Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <limits>
     12 #include <numeric>
     13 #include <Eigen/CXX11/Tensor>
     14 
     15 using Eigen::Tensor;
     16 
     17 template <int DataLayout>
     18 static void test_trivial_reductions() {
     19   {
     20     Tensor<float, 0, DataLayout> tensor;
     21     tensor.setRandom();
     22     array<ptrdiff_t, 0> reduction_axis;
     23 
     24     Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
     25     VERIFY_IS_EQUAL(result(), tensor());
     26   }
     27 
     28   {
     29     Tensor<float, 1, DataLayout> tensor(7);
     30     tensor.setRandom();
     31     array<ptrdiff_t, 0> reduction_axis;
     32 
     33     Tensor<float, 1, DataLayout> result = tensor.sum(reduction_axis);
     34     VERIFY_IS_EQUAL(result.dimension(0), 7);
     35     for (int i = 0; i < 7; ++i) {
     36       VERIFY_IS_EQUAL(result(i), tensor(i));
     37     }
     38   }
     39 
     40   {
     41     Tensor<float, 2, DataLayout> tensor(2, 3);
     42     tensor.setRandom();
     43     array<ptrdiff_t, 0> reduction_axis;
     44 
     45     Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis);
     46     VERIFY_IS_EQUAL(result.dimension(0), 2);
     47     VERIFY_IS_EQUAL(result.dimension(1), 3);
     48     for (int i = 0; i < 2; ++i) {
     49       for (int j = 0; j < 3; ++j) {
     50         VERIFY_IS_EQUAL(result(i, j), tensor(i, j));
     51       }
     52     }
     53   }
     54 }
     55 
     56 template <int DataLayout>
     57 static void test_simple_reductions() {
     58   Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
     59   tensor.setRandom();
     60   array<ptrdiff_t, 2> reduction_axis2;
     61   reduction_axis2[0] = 1;
     62   reduction_axis2[1] = 3;
     63 
     64   Tensor<float, 2, DataLayout> result = tensor.sum(reduction_axis2);
     65   VERIFY_IS_EQUAL(result.dimension(0), 2);
     66   VERIFY_IS_EQUAL(result.dimension(1), 5);
     67   for (int i = 0; i < 2; ++i) {
     68     for (int j = 0; j < 5; ++j) {
     69       float sum = 0.0f;
     70       for (int k = 0; k < 3; ++k) {
     71         for (int l = 0; l < 7; ++l) {
     72           sum += tensor(i, k, j, l);
     73         }
     74       }
     75       VERIFY_IS_APPROX(result(i, j), sum);
     76     }
     77   }
     78 
     79   {
     80     Tensor<float, 0, DataLayout> sum1 = tensor.sum();
     81     VERIFY_IS_EQUAL(sum1.rank(), 0);
     82 
     83     array<ptrdiff_t, 4> reduction_axis4;
     84     reduction_axis4[0] = 0;
     85     reduction_axis4[1] = 1;
     86     reduction_axis4[2] = 2;
     87     reduction_axis4[3] = 3;
     88     Tensor<float, 0, DataLayout> sum2 = tensor.sum(reduction_axis4);
     89     VERIFY_IS_EQUAL(sum2.rank(), 0);
     90 
     91     VERIFY_IS_APPROX(sum1(), sum2());
     92   }
     93 
     94   reduction_axis2[0] = 0;
     95   reduction_axis2[1] = 2;
     96   result = tensor.prod(reduction_axis2);
     97   VERIFY_IS_EQUAL(result.dimension(0), 3);
     98   VERIFY_IS_EQUAL(result.dimension(1), 7);
     99   for (int i = 0; i < 3; ++i) {
    100     for (int j = 0; j < 7; ++j) {
    101       float prod = 1.0f;
    102       for (int k = 0; k < 2; ++k) {
    103         for (int l = 0; l < 5; ++l) {
    104           prod *= tensor(k, i, l, j);
    105         }
    106       }
    107       VERIFY_IS_APPROX(result(i, j), prod);
    108     }
    109   }
    110 
    111   {
    112     Tensor<float, 0, DataLayout> prod1 = tensor.prod();
