rti.IsValid()) {
    463     // We run the simplifier before the reference type propagation so type info might not be
    464     // available.
    465     return false;
    466   }
    467 
    468   ReferenceTypeInfo class_rti = klass->GetLoadedClassRTI();
    469   if (!class_rti.IsValid()) {
    470     // Happens when the loaded class is unresolved.
    471     return false;
    472   }
    473   DCHECK(class_rti.IsExact());
    474   if (class_rti.IsSupertypeOf(obj_rti)) {
    475     *outcome = true;
    476     return true;
    477   } else if (obj_rti.IsExact()) {
    478     // The test failed at compile time so will also fail at runtime.
    479     *outcome = false;
    480     return true;
    481   } else if (!class_rti.IsInterface()
    482              && !obj_rti.IsInterface()
    483              && !obj_rti.IsSupertypeOf(class_rti)) {
    484     // Different type hierarchy. The test will fail.
    485     *outcome = false;
    486     return true;
    487   }
    488   return false;
    489 }
    490 
    491 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
    492   HInstruction* object = check_cast->InputAt(0);
    493   HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
    494   if (load_class->NeedsAccessCheck()) {
    495     // If we need to perform an access check we cannot remove the instruction.
    496     return;
    497   }
    498 
    499   if (CanEnsureNotNullAt(object, check_cast)) {
    500     check_cast->ClearMustDoNullCheck();
    501   }
    502 
    503   if (object->IsNullConstant()) {
    504     check_cast->GetBlock()->RemoveInstruction(check_cast);
    505     MaybeRecordStat(MethodCompilationStat::kRemovedCheckedCast);
    506     return;
    507   }
    508 
    509   // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
    510   // the return value check with the `outcome` check, b/27651442 .
    511   bool outcome = false;
    512   if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
    513     if (outcome) {
    514       check_cast->GetBlock()->RemoveInstruction(check_cast);
    515       MaybeRecordStat(MethodCompilationStat::kRemovedCheckedCast);
    516       if (!load_class->HasUses()) {
    517         // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
    518         // However, here we know that it cannot because the checkcast was successfull, hence
    519         // the class was already loaded.
    520         load_class->GetBlock()->RemoveInstruction(load_class);
    521       }
    522     } else {
    523       // Don't do anything for exceptional cases for now. Ideally we should remove
    524       // all instructions and blocks this instruction dominates.
    525     }
    526   }
    527 }
    528 
    529 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
    530   HInstruction* object = instruction->InputAt(0);
    531   HLoadClass* load_class = instruction->InputAt(1)->AsLoadClass();
    532   if (load_class->NeedsAccessCheck()) {
    533     // If we need to perform an access check we cannot remove the instruction.
    534     return;
    535   }
    536 
    537   bool can_be_null = true;
    538   if (CanEnsureNotNullAt(object, instruction)) {
    539     can_be_null = false;
    540     instruction->ClearMustDoNullCheck();
    541   }
    542 
    543   HGraph* graph = GetGraph();
    544   if (object->IsNullConstant()) {
    545     MaybeRecordStat(kRemovedInstanceOf);
    546     instruction->ReplaceWith(graph->GetIntConstant(0));
    547     instruction->GetBlock()->RemoveInstruction(instruction);
    548     RecordSimplification();
    549     return;
    550   }
    551 
    552   // Note: The `outcome` is initialized to please valgrind - the compiler can reorder
    553   // the return value check with the `outcome` check, b/27651442 .
    554   bool outcome = false;
    555   if (TypeCheckHasKnownOutcome(load_class, object, &outcome)) {
    556     MaybeRecordStat(kRemovedInstanceOf);
    557     if (outcome && can_be_null) {
    558       // Type test will succeed, we just need a null test.
    559       HNotEqual* test = new (graph->GetArena()) HNotEqual(graph->GetNullConstant(), object);
    560       instruction->GetBlock()->InsertInstructionBefore(test, instruction);
    561       instruction->ReplaceWith(test);
    562     } else {
    563       // We've statically determined the result of the instanceof.
    564       instruction->ReplaceWith(graph->GetIntConstant(outcome));
    565     }
    566     RecordSimplification();
    567     instruction->GetBlock()->RemoveInstruction(instruction);
    568     if (outcome && !load_class->HasUses()) {
    569       // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
    570       // However, here we know that it cannot because the instanceof check was successfull, hence
    571       // the class was already loaded.
    572       load_class->GetBlock()->RemoveInstruction(load_class);
    573     }
    574   }
    575 }
    576 
    577 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
    578   if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
    579       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
    580     instruction->ClearValueCanBeNull();
    581   }
    582 }
    583 
    584 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
    585   if ((instruction->GetValue()->GetType() == Primitive::kPrimNot)
    586       && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
    587     instruction->ClearValueCanBeNull();
    588   }
    589 }
    590 
    591 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* arena, HInstruction* cond) {
    592   HInstruction *lhs = cond->InputAt(0);
    593   HInstruction *rhs = cond->InputAt(1);
    594   switch (cond->GetKind()) {
    595     case HInstruction::kEqual:
    596       return new (arena) HEqual(rhs, lhs);
    597     case HInstruction::kNotEqual:
    598       return new (arena) HNotEqual(rhs, lhs);
    599     case HInstruction::kLessThan:
    600       return new (arena) HGreaterThan(rhs, lhs);
    601     case HInstruction::kLessThanOrEqual:
    602       return new (arena) HGreaterThanOrEqual(rhs, lhs);
    603     case HInstruction::kGreaterThan:
    604       return new (arena) HLessThan(rhs, lhs);
    605     case HInstruction::kGreaterThanOrEqual:
    606       return new (arena) HLessThanOrEqual(rhs, lhs);
    607     case HInstruction::kBelow:
    608       return new (arena) HAbove(rhs, lhs);
    609     case HInstruction::kBelowOrEqual:
    610       return new (arena) HAboveOrEqual(rhs, lhs);
    611     case HInstruction::kAbove:
    612       return new (arena) HBelow(rhs, lhs);
    613     case HInstruction::kAboveOrEqual:
    614       return new (arena) HBelowOrEqual(rhs, lhs);
    615     default:
    616       LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
    617   }
    618   return nullptr;
    619 }
    620 
    621 static bool CmpHasBoolType(HInstruction* input, HInstruction* cmp) {
    622   if (input->GetType() == Primitive::kPrimBoolean) {
    623     return true;  // input has direct boolean type
    624   } else if (cmp->GetUses().HasExactlyOneElement()) {
    625     // Comparison also has boolean type if both its input and the instruction
    626     // itself feed into the same phi node.
    627     HInstruction* user = cmp->GetUses().front().GetUser();
    628     return user->IsPhi() && user->HasInput(input) && user->HasInput(cmp);
    629   }
    630   return false;
    631 }
    632 
    633 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
    634   HInstruction* input_const = equal->GetConstantRight();
    635   if (input_const != nullptr) {
    636     HInstruction* input_value = equal->GetLeastConstantLeft();
    637     if (CmpHasBoolType(input_value, equal) && input_const->IsIntConstant()) {
    638       HBasicBlock* block = equal->GetBlock();
    639       // We are comparing the boolean to a constant which is of type int and can
    640       // be any constant.
    641       if (input_const->AsIntConstant()->IsTrue()) {
    642         // Replace (bool_value == true) with bool_value
    643         equal->ReplaceWith(input_value);
    644         block->RemoveInstruction(equal);
    645         RecordSimplification();
    646       } else if (input_const->AsIntConstant()->IsFalse()) {
    647         // Replace (bool_value == false) with !bool_value
    648         equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
    649         block->RemoveInstruction(equal);
    650         RecordSimplification();
    651       } else {
    652         // Replace (bool_value == integer_not_zero_nor_one_constant) with false
    653         equal->ReplaceWith(GetGraph()->GetIntConstant(0));
    654         block->RemoveInstruction(equal);
    655         RecordSimplification();
    656       }
    657     } else {
    658       VisitCondition(equal);
    659     }
    660   } else {
    661     VisitCondition(equal);
    662   }
    663 }
    664 
    665 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
    666   HInstruction* input_const = not_equal->GetConstantRight();
    667   if (input_const != nullptr) {
    668     HInstruction* input_value = not_equal->GetLeastConstantLeft();
    669     if (CmpHasBoolType(input_value, not_equal) && input_const->IsIntConstant()) {
    670       HBasicBlock* block = not_equal->GetBlock();
    671       // We are comparing the boolean to a constant which is of type int and can
    672       // be any constant.
    673       if (input_const->AsIntConstant()->IsTrue()) {
    674         // Replace (bool_value != true) with !bool_value
    675         not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
    676         block->RemoveInstruction(not_equal);
    677         RecordSimplification();
    678       } else if (input_const->AsIntConstant()->IsFalse()) {
    679         // Replace (bool_value != false) with bool_value
    680         not_equal->ReplaceWith(input_value);
    681         block->RemoveInstruction(not_equal);
    682         RecordSimplification();
    683       } else {
    684         // Replace (bool_value != integer_not_zero_nor_one_constant) with true
    685         not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
    686         block->RemoveInstruction(not_equal);
    687         RecordSimplification();
    688       }
    689     } else {
    690       VisitCondition(not_equal);
    691     }
    692   } else {
    693     VisitCondition(not_equal);
    694   }
    695 }
    696 
    697 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
    698   HInstruction* input = bool_not->InputAt(0);
    699   HInstruction* replace_with = nullptr;
    700 
    701   if (input->IsIntConstant()) {
    702     // Replace !(true/false) with false/true.
