1 // Copyright (C) 2016 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 /******************************************************************** 4 * COPYRIGHT: 5 * Copyright (c) 2005-2016, International Business Machines Corporation and 6 * others. All Rights Reserved. 7 ********************************************************************/ 8 /************************************************************************ 9 * Tests for the UText and UTextIterator text abstraction classses 10 * 11 ************************************************************************/ 12 13 #include <string.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include "unicode/utypes.h" 17 #include "unicode/utext.h" 18 #include "unicode/utf8.h" 19 #include "unicode/ustring.h" 20 #include "unicode/uchriter.h" 21 #include "cmemory.h" 22 #include "cstr.h" 23 #include "utxttest.h" 24 25 static UBool gFailed = FALSE; 26 static int gTestNum = 0; 27 28 // Forward decl 29 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); 30 31 #define TEST_ASSERT(x) \ 32 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ 33 gFailed = TRUE;\ 34 }} 35 36 37 #define TEST_SUCCESS(status) \ 38 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ 39 gTestNum, __FILE__, __LINE__, u_errorName(status)); \ 40 gFailed = TRUE;\ 41 }} 42 43 UTextTest::UTextTest() { 44 } 45 46 UTextTest::~UTextTest() { 47 } 48 49 50 void 51 UTextTest::runIndexedTest(int32_t index, UBool exec, 52 const char* &name, char* /*par*/) { 53 switch (index) { 54 case 0: name = "TextTest"; 55 if (exec) TextTest(); break; 56 case 1: name = "ErrorTest"; 57 if (exec) ErrorTest(); break; 58 case 2: name = "FreezeTest"; 59 if (exec) FreezeTest(); break; 60 case 3: name = "Ticket5560"; 61 if (exec) Ticket5560(); break; 62 case 4: name = "Ticket6847"; 63 if (exec) Ticket6847(); break; 64 case 5: name = "Ticket10562"; 65 if (exec) Ticket10562(); break; 66 case 6: name = "Ticket10983"; 67 if (exec) Ticket10983(); break; 68 case 7: name = "Ticket12130"; 69 if (exec) Ticket12130(); break; 70 default: name = ""; break; 71 } 72 } 73 74 // 75 // Quick and dirty random number generator. 76 // (don't use library so that results are portable. 77 static uint32_t m_seed = 1; 78 static uint32_t m_rand() 79 { 80 m_seed = m_seed * 1103515245 + 12345; 81 return (uint32_t)(m_seed/65536) % 32768; 82 } 83 84 85 // 86 // TextTest() 87 // 88 // Top Level function for UText testing. 89 // Specifies the strings to be tested, with the acutal testing itself 90 // being carried out in another function, TestString(). 91 // 92 void UTextTest::TextTest() { 93 int32_t i, j; 94 95 TestString("abcd\\U00010001xyz"); 96 TestString(""); 97 98 // Supplementary chars at start or end 99 TestString("\\U00010001"); 100 TestString("abc\\U00010001"); 101 TestString("\\U00010001abc"); 102 103 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries 104 UnicodeString s; 105 for (i=1; i<60; i++) { 106 s.truncate(0); 107 for (j=0; j<i; j++) { 108 if (j+0x30 == 0x5c) { 109 // backslash. Needs to be escaped 110 s.append((UChar)0x5c); 111 } 112 s.append(UChar(j+0x30)); 113 } 114 TestString(s); 115 } 116 117 // Test strings with odd-aligned supplementary chars, 118 // looking for glitches at buffer boundaries 119 for (i=1; i<60; i++) { 120 s.truncate(0); 121 s.append((UChar)0x41); 122 for (j=0; j<i; j++) { 123 s.append(UChar32(j+0x11000)); 124 } 125 TestString(s); 126 } 127 128 // String of chars of randomly varying size in utf-8 representation. 129 // Exercise the mapping, and the varying sized buffer. 