    113     VERIFY_IS_EQUAL(prod1.rank(), 0);
    114 
    115     array<ptrdiff_t, 4> reduction_axis4;
    116     reduction_axis4[0] = 0;
    117     reduction_axis4[1] = 1;
    118     reduction_axis4[2] = 2;
    119     reduction_axis4[3] = 3;
    120     Tensor<float, 0, DataLayout> prod2 = tensor.prod(reduction_axis4);
    121     VERIFY_IS_EQUAL(prod2.rank(), 0);
    122 
    123     VERIFY_IS_APPROX(prod1(), prod2());
    124   }
    125 
    126   reduction_axis2[0] = 0;
    127   reduction_axis2[1] = 2;
    128   result = tensor.maximum(reduction_axis2);
    129   VERIFY_IS_EQUAL(result.dimension(0), 3);
    130   VERIFY_IS_EQUAL(result.dimension(1), 7);
    131   for (int i = 0; i < 3; ++i) {
    132     for (int j = 0; j < 7; ++j) {
    133       float max_val = std::numeric_limits<float>::lowest();
    134       for (int k = 0; k < 2; ++k) {
    135         for (int l = 0; l < 5; ++l) {
    136           max_val = (std::max)(max_val, tensor(k, i, l, j));
    137         }
    138       }
    139       VERIFY_IS_APPROX(result(i, j), max_val);
    140     }
    141   }
    142 
    143   {
    144     Tensor<float, 0, DataLayout> max1 = tensor.maximum();
    145     VERIFY_IS_EQUAL(max1.rank(), 0);
    146 
    147     array<ptrdiff_t, 4> reduction_axis4;
    148     reduction_axis4[0] = 0;
    149     reduction_axis4[1] = 1;
    150     reduction_axis4[2] = 2;
    151     reduction_axis4[3] = 3;
    152     Tensor<float, 0, DataLayout> max2 = tensor.maximum(reduction_axis4);
    153     VERIFY_IS_EQUAL(max2.rank(), 0);
    154 
    155     VERIFY_IS_APPROX(max1(), max2());
    156   }
    157 
    158   reduction_axis2[0] = 0;
    159   reduction_axis2[1] = 1;
    160   result = tensor.minimum(reduction_axis2);
    161   VERIFY_IS_EQUAL(result.dimension(0), 5);
    162   VERIFY_IS_EQUAL(result.dimension(1), 7);
    163   for (int i = 0; i < 5; ++i) {
    164     for (int j = 0; j < 7; ++j) {
    165       float min_val = (std::numeric_limits<float>::max)();
    166       for (int k = 0; k < 2; ++k) {
    167         for (int l = 0; l < 3; ++l) {
    168           min_val = (std::min)(min_val, tensor(k, l, i, j));
    169         }
    170       }
    171       VERIFY_IS_APPROX(result(i, j), min_val);
    172     }
    173   }
    174 
    175   {
    176     Tensor<float, 0, DataLayout> min1 = tensor.minimum();
    177     VERIFY_IS_EQUAL(min1.rank(), 0);
    178 
    179     array<ptrdiff_t, 4> reduction_axis4;
    180     reduction_axis4[0] = 0;
    181     reduction_axis4[1] = 1;
    182     reduction_axis4[2] = 2;
    183     reduction_axis4[3] = 3;
    184     Tensor<float, 0, DataLayout> min2 = tensor.minimum(reduction_axis4);
    185     VERIFY_IS_EQUAL(min2.rank(), 0);
    186 
    187     VERIFY_IS_APPROX(min1(), min2());
    188   }
    189 
    190   reduction_axis2[0] = 0;
    191   reduction_axis2[1] = 1;
    192   result = tensor.mean(reduction_axis2);
    193   VERIFY_IS_EQUAL(result.dimension(0), 5);
    194   VERIFY_IS_EQUAL(result.dimension(1), 7);
    195   for (int i = 0; i < 5; ++i) {
    196     for (int j = 0; j < 7; ++j) {
    197       float sum = 0.0f;
    198       int count = 0;
    199       for (int k = 0; k < 2; ++k) {
    200         for (int l = 0; l < 3; ++l) {
    201           sum += tensor(k, l, i, j);
    202           ++count;
    203         }
    204       }
    205       VERIFY_IS_APPROX(result(i, j), sum / count);
    206     }
    207   }
    208 
    209   {