    703     if (input->AsIntConstant()->IsTrue()) {
    704       replace_with = GetGraph()->GetIntConstant(0);
    705     } else {
    706       DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
    707       replace_with = GetGraph()->GetIntConstant(1);
    708     }
    709   } else if (input->IsBooleanNot()) {
    710     // Replace (!(!bool_value)) with bool_value.
    711     replace_with = input->InputAt(0);
    712   } else if (input->IsCondition() &&
    713              // Don't change FP compares. The definition of compares involving
    714              // NaNs forces the compares to be done as written by the user.
    715              !Primitive::IsFloatingPointType(input->InputAt(0)->GetType())) {
    716     // Replace condition with its opposite.
    717     replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
    718   }
    719 
    720   if (replace_with != nullptr) {
    721     bool_not->ReplaceWith(replace_with);
    722     bool_not->GetBlock()->RemoveInstruction(bool_not);
    723     RecordSimplification();
    724   }
    725 }
    726 
    727 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
    728   HInstruction* replace_with = nullptr;
    729   HInstruction* condition = select->GetCondition();
    730   HInstruction* true_value = select->GetTrueValue();
    731   HInstruction* false_value = select->GetFalseValue();
    732 
    733   if (condition->IsBooleanNot()) {
    734     // Change ((!cond) ? x : y) to (cond ? y : x).
    735     condition = condition->InputAt(0);
    736     std::swap(true_value, false_value);
    737     select->ReplaceInput(false_value, 0);
    738     select->ReplaceInput(true_value, 1);
    739     select->ReplaceInput(condition, 2);
    740     RecordSimplification();
    741   }
    742 
    743   if (true_value == false_value) {
    744     // Replace (cond ? x : x) with (x).
    745     replace_with = true_value;
    746   } else if (condition->IsIntConstant()) {
    747     if (condition->AsIntConstant()->IsTrue()) {
    748       // Replace (true ? x : y) with (x).
    749       replace_with = true_value;
    750     } else {
    751       // Replace (false ? x : y) with (y).
    752       DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
    753       replace_with = false_value;
    754     }
    755   } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
    756     if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
    757       // Replace (cond ? true : false) with (cond).
    758       replace_with = condition;
    759     } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
    760       // Replace (cond ? false : true) with (!cond).
    761       replace_with = GetGraph()->InsertOppositeCondition(condition, select);
    762     }
    763   }
    764 
    765   if (replace_with != nullptr) {
    766     select->ReplaceWith(replace_with);
    767     select->GetBlock()->RemoveInstruction(select);
    768     RecordSimplification();
    769   }
    770 }
    771 
    772 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
    773   HInstruction* condition = instruction->InputAt(0);
    774   if (condition->IsBooleanNot()) {
    775     // Swap successors if input is negated.
    776     instruction->ReplaceInput(condition->InputAt(0), 0);
    777     instruction->GetBlock()->SwapSuccessors();
    778     RecordSimplification();
    779   }
    780 }
    781 
    782 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
    783   HInstruction* input = instruction->InputAt(0);
    784   // If the array is a NewArray with constant size, replace the array length
    785   // with the constant instruction. This helps the bounds check elimination phase.
    786   if (input->IsNewArray()) {
    787     input = input->AsNewArray()->GetLength();
    788     if (input->IsIntConstant()) {
    789       instruction->ReplaceWith(input);
    790     }
    791   }
    792 }
    793 
    794 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
    795   HInstruction* value = instruction->GetValue();
    796   if (value->GetType() != Primitive::kPrimNot) return;
    797 
    798   if (CanEnsureNotNullAt(value, instruction)) {
    799     instruction->ClearValueCanBeNull();
    800   }
    801 
    802   if (value->IsArrayGet()) {
    803     if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
    804       // If the code is just swapping elements in the array, no need for a type check.
    805       instruction->ClearNeedsTypeCheck();
    806       return;
    807     }
    808   }
    809 
    810   if (value->IsNullConstant()) {
    811     instruction->ClearNeedsTypeCheck();
    812     return;
    813   }
    814 
    815   ScopedObjectAccess soa(Thread::Current());
    816   ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
    817   ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
    818   if (!array_rti.IsValid()) {
    819     return;
    820   }
    821 
    822   if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
    823     instruction->ClearNeedsTypeCheck();
    824     return;
    825   }
    826 
    827   if (array_rti.IsObjectArray()) {
    828     if (array_rti.IsExact()) {
    829       instruction->ClearNeedsTypeCheck();
    830       return;
    831     }
    832     instruction->SetStaticTypeOfArrayIsObjectArray();
    833   }
    834 }
    835 
    836 static bool IsTypeConversionImplicit(Primitive::Type input_type, Primitive::Type result_type) {
    837   // Invariant: We should never generate a conversion to a Boolean value.
    838   DCHECK_NE(Primitive::kPrimBoolean, result_type);
    839 
    840   // Besides conversion to the same type, widening integral conversions are implicit,
    841   // excluding conversions to long and the byte->char conversion where we need to
    842   // clear the high 16 bits of the 32-bit sign-extended representation of byte.
    843   return result_type == input_type ||
    844       (result_type == Primitive::kPrimInt && (input_type == Primitive::kPrimBoolean ||
    845                                               input_type == Primitive::kPrimByte ||
    846                                               input_type == Primitive::kPrimShort ||
    847                                               input_type == Primitive::kPrimChar)) ||
    848       (result_type == Primitive::kPrimChar && input_type == Primitive::kPrimBoolean) ||
    849       (result_type == Primitive::kPrimShort && (input_type == Primitive::kPrimBoolean ||
    850                                                 input_type == Primitive::kPrimByte)) ||
    851       (result_type == Primitive::kPrimByte && input_type == Primitive::kPrimBoolean);
    852 }
    853 
    854 static bool IsTypeConversionLossless(Primitive::Type input_type, Primitive::Type result_type) {
    855   // The conversion to a larger type is loss-less with the exception of two cases,
    856   //   - conversion to char, the only unsigned type, where we may lose some bits, and
    857   //   - conversion from float to long, the only FP to integral conversion with smaller FP type.
    858   // For integral to FP conversions this holds because the FP mantissa is large enough.
    859   DCHECK_NE(input_type, result_type);
    860   return Primitive::ComponentSize(result_type) > Primitive::ComponentSize(input_type) &&
    861       result_type != Primitive::kPrimChar &&
    862       !(result_type == Primitive::kPrimLong && input_type == Primitive::kPrimFloat);
    863 }
    864 
    865 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
    866   HInstruction* input = instruction->GetInput();
    867   Primitive::Type input_type = input->GetType();
    868   Primitive::Type result_type = instruction->GetResultType();
    869   if (IsTypeConversionImplicit(input_type, result_type)) {
    870     // Remove the implicit conversion; this includes conversion to the same type.
    871     instruction->ReplaceWith(input);
    872     instruction->GetBlock()->RemoveInstruction(instruction);
    873     RecordSimplification();
    874     return;
    875   }
    876 
    877   if (input->IsTypeConversion()) {
    878     HTypeConversion* input_conversion = input->AsTypeConversion();
    879     HInstruction* original_input = input_conversion->GetInput();
    880     Primitive::Type original_type = original_input->GetType();
    881 
    882     // When the first conversion is lossless, a direct conversion from the original type
    883     // to the final type yields the same result, even for a lossy second conversion, for
    884     // example float->double->int or int->double->float.
    885     bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
    886 
    887     // For integral conversions, see if the first conversion loses only bits that the second
    888     // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
    889     // conversion yields the same result, for example long->int->short or int->char->short.
    890     bool integral_conversions_with_non_widening_second =
    891         Primitive::IsIntegralType(input_type) &&
    892         Primitive::IsIntegralType(original_type) &&
    893         Primitive::IsIntegralType(result_type) &&
    894         Primitive::ComponentSize(result_type) <= Primitive::ComponentSize(input_type);
    895 
    896     if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
    897       // If the merged conversion is implicit, do the simplification unconditionally.
    898       if (IsTypeConversionImplicit(original_type, result_type)) {
    899         instruction->ReplaceWith(original_input);
    900         instruction->GetBlock()->RemoveInstruction(instruction);
    901         if (!input_conversion->HasUses()) {
    902           // Don't wait for DCE.
    903           input_conversion->GetBlock()->RemoveInstruction(input_conversion);
    904         }
    905         RecordSimplification();
    906         return;
    907       }
    908       // Otherwise simplify only if the first conversion has no other use.