130 // 131 s.truncate(0); 132 UChar32 c1 = 0; 133 UChar32 c2 = 0x100; 134 UChar32 c3 = 0xa000; 135 UChar32 c4 = 0x11000; 136 for (i=0; i<1000; i++) { 137 int len8 = m_rand()%4 + 1; 138 switch (len8) { 139 case 1: 140 c1 = (c1+1)%0x80; 141 // don't put 0 into string (0 terminated strings for some tests) 142 // don't put '\', will cause unescape() to fail. 143 if (c1==0x5c || c1==0) { 144 c1++; 145 } 146 s.append(c1); 147 break; 148 case 2: 149 s.append(c2++); 150 break; 151 case 3: 152 s.append(c3++); 153 break; 154 case 4: 155 s.append(c4++); 156 break; 157 } 158 } 159 TestString(s); 160 } 161 162 163 // 164 // TestString() Run a suite of UText tests on a string. 165 // The test string is unescaped before use. 166 // 167 void UTextTest::TestString(const UnicodeString &s) { 168 int32_t i; 169 int32_t j; 170 UChar32 c; 171 int32_t cpCount = 0; 172 UErrorCode status = U_ZERO_ERROR; 173 UText *ut = NULL; 174 int32_t saLen; 175 176 UnicodeString sa = s.unescape(); 177 saLen = sa.length(); 178 179 // 180 // Build up a mapping between code points and UTF-16 code unit indexes. 181 // 182 m *cpMap = new m[sa.length() + 1]; 183 j = 0; 184 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { 185 c = sa.char32At(i); 186 cpMap[j].nativeIdx = i; 187 cpMap[j].cp = c; 188 j++; 189 cpCount++; 190 } 191 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. 192 193 194 // UChar * test, null terminated 195 status = U_ZERO_ERROR; 196 UChar *buf = new UChar[saLen+1]; 197 sa.extract(buf, saLen+1, status); 198 TEST_SUCCESS(status); 199 ut = utext_openUChars(NULL, buf, -1, &status); 200 TEST_SUCCESS(status); 201 TestAccess(sa, ut, cpCount, cpMap); 202 utext_close(ut); 203 delete [] buf; 204 205 // UChar * test, with length 206 status = U_ZERO_ERROR; 207 buf = new UChar[saLen+1]; 208 sa.extract(buf, saLen+1, status); 209 TEST_SUCCESS(status); 210 ut = utext_openUChars(NULL, buf, saLen, &status); 211 TEST_SUCCESS(status); 212 TestAccess(sa, ut, cpCount, cpMap); 213 utext_close(ut); 214 delete [] buf; 215 216 217 // UnicodeString test 218 status = U_ZERO_ERROR; 219 ut = utext_openUnicodeString(NULL, &sa, &status); 220 TEST_SUCCESS(status); 221 TestAccess(sa, ut, cpCount, cpMap); 222 TestCMR(sa, ut, cpCount, cpMap, cpMap); 223 utext_close(ut); 224 225 226 // Const UnicodeString test 227 status = U_ZERO_ERROR; 228 ut = utext_openConstUnicodeString(NULL, &sa, &status); 229 TEST_SUCCESS(status); 230 TestAccess(sa, ut, cpCount, cpMap); 231 utext_close(ut); 232 233 234 // Replaceable test. (UnicodeString inherits Replaceable) 235 status = U_ZERO_ERROR; 236 ut = utext_openReplaceable(NULL, &sa, &status); 237 TEST_SUCCESS(status); 238 TestAccess(sa, ut, cpCount, cpMap); 239 TestCMR(sa, ut, cpCount, cpMap, cpMap); 240 utext_close(ut); 241 242 // Character Iterator Tests 243 status = U_ZERO_ERROR; 244 const UChar *cbuf = sa.getBuffer(); 245 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); 246 TEST_SUCCESS(status); 247 ut = utext_openCharacterIterator(NULL, ci, &status); 248 TEST_SUCCESS(status); 249 TestAccess(sa, ut, cpCount, cpMap); 250 utext_close(ut); 251 delete ci; 252 253 254 // Fragmented UnicodeString (Chunk size of one) 255 // 256 status = U_ZERO_ERROR; 257 ut = openFragmentedUnicodeString(NULL, &sa, &status); 258 TEST_SUCCESS(status); 259 TestAccess(sa, ut, cpCount, cpMap); 260 utext_close(ut); 261 262 // 263 // UTF-8 test 264 // 265 266 // Convert the test string from UnicodeString to (char *) in utf-8 format 267 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); 268 char *u8String = new char[u8Len + 1]; 269 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); 270 271 // Build up the map of code point indices in the utf-8 string 272 m * u8Map = new m[sa.length() + 1]; 273 i = 0; // native utf-8 index 274 for (j=0; j<cpCount ; j++) { // code point number 275 u8Map[j].nativeIdx = i; 276 U8_NEXT(u8String, i, u8Len, c) 277 u8Map[j].cp = c; 278 } 279 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. 