    210     Tensor<float, 0, DataLayout> mean1 = tensor.mean();
    211     VERIFY_IS_EQUAL(mean1.rank(), 0);
    212 
    213     array<ptrdiff_t, 4> reduction_axis4;
    214     reduction_axis4[0] = 0;
    215     reduction_axis4[1] = 1;
    216     reduction_axis4[2] = 2;
    217     reduction_axis4[3] = 3;
    218     Tensor<float, 0, DataLayout> mean2 = tensor.mean(reduction_axis4);
    219     VERIFY_IS_EQUAL(mean2.rank(), 0);
    220 
    221     VERIFY_IS_APPROX(mean1(), mean2());
    222   }
    223 
    224   {
    225     Tensor<int, 1> ints(10);
    226     std::iota(ints.data(), ints.data() + ints.dimension(0), 0);
    227 
    228     TensorFixedSize<bool, Sizes<> > all;
    229     all = ints.all();
    230     VERIFY(!all());
    231     all = (ints >= ints.constant(0)).all();
    232     VERIFY(all());
    233 
    234     TensorFixedSize<bool, Sizes<> > any;
    235     any = (ints > ints.constant(10)).any();
    236     VERIFY(!any());
    237     any = (ints < ints.constant(1)).any();
    238     VERIFY(any());
    239   }
    240 }
    241 
    242 
    243 template <int DataLayout>
    244 static void test_reductions_in_expr() {
    245   Tensor<float, 4, DataLayout> tensor(2, 3, 5, 7);
    246   tensor.setRandom();
    247   array<ptrdiff_t, 2> reduction_axis2;
    248   reduction_axis2[0] = 1;
    249   reduction_axis2[1] = 3;
    250 
    251   Tensor<float, 2, DataLayout> result(2, 5);
    252   result = result.constant(1.0f) - tensor.sum(reduction_axis2);
    253   VERIFY_IS_EQUAL(result.dimension(0), 2);
    254   VERIFY_IS_EQUAL(result.dimension(1), 5);
    255   for (int i = 0; i < 2; ++i) {
    256     for (int j = 0; j < 5; ++j) {
    257       float sum = 0.0f;
    258       for (int k = 0; k < 3; ++k) {
    259         for (int l = 0; l < 7; ++l) {
    260           sum += tensor(i, k, j, l);
    261         }
    262       }
    263       VERIFY_IS_APPROX(result(i, j), 1.0f - sum);
    264     }
    265   }
    266 }
    267 
    268 
    269 template <int DataLayout>
    270 static void test_full_reductions() {
    271   Tensor<float, 2, DataLayout> tensor(2, 3);
    272   tensor.setRandom();
    273   array<ptrdiff_t, 2> reduction_axis;
    274   reduction_axis[0] = 0;
    275   reduction_axis[1] = 1;
    276 
    277   Tensor<float, 0, DataLayout> result = tensor.sum(reduction_axis);
    278   VERIFY_IS_EQUAL(result.rank(), 0);
    279 
    280   float sum = 0.0f;
    281   for (int i = 0; i < 2; ++i) {
    282     for (int j = 0; j < 3; ++j) {
    283       sum += tensor(i, j);
    284     }
    285   }
    286   VERIFY_IS_APPROX(result(0), sum);
    287 
    288   result = tensor.square().sum(reduction_axis).sqrt();
    289   VERIFY_IS_EQUAL(result.rank(), 0);
    290 
    291   sum = 0.0f;
    292   for (int i = 0; i < 2; ++i) {
    293     for (int j = 0; j < 3; ++j) {
    294       sum += tensor(i, j) * tensor(i, j);
    295     }
    296   }
    297   VERIFY_IS_APPROX(result(), sqrtf(sum));
    298 }
    299 
    300 struct UserReducer {
    301   static const bool PacketAccess = false;
    302   UserReducer(float offset) : offset_(offset) {}
    303   void reduce(const float val, float* accum) { *accum += val * val; }
    304   float initialize() const { return 0; }
    305   float finalize(const float accum) const { return 1.0f / (accum + offset_); }
    306 
    307  private:
    308   const float offset_;
    309 };
    310 
    311 template <int DataLayout>
    312 static void test_user_defined_reductions() {