    909       if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
    910         input_conversion->ReplaceWith(original_input);
    911         input_conversion->GetBlock()->RemoveInstruction(input_conversion);
    912         RecordSimplification();
    913         return;
    914       }
    915     }
    916   } else if (input->IsAnd() && Primitive::IsIntegralType(result_type)) {
    917     DCHECK(Primitive::IsIntegralType(input_type));
    918     HAnd* input_and = input->AsAnd();
    919     HConstant* constant = input_and->GetConstantRight();
    920     if (constant != nullptr) {
    921       int64_t value = Int64FromConstant(constant);
    922       DCHECK_NE(value, -1);  // "& -1" would have been optimized away in VisitAnd().
    923       size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
    924       if (trailing_ones >= kBitsPerByte * Primitive::ComponentSize(result_type)) {
    925         // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
    926         HInstruction* original_input = input_and->GetLeastConstantLeft();
    927         if (IsTypeConversionImplicit(original_input->GetType(), result_type)) {
    928           instruction->ReplaceWith(original_input);
    929           instruction->GetBlock()->RemoveInstruction(instruction);
    930           RecordSimplification();
    931           return;
    932         } else if (input->HasOnlyOneNonEnvironmentUse()) {
    933           input_and->ReplaceWith(original_input);
    934           input_and->GetBlock()->RemoveInstruction(input_and);
    935           RecordSimplification();
    936           return;
    937         }
    938       }
    939     }
    940   }
    941 }
    942 
    943 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
    944   HConstant* input_cst = instruction->GetConstantRight();
    945   HInstruction* input_other = instruction->GetLeastConstantLeft();
    946   bool integral_type = Primitive::IsIntegralType(instruction->GetType());
    947   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
    948     // Replace code looking like
    949     //    ADD dst, src, 0
    950     // with
    951     //    src
    952     // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
    953     // `x` is `-0.0`, the former expression yields `0.0`, while the later
    954     // yields `-0.0`.
    955     if (integral_type) {
    956       instruction->ReplaceWith(input_other);
    957       instruction->GetBlock()->RemoveInstruction(instruction);
    958       RecordSimplification();
    959       return;
    960     }
    961   }
    962 
    963   HInstruction* left = instruction->GetLeft();
    964   HInstruction* right = instruction->GetRight();
    965   bool left_is_neg = left->IsNeg();
    966   bool right_is_neg = right->IsNeg();
    967 
    968   if (left_is_neg && right_is_neg) {
    969     if (TryMoveNegOnInputsAfterBinop(instruction)) {
    970       return;
    971     }
    972   }
    973 
    974   HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
    975   if ((left_is_neg ^ right_is_neg) && neg->HasOnlyOneNonEnvironmentUse()) {
    976     // Replace code looking like
    977     //    NEG tmp, b
    978     //    ADD dst, a, tmp
    979     // with
    980     //    SUB dst, a, b
    981     // We do not perform the optimization if the input negation has environment
    982     // uses or multiple non-environment uses as it could lead to worse code. In
    983     // particular, we do not want the live range of `b` to be extended if we are
    984     // not sure the initial 'NEG' instruction can be removed.
    985     HInstruction* other = left_is_neg ? right : left;
    986     HSub* sub = new(GetGraph()->GetArena()) HSub(instruction->GetType(), other, neg->GetInput());
    987     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
    988     RecordSimplification();
    989     neg->GetBlock()->RemoveInstruction(neg);
    990     return;
    991   }
    992 
    993   if (TryReplaceWithRotate(instruction)) {
    994     return;
    995   }
    996 
    997   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
    998   // so no need to return.
    999   TryHandleAssociativeAndCommutativeOperation(instruction);
   1000 
   1001   if ((left->IsSub() || right->IsSub()) &&
   1002       TrySubtractionChainSimplification(instruction)) {
   1003     return;
   1004   }
   1005 
   1006   if (integral_type) {
   1007     // Replace code patterns looking like
   1008     //    SUB dst1, x, y        SUB dst1, x, y
   1009     //    ADD dst2, dst1, y     ADD dst2, y, dst1
   1010     // with
   1011     //    SUB dst1, x, y
   1012     // ADD instruction is not needed in this case, we may use
   1013     // one of inputs of SUB instead.
   1014     if (left->IsSub() && left->InputAt(1) == right) {
   1015       instruction->ReplaceWith(left->InputAt(0));
   1016       RecordSimplification();
   1017       instruction->GetBlock()->RemoveInstruction(instruction);
   1018       return;
   1019     } else if (right->IsSub() && right->InputAt(1) == left) {
   1020       instruction->ReplaceWith(right->InputAt(0));
   1021       RecordSimplification();
   1022       instruction->GetBlock()->RemoveInstruction(instruction);
   1023       return;
   1024     }
   1025   }
   1026 }
   1027 
   1028 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
   1029   HConstant* input_cst = instruction->GetConstantRight();
   1030   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1031 
   1032   if (input_cst != nullptr) {
   1033     int64_t value = Int64FromConstant(input_cst);
   1034     if (value == -1) {
   1035       // Replace code looking like
   1036       //    AND dst, src, 0xFFF...FF
   1037       // with
   1038       //    src
   1039       instruction->ReplaceWith(input_other);
   1040       instruction->GetBlock()->RemoveInstruction(instruction);
   1041       RecordSimplification();
   1042       return;
   1043     }
   1044     // Eliminate And from UShr+And if the And-mask contains all the bits that
   1045     // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
   1046     // precisely clears the shifted-in sign bits.
   1047     if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
   1048       size_t reg_bits = (instruction->GetResultType() == Primitive::kPrimLong) ? 64 : 32;
   1049       size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
   1050       size_t num_tail_bits_set = CTZ(value + 1);
   1051       if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
   1052         // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
   1053         instruction->ReplaceWith(input_other);
   1054         instruction->GetBlock()->RemoveInstruction(instruction);
   1055         RecordSimplification();
   1056         return;
   1057       }  else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
   1058           input_other->HasOnlyOneNonEnvironmentUse()) {
   1059         DCHECK(input_other->IsShr());  // For UShr, we would have taken the branch above.
   1060         // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
   1061         HUShr* ushr = new (GetGraph()->GetArena()) HUShr(instruction->GetType(),
   1062                                                          input_other->InputAt(0),
   1063                                                          input_other->InputAt(1),
   1064                                                          input_other->GetDexPc());
   1065         instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
   1066         input_other->GetBlock()->RemoveInstruction(input_other);
   1067         RecordSimplification();
   1068         return;
   1069       }
   1070     }
   1071   }
   1072 
   1073   // We assume that GVN has run before, so we only perform a pointer comparison.
   1074   // If for some reason the values are equal but the pointers are different, we
   1075   // are still correct and only miss an optimization opportunity.
   1076   if (instruction->GetLeft() == instruction->GetRight()) {
   1077     // Replace code looking like
   1078     //    AND dst, src, src
   1079     // with
   1080     //    src
   1081     instruction->ReplaceWith(instruction->GetLeft());
   1082     instruction->GetBlock()->RemoveInstruction(instruction);
   1083     RecordSimplification();
   1084     return;
   1085   }
   1086 
   1087   if (TryDeMorganNegationFactoring(instruction)) {
   1088     return;
   1089   }
   1090 
   1091   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1092   // so no need to return.
   1093   TryHandleAssociativeAndCommutativeOperation(instruction);
   1094 }
   1095 
   1096 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
   1097   VisitCondition(condition);
   1098 }
   1099 
   1100 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
   1101   VisitCondition(condition);
   1102 }
   1103 
   1104 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
   1105   VisitCondition(condition);
   1106 }
   1107 
   1108 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
   1109   VisitCondition(condition);
   1110 }
   1111 
   1112 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
   1113   VisitCondition(condition);
   1114 }
   1115 
   1116 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
   1117   VisitCondition(condition);
   1118 }
   1119 
   1120 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
   1121   VisitCondition(condition);
   1122 }
   1123 
   1124 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
   1125   VisitCondition(condition);
   1126 }
   1127 
   1128 // Recognize the following pattern:
   1129 // obj.getClass() ==/!= Foo.class
   1130 // And replace it with a constant value if the type of `obj` is statically known.
   1131 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
   1132   HInstruction* input_one = condition->InputAt(0);
   1133   HInstruction* input_two = condition->InputAt(1);
   1134   HLoadClass* load_class = input_one->IsLoadClass()
   1135       ? input_one->AsLoadClass()
   1136       : input_two->AsLoadClass();
   1137   if (load_class == nullptr) {
   1138     return false;
   1139   }
   1140 
   1141   ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
   1142   if (!class_rti.IsValid()) {
   1143     // Unresolved class.
   1144     return false;
   1145   }
   1146 
   1147   HInstanceFieldGet* field_get = (load_class == input_one)
   1148       ? input_two->AsInstanceFieldGet()
   1149       : input_one->AsInstanceFieldGet();
   1150   if (field_get == nullptr) {
   1151     return false;
   1152   }
   1153 
   1154   HInstruction* receiver = field_get->InputAt(0);
   1155   ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
   1156   if (!receiver_type.IsExact()) {
   1157     return false;
   1158   }
   1159 
   1160   {
   1161     ScopedObjectAccess soa(Thread::Current());
   1162     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1163     ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
   1164     DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
   1165     if (field_get->GetFieldInfo().GetField() != field) {
   1166       return false;
   1167     }
   1168 
   1169     // We can replace the compare.