280 281 // Do the test itself 282 status = U_ZERO_ERROR; 283 ut = utext_openUTF8(NULL, u8String, -1, &status); 284 TEST_SUCCESS(status); 285 TestAccess(sa, ut, cpCount, u8Map); 286 utext_close(ut); 287 288 289 290 delete []cpMap; 291 delete []u8Map; 292 delete []u8String; 293 } 294 295 // TestCMR test Copy, Move and Replace operations. 296 // us UnicodeString containing the test text. 297 // ut UText containing the same test text. 298 // cpCount number of code points in the test text. 299 // nativeMap Mapping from code points to native indexes for the UText. 300 // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. 301 // 302 // This function runs a whole series of opertions on each incoming UText. 303 // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. 304 // 305 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { 306 TEST_ASSERT(utext_isWritable(ut) == TRUE); 307 308 int srcLengthType; // Loop variables for selecting the postion and length 309 int srcPosType; // of the block to operate on within the source text. 310 int destPosType; 311 312 int srcIndex = 0; // Code Point indexes of the block to operate on for 313 int srcLength = 0; // a specific test. 314 315 int destIndex = 0; // Code point index of the destination for a copy/move test. 316 317 int32_t nativeStart = 0; // Native unit indexes for a test. 318 int32_t nativeLimit = 0; 319 int32_t nativeDest = 0; 320 321 int32_t u16Start = 0; // UTF-16 indexes for a test. 322 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String 323 int32_t u16Dest = 0; 324 325 // Iterate over a whole series of source index, length and a target indexes. 326 // This is done with code point indexes; these will be later translated to native 327 // indexes using the cpMap. 328 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { 329 switch (srcLengthType) { 330 case 1: srcLength = 1; break; 331 case 2: srcLength = 5; break; 332 case 3: srcLength = cpCount / 3; 333 } 334 for (srcPosType=1; srcPosType<=5; srcPosType++) { 335 switch (srcPosType) { 336 case 1: srcIndex = 0; break; 337 case 2: srcIndex = 1; break; 338 case 3: srcIndex = cpCount - srcLength; break; 339 case 4: srcIndex = cpCount - srcLength - 1; break; 340 case 5: srcIndex = cpCount / 2; break; 341 } 342 if (srcIndex < 0 || srcIndex + srcLength > cpCount) { 343 // filter out bogus test cases - 344 // those with a source range that falls of an edge of the string. 345 continue; 346 } 347 348 // 349 // Copy and move tests. 350 // iterate over a variety of destination positions. 351 // 352 for (destPosType=1; destPosType<=4; destPosType++) { 353 switch (destPosType) { 354 case 1: destIndex = 0; break; 355 case 2: destIndex = 1; break; 356 case 3: destIndex = srcIndex - 1; break; 357 case 4: destIndex = srcIndex + srcLength + 1; break; 358 case 5: destIndex = cpCount-1; break; 359 case 6: destIndex = cpCount; break; 360 } 361 if (destIndex<0 || destIndex>cpCount) { 362 // filter out bogus test cases. 363 continue; 364 } 365 366 nativeStart = nativeMap[srcIndex].nativeIdx; 367 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; 368 nativeDest = nativeMap[destIndex].nativeIdx; 369 370 u16Start = u16Map[srcIndex].nativeIdx; 371 u16Limit = u16Map[srcIndex+srcLength].nativeIdx; 372 u16Dest = u16Map[destIndex].nativeIdx; 373 374 gFailed = FALSE; 375 TestCopyMove(us, ut, FALSE, 376 nativeStart, nativeLimit, nativeDest, 377 u16Start, u16Limit, u16Dest); 378 379 TestCopyMove(us, ut, TRUE, 380 nativeStart, nativeLimit, nativeDest, 381 u16Start, u16Limit, u16Dest); 382 383 if (gFailed) { 384 return; 385 } 386 } 387 388 // 389 // Replace tests. 