    313   Tensor<float, 2, DataLayout> tensor(5, 7);
    314   tensor.setRandom();
    315   array<ptrdiff_t, 1> reduction_axis;
    316   reduction_axis[0] = 1;
    317 
    318   UserReducer reducer(10.0f);
    319   Tensor<float, 1, DataLayout> result = tensor.reduce(reduction_axis, reducer);
    320   VERIFY_IS_EQUAL(result.dimension(0), 5);
    321   for (int i = 0; i < 5; ++i) {
    322     float expected = 10.0f;
    323     for (int j = 0; j < 7; ++j) {
    324       expected += tensor(i, j) * tensor(i, j);
    325     }
    326     expected = 1.0f / expected;
    327     VERIFY_IS_APPROX(result(i), expected);
    328   }
    329 }
    330 
    331 template <int DataLayout>
    332 static void test_tensor_maps() {
    333   int inputs[2 * 3 * 5 * 7];
    334   TensorMap<Tensor<int, 4, DataLayout> > tensor_map(inputs, 2, 3, 5, 7);
    335   TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const(inputs, 2, 3, 5,
    336                                                                 7);
    337   const TensorMap<Tensor<const int, 4, DataLayout> > tensor_map_const_const(
    338       inputs, 2, 3, 5, 7);
    339 
    340   tensor_map.setRandom();
    341   array<ptrdiff_t, 2> reduction_axis;
    342   reduction_axis[0] = 1;
    343   reduction_axis[1] = 3;
    344 
    345   Tensor<int, 2, DataLayout> result = tensor_map.sum(reduction_axis);
    346   Tensor<int, 2, DataLayout> result2 = tensor_map_const.sum(reduction_axis);
    347   Tensor<int, 2, DataLayout> result3 =
    348       tensor_map_const_const.sum(reduction_axis);
    349 
    350   for (int i = 0; i < 2; ++i) {
    351     for (int j = 0; j < 5; ++j) {
    352       int sum = 0;
    353       for (int k = 0; k < 3; ++k) {
    354         for (int l = 0; l < 7; ++l) {
    355           sum += tensor_map(i, k, j, l);
    356         }
    357       }
    358       VERIFY_IS_EQUAL(result(i, j), sum);
    359       VERIFY_IS_EQUAL(result2(i, j), sum);
    360       VERIFY_IS_EQUAL(result3(i, j), sum);
    361     }
    362   }
    363 }
    364 
    365 template <int DataLayout>
    366 static void test_static_dims() {
    367   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
    368   Tensor<float, 2, DataLayout> out(72, 97);
    369   in.setRandom();
    370 
    371 #if !EIGEN_HAS_CONSTEXPR
    372   array<int, 2> reduction_axis;
    373   reduction_axis[0] = 1;
    374   reduction_axis[1] = 3;
    375 #else
    376   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<3> > reduction_axis;
    377 #endif
    378 
    379   out = in.maximum(reduction_axis);
    380 
    381   for (int i = 0; i < 72; ++i) {
    382     for (int j = 0; j < 97; ++j) {
    383       float expected = -1e10f;
    384       for (int k = 0; k < 53; ++k) {
    385         for (int l = 0; l < 113; ++l) {
    386           expected = (std::max)(expected, in(i, k, j, l));
    387         }
    388       }
    389       VERIFY_IS_APPROX(out(i, j), expected);
    390     }
    391   }
    392 }
    393 
    394 template <int DataLayout>
    395 static void test_innermost_last_dims() {
    396   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
    397   Tensor<float, 2, DataLayout> out(97, 113);
    398   in.setRandom();
    399 
    400 // Reduce on the innermost dimensions.
    401 #if !EIGEN_HAS_CONSTEXPR
    402   array<int, 2> reduction_axis;
    403   reduction_axis[0] = 0;
    404   reduction_axis[1] = 1;
    405 #else
    406   // This triggers the use of packets for ColMajor.