   1170     int value = 0;
   1171     if (receiver_type.IsEqual(class_rti)) {
   1172       value = condition->IsEqual() ? 1 : 0;
   1173     } else {
   1174       value = condition->IsNotEqual() ? 1 : 0;
   1175     }
   1176     condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
   1177     return true;
   1178   }
   1179 }
   1180 
   1181 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
   1182   if (condition->IsEqual() || condition->IsNotEqual()) {
   1183     if (RecognizeAndSimplifyClassCheck(condition)) {
   1184       return;
   1185     }
   1186   }
   1187 
   1188   // Reverse condition if left is constant. Our code generators prefer constant
   1189   // on the right hand side.
   1190   if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
   1191     HBasicBlock* block = condition->GetBlock();
   1192     HCondition* replacement = GetOppositeConditionSwapOps(block->GetGraph()->GetArena(), condition);
   1193     // If it is a fp we must set the opposite bias.
   1194     if (replacement != nullptr) {
   1195       if (condition->IsLtBias()) {
   1196         replacement->SetBias(ComparisonBias::kGtBias);
   1197       } else if (condition->IsGtBias()) {
   1198         replacement->SetBias(ComparisonBias::kLtBias);
   1199       }
   1200       block->ReplaceAndRemoveInstructionWith(condition, replacement);
   1201       RecordSimplification();
   1202 
   1203       condition = replacement;
   1204     }
   1205   }
   1206 
   1207   HInstruction* left = condition->GetLeft();
   1208   HInstruction* right = condition->GetRight();
   1209 
   1210   // Try to fold an HCompare into this HCondition.
   1211 
   1212   // We can only replace an HCondition which compares a Compare to 0.
   1213   // Both 'dx' and 'jack' generate a compare to 0 when compiling a
   1214   // condition with a long, float or double comparison as input.
   1215   if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
   1216     // Conversion is not possible.
   1217     return;
   1218   }
   1219 
   1220   // Is the Compare only used for this purpose?
   1221   if (!left->GetUses().HasExactlyOneElement()) {
   1222     // Someone else also wants the result of the compare.
   1223     return;
   1224   }
   1225 
   1226   if (!left->GetEnvUses().empty()) {
   1227     // There is a reference to the compare result in an environment. Do we really need it?
   1228     if (GetGraph()->IsDebuggable()) {
   1229       return;
   1230     }
   1231 
   1232     // We have to ensure that there are no deopt points in the sequence.
   1233     if (left->HasAnyEnvironmentUseBefore(condition)) {
   1234       return;
   1235     }
   1236   }
   1237 
   1238   // Clean up any environment uses from the HCompare, if any.
   1239   left->RemoveEnvironmentUsers();
   1240 
   1241   // We have decided to fold the HCompare into the HCondition. Transfer the information.
   1242   condition->SetBias(left->AsCompare()->GetBias());
   1243 
   1244   // Replace the operands of the HCondition.
   1245   condition->ReplaceInput(left->InputAt(0), 0);
   1246   condition->ReplaceInput(left->InputAt(1), 1);
   1247 
   1248   // Remove the HCompare.
   1249   left->GetBlock()->RemoveInstruction(left);
   1250 
   1251   RecordSimplification();
   1252 }
   1253 
   1254 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
   1255 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
   1256   // True, if the most significant bits of divisor are 0.
   1257   return ((divisor & 0x7fffff) == 0);
   1258 }
   1259 
   1260 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
   1261 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
   1262   // True, if the most significant bits of divisor are 0.
   1263   return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
   1264 }
   1265 
   1266 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
   1267   HConstant* input_cst = instruction->GetConstantRight();
   1268   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1269   Primitive::Type type = instruction->GetType();
   1270 
   1271   if ((input_cst != nullptr) && input_cst->IsOne()) {
   1272     // Replace code looking like
   1273     //    DIV dst, src, 1
   1274     // with
   1275     //    src
   1276     instruction->ReplaceWith(input_other);
   1277     instruction->GetBlock()->RemoveInstruction(instruction);
   1278     RecordSimplification();
   1279     return;
   1280   }
   1281 
   1282   if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
   1283     // Replace code looking like
   1284     //    DIV dst, src, -1
   1285     // with
   1286     //    NEG dst, src
   1287     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
   1288         instruction, new (GetGraph()->GetArena()) HNeg(type, input_other));
   1289     RecordSimplification();
   1290     return;
   1291   }
   1292 
   1293   if ((input_cst != nullptr) && Primitive::IsFloatingPointType(type)) {
   1294     // Try replacing code looking like
   1295     //    DIV dst, src, constant
   1296     // with
   1297     //    MUL dst, src, 1 / constant
   1298     HConstant* reciprocal = nullptr;
   1299     if (type == Primitive::Primitive::kPrimDouble) {
   1300       double value = input_cst->AsDoubleConstant()->GetValue();
   1301       if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
   1302         reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
   1303       }
   1304     } else {
   1305       DCHECK_EQ(type, Primitive::kPrimFloat);
   1306       float value = input_cst->AsFloatConstant()->GetValue();
   1307       if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
   1308         reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
   1309       }
   1310     }
   1311 
   1312     if (reciprocal != nullptr) {
   1313       instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
   1314           instruction, new (GetGraph()->GetArena()) HMul(type, input_other, reciprocal));
   1315       RecordSimplification();
   1316       return;
   1317     }
   1318   }
   1319 }
   1320 
   1321 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
   1322   HConstant* input_cst = instruction->GetConstantRight();
   1323   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1324   Primitive::Type type = instruction->GetType();
   1325   HBasicBlock* block = instruction->GetBlock();
   1326   ArenaAllocator* allocator = GetGraph()->GetArena();
   1327 
   1328   if (input_cst == nullptr) {
   1329     return;
   1330   }
   1331 
   1332   if (input_cst->IsOne()) {
   1333     // Replace code looking like
   1334     //    MUL dst, src, 1
   1335     // with
   1336     //    src
   1337     instruction->ReplaceWith(input_other);
   1338     instruction->GetBlock()->RemoveInstruction(instruction);
   1339     RecordSimplification();
   1340     return;
   1341   }
   1342 
   1343   if (input_cst->IsMinusOne() &&
   1344       (Primitive::IsFloatingPointType(type) || Primitive::IsIntOrLongType(type))) {
   1345     // Replace code looking like
   1346     //    MUL dst, src, -1
   1347     // with
   1348     //    NEG dst, src
   1349     HNeg* neg = new (allocator) HNeg(type, input_other);
   1350     block->ReplaceAndRemoveInstructionWith(instruction, neg);
   1351     RecordSimplification();
   1352     return;
   1353   }
   1354 
   1355   if (Primitive::IsFloatingPointType(type) &&
   1356       ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
   1357        (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
   1358     // Replace code looking like
   1359     //    FP_MUL dst, src, 2.0
   1360     // with
   1361     //    FP_ADD dst, src, src
   1362     // The 'int' and 'long' cases are handled below.
   1363     block->ReplaceAndRemoveInstructionWith(instruction,
   1364                                            new (allocator) HAdd(type, input_other, input_other));
   1365     RecordSimplification();
   1366     return;
   1367   }
   1368 
   1369   if (Primitive::IsIntOrLongType(type)) {
   1370     int64_t factor = Int64FromConstant(input_cst);
   1371     // Even though constant propagation also takes care of the zero case, other
   1372     // optimizations can lead to having a zero multiplication.
   1373     if (factor == 0) {
   1374       // Replace code looking like
   1375       //    MUL dst, src, 0
   1376       // with
   1377       //    0
   1378       instruction->ReplaceWith(input_cst);
   1379       instruction->GetBlock()->RemoveInstruction(instruction);
   1380       RecordSimplification();
   1381       return;
   1382     } else if (IsPowerOfTwo(factor)) {
   1383       // Replace code looking like
   1384       //    MUL dst, src, pow_of_2
   1385       // with
   1386       //    SHL dst, src, log2(pow_of_2)
   1387       HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
   1388       HShl* shl = new (allocator) HShl(type, input_other, shift);
   1389       block->ReplaceAndRemoveInstructionWith(instruction, shl);
   1390       RecordSimplification();
   1391       return;
   1392     } else if (IsPowerOfTwo(factor - 1)) {
   1393       // Transform code looking like
   1394       //    MUL dst, src, (2^n + 1)
   1395       // into
   1396       //    SHL tmp, src, n
   1397       //    ADD dst, src, tmp
   1398       HShl* shl = new (allocator) HShl(type,
   1399                                        input_other,
   1400                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
   1401       HAdd* add = new (allocator) HAdd(type, input_other, shl);
   1402 
   1403       block->InsertInstructionBefore(shl, instruction);
   1404       block->ReplaceAndRemoveInstructionWith(instruction, add);
   1405       RecordSimplification();
   1406       return;
   1407     } else if (IsPowerOfTwo(factor + 1)) {
   1408       // Transform code looking like
   1409       //    MUL dst, src, (2^n - 1)
   1410       // into
   1411       //    SHL tmp, src, n
   1412       //    SUB dst, tmp, src
   1413       HShl* shl = new (allocator) HShl(type,
   1414                                        input_other,
   1415                                        GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
   1416       HSub* sub = new (allocator) HSub(type, shl, input_other);
   1417 
   1418       block->InsertInstructionBefore(shl, instruction);
   1419       block->ReplaceAndRemoveInstructionWith(instruction, sub);
   1420       RecordSimplification();
   1421       return;
   1422     }
   1423   }
   1424 
   1425   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1426   // so no need to return.