390 // 391 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); 392 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { 393 UnicodeString repStr(fullRepString, 0, replStrLen); 394 TestReplace(us, ut, 395 nativeStart, nativeLimit, 396 u16Start, u16Limit, 397 repStr); 398 if (gFailed) { 399 return; 400 } 401 } 402 403 } 404 } 405 406 } 407 408 // 409 // TestCopyMove run a single test case for utext_copy. 410 // Test cases are created in TestCMR and dispatched here for execution. 411 // 412 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, 413 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, 414 int32_t u16Start, int32_t u16Limit, int32_t u16Dest) 415 { 416 UErrorCode status = U_ZERO_ERROR; 417 UText *targetUT = NULL; 418 gTestNum++; 419 gFailed = FALSE; 420 421 // 422 // clone the UText. The test will be run in the cloned copy 423 // so that we don't alter the original. 424 // 425 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 426 TEST_SUCCESS(status); 427 UnicodeString targetUS(us); // And copy the reference string. 428 429 // do the test operation first in the reference 430 targetUS.copy(u16Start, u16Limit, u16Dest); 431 if (move) { 432 // delete out the source range. 433 if (u16Limit < u16Dest) { 434 targetUS.removeBetween(u16Start, u16Limit); 435 } else { 436 int32_t amtCopied = u16Limit - u16Start; 437 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); 438 } 439 } 440 441 // Do the same operation in the UText under test 442 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); 443 if (nativeDest > nativeStart && nativeDest < nativeLimit) { 444 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); 445 } else { 446 TEST_SUCCESS(status); 447 448 // Compare the results of the two parallel tests 449 int32_t usi = 0; // UnicodeString postion, utf-16 index. 450 int64_t uti = 0; // UText position, native index. 451 int32_t cpi; // char32 position (code point index) 452 UChar32 usc; // code point from Unicode String 453 UChar32 utc; // code point from UText 454 utext_setNativeIndex(targetUT, 0); 455 for (cpi=0; ; cpi++) { 456 usc = targetUS.char32At(usi); 457 utc = utext_next32(targetUT); 458 if (utc < 0) { 459 break; 460 } 461 TEST_ASSERT(uti == usi); 462 TEST_ASSERT(utc == usc); 463 usi = targetUS.moveIndex32(usi, 1); 464 uti = utext_getNativeIndex(targetUT); 465 if (gFailed) { 466 goto cleanupAndReturn; 467 } 468 } 469 int64_t expectedNativeLength = utext_nativeLength(ut); 470 if (move == FALSE) { 471 expectedNativeLength += nativeLimit - nativeStart; 472 } 473 uti = utext_getNativeIndex(targetUT); 474 TEST_ASSERT(uti == expectedNativeLength); 475 } 476 477 cleanupAndReturn: 478 utext_close(targetUT); 479 } 480 481 482 // 483 // TestReplace Test a single Replace operation. 484 // 485 void UTextTest::TestReplace( 486 const UnicodeString &us, // reference UnicodeString in which to do the replace 487 UText *ut, // UnicodeText object under test. 488 int32_t nativeStart, // Range to be replaced, in UText native units. 489 int32_t nativeLimit, 490 int32_t u16Start, // Range to be replaced, in UTF-16 units 491 int32_t u16Limit, // for use in the reference UnicodeString. 492 const UnicodeString &repStr) // The replacement string 493 { 494 UErrorCode status = U_ZERO_ERROR; 495 UText *targetUT = NULL; 496 gTestNum++; 497 gFailed = FALSE; 498 499 // 500 // clone the target UText. The test will be run in the cloned copy 501 // so that we don't alter the original. 502 // 503 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 504 TEST_SUCCESS(status); 505 UnicodeString targetUS(us); // And copy the reference string. 