    407   Eigen::IndexList<Eigen::type2index<0>, Eigen::type2index<1> > reduction_axis;
    408 #endif
    409 
    410   out = in.maximum(reduction_axis);
    411 
    412   for (int i = 0; i < 97; ++i) {
    413     for (int j = 0; j < 113; ++j) {
    414       float expected = -1e10f;
    415       for (int k = 0; k < 53; ++k) {
    416         for (int l = 0; l < 72; ++l) {
    417           expected = (std::max)(expected, in(l, k, i, j));
    418         }
    419       }
    420       VERIFY_IS_APPROX(out(i, j), expected);
    421     }
    422   }
    423 }
    424 
    425 template <int DataLayout>
    426 static void test_innermost_first_dims() {
    427   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
    428   Tensor<float, 2, DataLayout> out(72, 53);
    429   in.setRandom();
    430 
    431 // Reduce on the innermost dimensions.
    432 #if !EIGEN_HAS_CONSTEXPR
    433   array<int, 2> reduction_axis;
    434   reduction_axis[0] = 2;
    435   reduction_axis[1] = 3;
    436 #else
    437   // This triggers the use of packets for RowMajor.
    438   Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>> reduction_axis;
    439 #endif
    440 
    441   out = in.maximum(reduction_axis);
    442 
    443   for (int i = 0; i < 72; ++i) {
    444     for (int j = 0; j < 53; ++j) {
    445       float expected = -1e10f;
    446       for (int k = 0; k < 97; ++k) {
    447         for (int l = 0; l < 113; ++l) {
    448           expected = (std::max)(expected, in(i, j, k, l));
    449         }
    450       }
    451       VERIFY_IS_APPROX(out(i, j), expected);
    452     }
    453   }
    454 }
    455 
    456 template <int DataLayout>
    457 static void test_reduce_middle_dims() {
    458   Tensor<float, 4, DataLayout> in(72, 53, 97, 113);
    459   Tensor<float, 2, DataLayout> out(72, 53);
    460   in.setRandom();
    461 
    462 // Reduce on the innermost dimensions.
    463 #if !EIGEN_HAS_CONSTEXPR
    464   array<int, 2> reduction_axis;
    465   reduction_axis[0] = 1;
    466   reduction_axis[1] = 2;
    467 #else
    468   // This triggers the use of packets for RowMajor.
    469   Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> reduction_axis;
    470 #endif
    471 
    472   out = in.maximum(reduction_axis);
    473 
    474   for (int i = 0; i < 72; ++i) {
    475     for (int j = 0; j < 113; ++j) {
    476       float expected = -1e10f;
    477       for (int k = 0; k < 53; ++k) {
    478         for (int l = 0; l < 97; ++l) {
    479           expected = (std::max)(expected, in(i, k, l, j));
    480         }
    481       }
    482       VERIFY_IS_APPROX(out(i, j), expected);
    483     }
    484   }
    485 }
    486 
    487 void test_cxx11_tensor_reduction() {
    488   CALL_SUBTEST(test_trivial_reductions<ColMajor>());
    489   CALL_SUBTEST(test_trivial_reductions<RowMajor>());
    490   CALL_SUBTEST(test_simple_reductions<ColMajor>());
    491   CALL_SUBTEST(test_simple_reductions<RowMajor>());
    492   CALL_SUBTEST(test_reductions_in_expr<ColMajor>());
    493   CALL_SUBTEST(test_reductions_in_expr<RowMajor>());
    494   CALL_SUBTEST(test_full_reductions<ColMajor>());
    495   CALL_SUBTEST(test_full_reductions<RowMajor>());
    496   CALL_SUBTEST(test_user_defined_reductions<ColMajor>());
    497   CALL_SUBTEST(test_user_defined_reductions<RowMajor>());
    498   CALL_SUBTEST(test_tensor_maps<ColMajor>());
    499   CALL_SUBTEST(test_tensor_maps<RowMajor>());
    500   CALL_SUBTEST(test_static_dims<ColMajor>());
    501   CALL_SUBTEST(test_static_dims<RowMajor>());
    502   CALL_SUBTEST(test_innermost_last_dims<ColMajor>());
    503   CALL_SUBTEST(test_innermost_last_dims<RowMajor>());
    504   CALL_SUBTEST(test_innermost_first_dims<ColMajor>());
    505   CALL_SUBTEST(test_innermost_first_dims<RowMajor>());
    506   CALL_SUBTEST(test_reduce_middle_dims<ColMajor>());
    507   CALL_SUBTEST(test_reduce_middle_dims<RowMajor>());
    508 }
    509