   1427   TryHandleAssociativeAndCommutativeOperation(instruction);
   1428 }
   1429 
   1430 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
   1431   HInstruction* input = instruction->GetInput();
   1432   if (input->IsNeg()) {
   1433     // Replace code looking like
   1434     //    NEG tmp, src
   1435     //    NEG dst, tmp
   1436     // with
   1437     //    src
   1438     HNeg* previous_neg = input->AsNeg();
   1439     instruction->ReplaceWith(previous_neg->GetInput());
   1440     instruction->GetBlock()->RemoveInstruction(instruction);
   1441     // We perform the optimization even if the input negation has environment
   1442     // uses since it allows removing the current instruction. But we only delete
   1443     // the input negation only if it is does not have any uses left.
   1444     if (!previous_neg->HasUses()) {
   1445       previous_neg->GetBlock()->RemoveInstruction(previous_neg);
   1446     }
   1447     RecordSimplification();
   1448     return;
   1449   }
   1450 
   1451   if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
   1452       !Primitive::IsFloatingPointType(input->GetType())) {
   1453     // Replace code looking like
   1454     //    SUB tmp, a, b
   1455     //    NEG dst, tmp
   1456     // with
   1457     //    SUB dst, b, a
   1458     // We do not perform the optimization if the input subtraction has
   1459     // environment uses or multiple non-environment uses as it could lead to
   1460     // worse code. In particular, we do not want the live ranges of `a` and `b`
   1461     // to be extended if we are not sure the initial 'SUB' instruction can be
   1462     // removed.
   1463     // We do not perform optimization for fp because we could lose the sign of zero.
   1464     HSub* sub = input->AsSub();
   1465     HSub* new_sub =
   1466         new (GetGraph()->GetArena()) HSub(instruction->GetType(), sub->GetRight(), sub->GetLeft());
   1467     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
   1468     if (!sub->HasUses()) {
   1469       sub->GetBlock()->RemoveInstruction(sub);
   1470     }
   1471     RecordSimplification();
   1472   }
   1473 }
   1474 
   1475 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
   1476   HInstruction* input = instruction->GetInput();
   1477   if (input->IsNot()) {
   1478     // Replace code looking like
   1479     //    NOT tmp, src
   1480     //    NOT dst, tmp
   1481     // with
   1482     //    src
   1483     // We perform the optimization even if the input negation has environment
   1484     // uses since it allows removing the current instruction. But we only delete
   1485     // the input negation only if it is does not have any uses left.
   1486     HNot* previous_not = input->AsNot();
   1487     instruction->ReplaceWith(previous_not->GetInput());
   1488     instruction->GetBlock()->RemoveInstruction(instruction);
   1489     if (!previous_not->HasUses()) {
   1490       previous_not->GetBlock()->RemoveInstruction(previous_not);
   1491     }
   1492     RecordSimplification();
   1493   }
   1494 }
   1495 
   1496 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
   1497   HConstant* input_cst = instruction->GetConstantRight();
   1498   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1499 
   1500   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
   1501     // Replace code looking like
   1502     //    OR dst, src, 0
   1503     // with
   1504     //    src
   1505     instruction->ReplaceWith(input_other);
   1506     instruction->GetBlock()->RemoveInstruction(instruction);
   1507     RecordSimplification();
   1508     return;
   1509   }
   1510 
   1511   // We assume that GVN has run before, so we only perform a pointer comparison.
   1512   // If for some reason the values are equal but the pointers are different, we
   1513   // are still correct and only miss an optimization opportunity.
   1514   if (instruction->GetLeft() == instruction->GetRight()) {
   1515     // Replace code looking like
   1516     //    OR dst, src, src
   1517     // with
   1518     //    src
   1519     instruction->ReplaceWith(instruction->GetLeft());
   1520     instruction->GetBlock()->RemoveInstruction(instruction);
   1521     RecordSimplification();
   1522     return;
   1523   }
   1524 
   1525   if (TryDeMorganNegationFactoring(instruction)) return;
   1526 
   1527   if (TryReplaceWithRotate(instruction)) {
   1528     return;
   1529   }
   1530 
   1531   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1532   // so no need to return.
   1533   TryHandleAssociativeAndCommutativeOperation(instruction);
   1534 }
   1535 
   1536 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
   1537   VisitShift(instruction);
   1538 }
   1539 
   1540 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
   1541   VisitShift(instruction);
   1542 }
   1543 
   1544 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
   1545   HConstant* input_cst = instruction->GetConstantRight();
   1546   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1547 
   1548   Primitive::Type type = instruction->GetType();
   1549   if (Primitive::IsFloatingPointType(type)) {
   1550     return;
   1551   }
   1552 
   1553   if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
   1554     // Replace code looking like
   1555     //    SUB dst, src, 0
   1556     // with
   1557     //    src
   1558     // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
   1559     // `x` is `-0.0`, the former expression yields `0.0`, while the later
   1560     // yields `-0.0`.
   1561     instruction->ReplaceWith(input_other);
   1562     instruction->GetBlock()->RemoveInstruction(instruction);
   1563     RecordSimplification();
   1564     return;
   1565   }
   1566 
   1567   HBasicBlock* block = instruction->GetBlock();
   1568   ArenaAllocator* allocator = GetGraph()->GetArena();
   1569 
   1570   HInstruction* left = instruction->GetLeft();
   1571   HInstruction* right = instruction->GetRight();
   1572   if (left->IsConstant()) {
   1573     if (Int64FromConstant(left->AsConstant()) == 0) {
   1574       // Replace code looking like
   1575       //    SUB dst, 0, src
   1576       // with
   1577       //    NEG dst, src
   1578       // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
   1579       // `x` is `0.0`, the former expression yields `0.0`, while the later
   1580       // yields `-0.0`.
   1581       HNeg* neg = new (allocator) HNeg(type, right);
   1582       block->ReplaceAndRemoveInstructionWith(instruction, neg);
   1583       RecordSimplification();
   1584       return;
   1585     }
   1586   }
   1587 
   1588   if (left->IsNeg() && right->IsNeg()) {
   1589     if (TryMoveNegOnInputsAfterBinop(instruction)) {
   1590       return;
   1591     }
   1592   }
   1593 
   1594   if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
   1595     // Replace code looking like
   1596     //    NEG tmp, b
   1597     //    SUB dst, a, tmp
   1598     // with
   1599     //    ADD dst, a, b
   1600     HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left, right->AsNeg()->GetInput());
   1601     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
   1602     RecordSimplification();
   1603     right->GetBlock()->RemoveInstruction(right);
   1604     return;
   1605   }
   1606 
   1607   if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
   1608     // Replace code looking like
   1609     //    NEG tmp, a
   1610     //    SUB dst, tmp, b
   1611     // with
   1612     //    ADD tmp, a, b
   1613     //    NEG dst, tmp
   1614     // The second version is not intrinsically better, but enables more
   1615     // transformations.
   1616     HAdd* add = new(GetGraph()->GetArena()) HAdd(type, left->AsNeg()->GetInput(), right);
   1617     instruction->GetBlock()->InsertInstructionBefore(add, instruction);
   1618     HNeg* neg = new (GetGraph()->GetArena()) HNeg(instruction->GetType(), add);
   1619     instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
   1620     instruction->ReplaceWith(neg);
   1621     instruction->GetBlock()->RemoveInstruction(instruction);
   1622     RecordSimplification();
   1623     left->GetBlock()->RemoveInstruction(left);
   1624     return;
   1625   }
   1626 
   1627   if (TrySubtractionChainSimplification(instruction)) {
   1628     return;
   1629   }
   1630 
   1631   if (left->IsAdd()) {
   1632     // Replace code patterns looking like
   1633     //    ADD dst1, x, y        ADD dst1, x, y
   1634     //    SUB dst2, dst1, y     SUB dst2, dst1, x
   1635     // with
   1636     //    ADD dst1, x, y
   1637     // SUB instruction is not needed in this case, we may use
   1638     // one of inputs of ADD instead.
   1639     // It is applicable to integral types only.
   1640     DCHECK(Primitive::IsIntegralType(type));
   1641     if (left->InputAt(1) == right) {
   1642       instruction->ReplaceWith(left->InputAt(0));
   1643       RecordSimplification();
   1644       instruction->GetBlock()->RemoveInstruction(instruction);
   1645       return;
   1646     } else if (left->InputAt(0) == right) {
   1647       instruction->ReplaceWith(left->InputAt(1));
   1648       RecordSimplification();
   1649       instruction->GetBlock()->RemoveInstruction(instruction);
   1650       return;
   1651     }
   1652   }
   1653 }
   1654 
   1655 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
   1656   VisitShift(instruction);
   1657 }
   1658 
   1659 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
   1660   HConstant* input_cst = instruction->GetConstantRight();
   1661   HInstruction* input_other = instruction->GetLeastConstantLeft();
   1662 
   1663   if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
   1664     // Replace code looking like
   1665     //    XOR dst, src, 0
   1666     // with
   1667     //    src
   1668     instruction->ReplaceWith(input_other);
   1669     instruction->GetBlock()->RemoveInstruction(instruction);
   1670     RecordSimplification();
   1671     return;
   1672   }
   1673 
   1674   if ((input_cst != nullptr) && input_cst->IsOne()
   1675       && input_other->GetType() == Primitive::kPrimBoolean) {
   1676     // Replace code looking like
   1677     //    XOR dst, src, 1
   1678     // with
   1679     //    BOOLEAN_NOT dst, src
   1680     HBooleanNot* boolean_not = new (GetGraph()->GetArena()) HBooleanNot(input_other);
   1681     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
   1682     RecordSimplification();
   1683     return;
   1684   }
   1685 
   1686   if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
   1687     // Replace code looking like
   1688     //    XOR dst, src, 0xFFF...FF
   1689     // with
   1690     //    NOT dst, src
   1691     HNot* bitwise_not = new (GetGraph()->GetArena()) HNot(instruction->GetType(), input_other);
   1692     instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
   1693     RecordSimplification();
   1694     return;
   1695   }
   1696 
   1697   HInstruction* left = instruction->GetLeft();
   1698   HInstruction* right = instruction->GetRight();
   1699   if (((left->IsNot() && right->IsNot()) ||
   1700        (left->IsBooleanNot() && right->IsBooleanNot())) &&
   1701       left->HasOnlyOneNonEnvironmentUse() &&
   1702       right->HasOnlyOneNonEnvironmentUse()) {
   1703     // Replace code looking like
   1704     //    NOT nota, a
   1705     //    NOT notb, b
   1706     //    XOR dst, nota, notb
   1707     // with
   1708     //    XOR dst, a, b
   1709     instruction->ReplaceInput(left->InputAt(0), 0);
   1710     instruction->ReplaceInput(right->InputAt(0), 1);
   1711     left->GetBlock()->RemoveInstruction(left);
   1712     right->GetBlock()->RemoveInstruction(right);
   1713     RecordSimplification();
   1714     return;
   1715   }
   1716 
   1717   if (TryReplaceWithRotate(instruction)) {
   1718     return;
   1719   }
   1720 
   1721   // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
   1722   // so no need to return.
   1723   TryHandleAssociativeAndCommutativeOperation(instruction);
   1724 }
   1725 
   1726 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
   1727   HInstruction* argument = instruction->InputAt(1);
   1728   HInstruction* receiver = instruction->InputAt(0);
   1729   if (receiver == argument) {
   1730     // Because String.equals is an instance call, the receiver is
   1731     // a null check if we don't know it's null. The argument however, will
   1732     // be the actual object. So we cannot end up in a situation where both
   1733     // are equal but could be null.
   1734     DCHECK(CanEnsureNotNullAt(argument, instruction));
   1735     instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
   1736     instruction->GetBlock()->RemoveInstruction(instruction);
   1737   } else {
   1738     StringEqualsOptimizations optimizations(instruction);
   1739     if (CanEnsureNotNullAt(argument, instruction)) {
   1740       optimizations.SetArgumentNotNull();
   1741     }
   1742     ScopedObjectAccess soa(Thread::Current());
   1743     ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
   1744     if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
   1745       optimizations.SetArgumentIsString();
   1746     }
   1747   }
   1748 }
   1749 
   1750 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
   1751                                                   bool is_left,
   1752                                                   Primitive::Type type) {
   1753   DCHECK(invoke->IsInvokeStaticOrDirect());
   1754   DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
   1755   HInstruction* value = invoke->InputAt(0);
   1756   HInstruction* distance = invoke->InputAt(1);
   1757   // Replace the invoke with an HRor.
   1758   if (is_left) {
   1759     // Unconditionally set the type of the negated distance to `int`,
   1760     // as shift and rotate operations expect a 32-bit (or narrower)
   1761     // value for their distance input.
   1762     distance = new (GetGraph()->GetArena()) HNeg(Primitive::kPrimInt, distance);
   1763     invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
   1764   }
   1765   HRor* ror = new (GetGraph()->GetArena()) HRor(type, value, distance);
   1766   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
   1767   // Remove ClinitCheck and LoadClass, if possible.
   1768   HInstruction* clinit = invoke->GetInputs().back();
   1769   if (clinit->IsClinitCheck() && !clinit->HasUses()) {
   1770     clinit->GetBlock()->RemoveInstruction(clinit);
   1771     HInstruction* ldclass = clinit->InputAt(0);
   1772     if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
   1773       ldclass->GetBlock()->RemoveInstruction(ldclass);
   1774     }
   1775   }
   1776 }
   1777 
   1778 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
   1779   if (potential_length->IsArrayLength()) {
   1780     return potential_length->InputAt(0) == potential_array;
   1781   }
   1782 
   1783   if (potential_array->IsNewArray()) {
   1784     return potential_array->AsNewArray()->GetLength() == potential_length;
   1785   }
   1786 
   1787   return false;
   1788 }
   1789 
   1790 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
   1791   HInstruction* source = instruction->InputAt(0);
   1792   HInstruction* destination = instruction->InputAt(2);
   1793   HInstruction* count = instruction->InputAt(4);
   1794   SystemArrayCopyOptimizations optimizations(instruction);
   1795   if (CanEnsureNotNullAt(source, instruction)) {
   1796     optimizations.SetSourceIsNotNull();
   1797   }
   1798   if (CanEnsureNotNullAt(destination, instruction)) {
   1799     optimizations.SetDestinationIsNotNull();
   1800   }
   1801   if (destination == source) {
   1802     optimizations.SetDestinationIsSource();
   1803   }
   1804 
   1805   if (IsArrayLengthOf(count, source)) {
   1806     optimizations.SetCountIsSourceLength();
   1807   }
   1808 
   1809   if (IsArrayLengthOf(count, destination)) {
   1810     optimizations.SetCountIsDestinationLength();
   1811   }
   1812 
   1813   {
   1814     ScopedObjectAccess soa(Thread::Current());
   1815     Primitive::Type source_component_type = Primitive::kPrimVoid;
   1816     Primitive::Type destination_component_type = Primitive::kPrimVoid;
   1817     ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
   1818     if (destination_rti.IsValid()) {
   1819       if (destination_rti.IsObjectArray()) {
   1820         if (destination_rti.IsExact()) {
   1821           optimizations.SetDoesNotNeedTypeCheck();
   1822         }
   1823         optimizations.SetDestinationIsTypedObjectArray();
   1824       }
   1825       if (destination_rti.IsPrimitiveArrayClass()) {
   1826         destination_component_type =
   1827             destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
   1828         optimizations.SetDestinationIsPrimitiveArray();
   1829       } else if (destination_rti.IsNonPrimitiveArrayClass()) {
   1830         optimizations.SetDestinationIsNonPrimitiveArray();
   1831       }
   1832     }
   1833     ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
   1834     if (source_rti.IsValid()) {
   1835       if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
   1836         optimizations.SetDoesNotNeedTypeCheck();
   1837       }
   1838       if (source_rti.IsPrimitiveArrayClass()) {
   1839         optimizations.SetSourceIsPrimitiveArray();
   1840         source_component_type = source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
   1841       } else if (source_rti.IsNonPrimitiveArrayClass()) {
   1842         optimizations.SetSourceIsNonPrimitiveArray();
   1843       }
   1844     }
   1845     // For primitive arrays, use their optimized ArtMethod implementations.
   1846     if ((source_component_type != Primitive::kPrimVoid) &&
   1847         (source_component_type == destination_component_type)) {
   1848       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1849       PointerSize image_size = class_linker->GetImagePointerSize();
   1850       HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
   1851       mirror::Class* system = invoke->GetResolvedMethod()->GetDeclaringClass();
   1852       ArtMethod* method = nullptr;
   1853       switch (source_component_type) {
   1854         case Primitive::kPrimBoolean:
   1855           method = system->FindDeclaredDirectMethod("arraycopy", "([ZI[ZII)V", image_size);
   1856           break;
   1857         case Primitive::kPrimByte:
   1858           method = system->FindDeclaredDirectMethod("arraycopy", "([BI[BII)V", image_size);
   1859           break;
   1860         case Primitive::kPrimChar:
   1861           method = system->FindDeclaredDirectMethod("arraycopy", "([CI[CII)V", image_size);
   1862           break;
   1863         case Primitive::kPrimShort:
   1864           method = system->FindDeclaredDirectMethod("arraycopy", "([SI[SII)V", image_size);
   1865           break;
   1866         case Primitive::kPrimInt:
   1867           method = system->FindDeclaredDirectMethod("arraycopy", "([II[III)V", image_size);
   1868           break;
   1869         case Primitive::kPrimFloat:
   1870           method = system->FindDeclaredDirectMethod("arraycopy", "([FI[FII)V", image_size);
   1871           break;
   1872         case Primitive::kPrimLong:
   1873           method = system->FindDeclaredDirectMethod("arraycopy", "([JI[JII)V", image_size);
   1874           break;
   1875         case Primitive::kPrimDouble:
   1876           method = system->FindDeclaredDirectMethod("arraycopy", "([DI[DII)V", image_size);
   1877           break;
   1878         default:
   1879           LOG(FATAL) << "Unreachable";
   1880       }
   1881       DCHECK(method != nullptr);
   1882       invoke->SetResolvedMethod(method);
   1883       // Sharpen the new invoke. Note that we do not update the dex method index of
   1884       // the invoke, as we would need to look it up in the current dex file, and it
   1885       // is unlikely that it exists. The most usual situation for such typed
   1886       // arraycopy methods is a direct pointer to the boot image.
   1887       HSharpening::SharpenInvokeStaticOrDirect(invoke, codegen_);
   1888     }
   1889   }
   1890 }
   1891 
   1892 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
   1893                                                    bool is_signum,
   1894                                                    Primitive::Type type) {
   1895   DCHECK(invoke->IsInvokeStaticOrDirect());
   1896   uint32_t dex_pc = invoke->GetDexPc();
   1897   HInstruction* left = invoke->InputAt(0);
   1898   HInstruction* right;
   1899   if (!is_signum) {
   1900     right = invoke->InputAt(1);
   1901   } else if (type == Primitive::kPrimLong) {
   1902     right = GetGraph()->GetLongConstant(0);
   1903   } else {
   1904     right = GetGraph()->GetIntConstant(0);
   1905   }
   1906   HCompare* compare = new (GetGraph()->GetArena())
   1907       HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
   1908   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
   1909 }
   1910 
   1911 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
   1912   DCHECK(invoke->IsInvokeStaticOrDirect());
   1913   uint32_t dex_pc = invoke->GetDexPc();
   1914   // IsNaN(x) is the same as x != x.
   1915   HInstruction* x = invoke->InputAt(0);
   1916   HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
   1917   condition->SetBias(ComparisonBias::kLtBias);
   1918   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
   1919 }
   1920 
   1921 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
   1922   DCHECK(invoke->IsInvokeStaticOrDirect());
   1923   uint32_t dex_pc = invoke->GetDexPc();
   1924   HInstruction* x = invoke->InputAt(0);
   1925   Primitive::Type type = x->GetType();
   1926   // Set proper bit pattern for NaN and replace intrinsic with raw version.
   1927   HInstruction* nan;
   1928   if (type == Primitive::kPrimDouble) {
   1929     nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
   1930     invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
   1931                          kNeedsEnvironmentOrCache,
   1932                          kNoSideEffects,
   1933                          kNoThrow);
   1934   } else {
   1935     DCHECK_EQ(type, Primitive::kPrimFloat);
   1936     nan = GetGraph()->GetIntConstant(0x7fc00000);
   1937     invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
   1938                          kNeedsEnvironmentOrCache,
   1939                          kNoSideEffects,
   1940                          kNoThrow);
   1941   }
   1942   // Test IsNaN(x), which is the same as x != x.
   1943   HCondition* condition = new (GetGraph()->GetArena()) HNotEqual(x, x, dex_pc);
   1944   condition->SetBias(ComparisonBias::kLtBias);
   1945   invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
   1946   // Select between the two.
   1947   HInstruction* select = new (GetGraph()->GetArena()) HSelect(condition, nan, invoke, dex_pc);
   1948   invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
   1949   invoke->ReplaceWithExceptInReplacementAtIndex(select, 0);  // false at index 0
   1950 }
   1951 
   1952 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
   1953   HInstruction* str = invoke->InputAt(0);
   1954   HInstruction* index = invoke->InputAt(1);
   1955   uint32_t dex_pc = invoke->GetDexPc();
   1956   ArenaAllocator* arena = GetGraph()->GetArena();
   1957   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
   1958   // so create the HArrayLength, HBoundsCheck and HArrayGet.
   1959   HArrayLength* length = new (arena) HArrayLength(str, dex_pc, /* is_string_length */ true);
   1960   invoke->GetBlock()->InsertInstructionBefore(length, invoke);
   1961   HBoundsCheck* bounds_check = new (arena) HBoundsCheck(
   1962       index, length, dex_pc, invoke->GetDexMethodIndex());
   1963   invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
   1964   HArrayGet* array_get = new (arena) HArrayGet(
   1965       str, bounds_check, Primitive::kPrimChar, dex_pc, /* is_string_char_at */ true);
   1966   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
   1967   bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
   1968   GetGraph()->SetHasBoundsChecks(true);
   1969 }
   1970 
   1971 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
   1972   HInstruction* str = invoke->InputAt(0);
   1973   uint32_t dex_pc = invoke->GetDexPc();
   1974   // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
   1975   // so create the HArrayLength.
   1976   HArrayLength* length =
   1977       new (GetGraph()->GetArena()) HArrayLength(str, dex_pc, /* is_string_length */ true);
   1978   HInstruction* replacement;
   1979   if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
   1980     // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
   1981     invoke->GetBlock()->InsertInstructionBefore(length, invoke);
   1982     HIntConstant* zero = GetGraph()->GetIntConstant(0);
   1983     HEqual* equal = new (GetGraph()->GetArena()) HEqual(length, zero, dex_pc);
   1984     replacement = equal;
   1985   } else {
   1986     DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
   1987     replacement = length;
   1988   }
   1989   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
   1990 }
   1991 
   1992 // This method should only be used on intrinsics whose sole way of throwing an
   1993 // exception is raising a NPE when the nth argument is null. If that argument
   1994 // is provably non-null, we can clear the flag.
   1995 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
   1996   HInstruction* arg = invoke->InputAt(n);
   1997   if (invoke->CanThrow() && !arg->CanBeNull()) {
   1998     invoke->SetCanThrow(false);
   1999   }
   2000 }
   2001 
   2002 // Methods that return "this" can replace the returned value with the receiver.
   2003 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
   2004   if (invoke->HasUses()) {
   2005     HInstruction* receiver = invoke->InputAt(0);
   2006     invoke->ReplaceWith(receiver);
   2007     RecordSimplification();
   2008   }
   2009 }
   2010 
   2011 // Helper method for StringBuffer escape analysis.
   2012 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
   2013   if (user->IsInvokeStaticOrDirect()) {
   2014     // Any constructor on StringBuffer is okay.
   2015     return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
   2016            user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
   2017            user->InputAt(0) == reference;
   2018   } else if (user->IsInvokeVirtual()) {
   2019     switch (user->AsInvokeVirtual()->GetIntrinsic()) {
   2020       case Intrinsics::kStringBufferLength:
   2021       case Intrinsics::kStringBufferToString:
   2022         DCHECK_EQ(user->InputAt(0), reference);
   2023         return true;
   2024       case Intrinsics::kStringBufferAppend:
   2025         // Returns "this", so only okay if no further uses.
   2026         DCHECK_EQ(user->InputAt(0), reference);
   2027         DCHECK_NE(user->InputAt(1), reference);
   2028         return !user->HasUses();
   2029       default:
   2030         break;
   2031     }
   2032   }
   2033   return false;
   2034 }
   2035 
   2036 // Certain allocation intrinsics are not removed by dead code elimination
   2037 // because of potentially throwing an OOM exception or other side effects.
   2038 // This method removes such intrinsics when special circumstances allow.
   2039 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
   2040   if (!invoke->HasUses()) {
   2041     // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
   2042     // the potential OOM of course. Otherwise, we must ensure the receiver object of this
   2043     // call does not escape since only thread-local synchronization may be removed.
   2044     bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
   2045     HInstruction* receiver = invoke->InputAt(0);
   2046     if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
   2047       invoke->GetBlock()->RemoveInstruction(invoke);
   2048       RecordSimplification();
   2049     }
   2050   }
   2051 }
   2052 
   2053 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind) {
   2054   uint32_t dex_pc = invoke->GetDexPc();
   2055   HMemoryBarrier* mem_barrier = new (GetGraph()->GetArena()) HMemoryBarrier(barrier_kind, dex_pc);
   2056   invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
   2057 }
   2058 
   2059 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
   2060   switch (instruction->GetIntrinsic()) {
   2061     case Intrinsics::kStringEquals:
   2062       SimplifyStringEquals(instruction);
   2063       break;
   2064     case Intrinsics::kSystemArrayCopy:
   2065       SimplifySystemArrayCopy(instruction);
   2066       break;
   2067     case Intrinsics::kIntegerRotateRight:
   2068       SimplifyRotate(instruction, /* is_left */ false, Primitive::kPrimInt);
   2069       break;
   2070     case Intrinsics::kLongRotateRight:
   2071       SimplifyRotate(instruction, /* is_left */ false, Primitive::kPrimLong);
   2072       break;
   2073     case Intrinsics::kIntegerRotateLeft:
   2074       SimplifyRotate(instruction, /* is_left */ true, Primitive::kPrimInt);
   2075       break;
   2076     case Intrinsics::kLongRotateLeft:
   2077       SimplifyRotate(instruction, /* is_left */ true, Primitive::kPrimLong);
   2078       break;
   2079     case Intrinsics::kIntegerCompare:
   2080       SimplifyCompare(instruction, /* is_signum */ false, Primitive::kPrimInt);
   2081       break;
   2082     case Intrinsics::kLongCompare:
   2083       SimplifyCompare(instruction, /* is_signum */ false, Primitive::kPrimLong);
   2084       break;
   2085     case Intrinsics::kIntegerSignum:
   2086       SimplifyCompare(instruction, /* is_signum */ true, Primitive::kPrimInt);
   2087       break;
   2088     case Intrinsics::kLongSignum:
   2089       SimplifyCompare(instruction, /* is_signum */ true, Primitive::kPrimLong);
   2090       break;
   2091     case Intrinsics::kFloatIsNaN:
   2092     case Intrinsics::kDoubleIsNaN:
   2093       SimplifyIsNaN(instruction);
   2094       break;
   2095     case Intrinsics::kFloatFloatToIntBits:
   2096     case Intrinsics::kDoubleDoubleToLongBits:
   2097       SimplifyFP2Int(instruction);
   2098       break;
   2099     case Intrinsics::kStringCharAt:
   2100       SimplifyStringCharAt(instruction);
   2101       break;
   2102     case Intrinsics::kStringIsEmpty:
   2103     case Intrinsics::kStringLength:
   2104       SimplifyStringIsEmptyOrLength(instruction);
   2105       break;
   2106     case Intrinsics::kStringStringIndexOf:
   2107     case Intrinsics::kStringStringIndexOfAfter:
   2108       SimplifyNPEOnArgN(instruction, 1);  // 0th has own NullCheck
   2109       break;
   2110     case Intrinsics::kStringBufferAppend:
   2111     case Intrinsics::kStringBuilderAppend:
   2112       SimplifyReturnThis(instruction);
   2113       break;
   2114     case Intrinsics::kStringBufferToString:
   2115     case Intrinsics::kStringBuilderToString:
   2116       SimplifyAllocationIntrinsic(instruction);
   2117       break;
   2118     case Intrinsics::kUnsafeLoadFence:
   2119       SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
   2120       break;
   2121     case Intrinsics::kUnsafeStoreFence:
   2122       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
   2123       break;
   2124     case Intrinsics::kUnsafeFullFence:
   2125       SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
   2126       break;
   2127     default:
   2128       break;
   2129   }
   2130 }
   2131 
   2132 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
   2133   HInstruction* cond = deoptimize->InputAt(0);
   2134   if (cond->IsConstant()) {
   2135     if (cond->AsIntConstant()->IsFalse()) {
   2136       // Never deopt: instruction can be removed.
   2137       if (deoptimize->GuardsAnInput()) {
   2138         deoptimize->ReplaceWith(deoptimize->GuardedInput());
   2139       }
   2140       deoptimize->GetBlock()->RemoveInstruction(deoptimize);
   2141     } else {
   2142       // Always deopt.
   2143     }
   2144   }
   2145 }
   2146 
   2147 // Replace code looking like
   2148 //    OP y, x, const1
   2149 //    OP z, y, const2
   2150 // with
   2151 //    OP z, x, const3
   2152 // where OP is both an associative and a commutative operation.
   2153 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
   2154     HBinaryOperation* instruction) {
   2155   DCHECK(instruction->IsCommutative());
   2156 
   2157   if (!Primitive::IsIntegralType(instruction->GetType())) {
   2158     return false;
   2159   }
   2160 
   2161   HInstruction* left = instruction->GetLeft();
   2162   HInstruction* right = instruction->GetRight();
   2163   // Variable names as described above.
   2164   HConstant* const2;
   2165   HBinaryOperation* y;
   2166 
   2167   if (instruction->InstructionTypeEquals(left) && right->IsConstant()) {
   2168     const2 = right->AsConstant();
   2169     y = left->AsBinaryOperation();
   2170   } else if (left->IsConstant() && instruction->InstructionTypeEquals(right)) {
   2171     const2 = left->AsConstant();
   2172     y = right->AsBinaryOperation();
   2173   } else {
   2174     // The node does not match the pattern.
   2175     return false;
   2176   }
   2177 
   2178   // If `y` has more than one use, we do not perform the optimization
   2179   // because it might increase code size (e.g. if the new constant is
   2180   // no longer encodable as an immediate operand in the target ISA).
   2181   if (!y->HasOnlyOneNonEnvironmentUse()) {
   2182     return false;
   2183   }
   2184 
   2185   // GetConstantRight() can return both left and right constants
   2186   // for commutative operations.
   2187   HConstant* const1 = y->GetConstantRight();
   2188   if (const1 == nullptr) {
   2189     return false;
   2190   }
   2191 
   2192   instruction->ReplaceInput(const1, 0);
   2193   instruction->ReplaceInput(const2, 1);
   2194   HConstant* const3 = instruction->TryStaticEvaluation();
   2195   DCHECK(const3 != nullptr);
   2196   instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
   2197   instruction->ReplaceInput(const3, 1);
   2198   RecordSimplification();
   2199   return true;
   2200 }
   2201 
   2202 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
   2203   return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
   2204 }
   2205 
   2206 // Helper function that performs addition statically, considering the result type.
   2207 static int64_t ComputeAddition(Primitive::Type type, int64_t x, int64_t y) {
   2208   // Use the Compute() method for consistency with TryStaticEvaluation().
   2209   if (type == Primitive::kPrimInt) {
   2210     return HAdd::Compute<int32_t>(x, y);
   2211   } else {
   2212     DCHECK_EQ(type, Primitive::kPrimLong);
   2213     return HAdd::Compute<int64_t>(x, y);
   2214   }
   2215 }
   2216 
   2217 // Helper function that handles the child classes of HConstant
   2218 // and returns an integer with the appropriate sign.
   2219 static int64_t GetValue(HConstant* constant, bool is_negated) {
   2220   int64_t ret = Int64FromConstant(constant);
   2221   return is_negated ? -ret : ret;
   2222 }
   2223 
   2224 // Replace code looking like
   2225 //    OP1 y, x, const1
   2226 //    OP2 z, y, const2
   2227 // with
   2228 //    OP3 z, x, const3
   2229 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
   2230 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
   2231     HBinaryOperation* instruction) {
   2232   DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
   2233 
   2234   Primitive::Type type = instruction->GetType();
   2235   if (!Primitive::IsIntegralType(type)) {
   2236     return false;
   2237   }
   2238 
   2239   HInstruction* left = instruction->GetLeft();
   2240   HInstruction* right = instruction->GetRight();
   2241   // Variable names as described above.
   2242   HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
   2243   if (const2 == nullptr) {
   2244     return false;
   2245   }
   2246 
   2247   HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
   2248       ? left->AsBinaryOperation()
   2249       : AsAddOrSub(right);
   2250   // If y has more than one use, we do not perform the optimization because
   2251   // it might increase code size (e.g. if the new constant is no longer
   2252   // encodable as an immediate operand in the target ISA).
   2253   if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
   2254     return false;
   2255   }
   2256 
   2257   left = y->GetLeft();
   2258   HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
   2259   if (const1 == nullptr) {
   2260     return false;
   2261   }
   2262 
   2263   HInstruction* x = (const1 == left) ? y->GetRight() : left;
   2264   // If both inputs are constants, let the constant folding pass deal with it.
   2265   if (x->IsConstant()) {
   2266     return false;
   2267   }
   2268 
   2269   bool is_const2_negated = (const2 == right) && instruction->IsSub();
   2270   int64_t const2_val = GetValue(const2, is_const2_negated);
   2271   bool is_y_negated = (y == right) && instruction->IsSub();
   2272   right = y->GetRight();
   2273   bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
   2274   int64_t const1_val = GetValue(const1, is_const1_negated);
   2275   bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
   2276   int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
   2277   HBasicBlock* block = instruction->GetBlock();
   2278   HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
   2279   ArenaAllocator* arena = instruction->GetArena();
   2280   HInstruction* z;
   2281 
   2282   if (is_x_negated) {
   2283     z = new (arena) HSub(type, const3, x, instruction->GetDexPc());
   2284   } else {
   2285     z = new (arena) HAdd(type, x, const3, instruction->GetDexPc());
   2286   }
   2287 
   2288   block->ReplaceAndRemoveInstructionWith(instruction, z);
   2289   RecordSimplification();
   2290   return true;
   2291 }
   2292 
   2293 }  // namespace art
   2294