506 507 // 508 // Do the replace operation in the Unicode String, to 509 // produce a reference result. 510 // 511 targetUS.replace(u16Start, u16Limit-u16Start, repStr); 512 513 // 514 // Do the replace on the UText under test 515 // 516 const UChar *rs = repStr.getBuffer(); 517 int32_t rsLen = repStr.length(); 518 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); 519 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); 520 TEST_ASSERT(actualDelta == expectedDelta); 521 522 // 523 // Compare the results 524 // 525 int32_t usi = 0; // UnicodeString postion, utf-16 index. 526 int64_t uti = 0; // UText position, native index. 527 int32_t cpi; // char32 position (code point index) 528 UChar32 usc; // code point from Unicode String 529 UChar32 utc; // code point from UText 530 int64_t expectedNativeLength = 0; 531 utext_setNativeIndex(targetUT, 0); 532 for (cpi=0; ; cpi++) { 533 usc = targetUS.char32At(usi); 534 utc = utext_next32(targetUT); 535 if (utc < 0) { 536 break; 537 } 538 TEST_ASSERT(uti == usi); 539 TEST_ASSERT(utc == usc); 540 usi = targetUS.moveIndex32(usi, 1); 541 uti = utext_getNativeIndex(targetUT); 542 if (gFailed) { 543 goto cleanupAndReturn; 544 } 545 } 546 expectedNativeLength = utext_nativeLength(ut) + expectedDelta; 547 uti = utext_getNativeIndex(targetUT); 548 TEST_ASSERT(uti == expectedNativeLength); 549 550 cleanupAndReturn: 551 utext_close(targetUT); 552 } 553 554 // 555 // TestAccess Test the read only access functions on a UText, including cloning. 556 // The text is accessed in a variety of ways, and compared with 557 // the reference UnicodeString. 558 // 559 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 560 // Run the standard tests on the caller-supplied UText. 561 TestAccessNoClone(us, ut, cpCount, cpMap); 562 563 // Re-run tests on a shallow clone. 564 utext_setNativeIndex(ut, 0); 565 UErrorCode status = U_ZERO_ERROR; 566 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); 567 TEST_SUCCESS(status); 568 TestAccessNoClone(us, shallowClone, cpCount, cpMap); 569 570 // 571 // Rerun again on a deep clone. 572 // Note that text providers are not required to provide deep cloning, 573 // so unsupported errors are ignored. 574 // 575 status = U_ZERO_ERROR; 576 utext_setNativeIndex(shallowClone, 0); 577 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); 578 utext_close(shallowClone); 579 if (status != U_UNSUPPORTED_ERROR) { 580 TEST_SUCCESS(status); 581 TestAccessNoClone(us, deepClone, cpCount, cpMap); 582 } 583 utext_close(deepClone); 584 } 585 586 587 // 588 // TestAccessNoClone() Test the read only access functions on a UText. 589 // The text is accessed in a variety of ways, and compared with 590 // the reference UnicodeString. 591 // 592 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 593 UErrorCode status = U_ZERO_ERROR; 594 gTestNum++; 595 596 // 597 // Check the length from the UText 598 // 599 int64_t expectedLen = cpMap[cpCount].nativeIdx; 600 int64_t utlen = utext_nativeLength(ut); 601 TEST_ASSERT(expectedLen == utlen); 602 603 // 604 // Iterate forwards, verify that we get the correct code points 605 // at the correct native offsets. 606 // 607 int i = 0; 608 int64_t index; 609 int64_t expectedIndex = 0; 610 int64_t foundIndex = 0; 611 UChar32 expectedC; 612 UChar32 foundC; 613 int64_t len; 614 615 for (i=0; i<cpCount; i++) { 616 expectedIndex = cpMap[i].nativeIdx; 617 foundIndex = utext_getNativeIndex(ut); 618 TEST_ASSERT(expectedIndex == foundIndex); 619 expectedC = cpMap[i].cp; 620 foundC = utext_next32(ut); 621 TEST_ASSERT(expectedC == foundC); 622 foundIndex = utext_getPreviousNativeIndex(ut); 623 TEST_ASSERT(expectedIndex == foundIndex); 624 if (gFailed) { 625 return; 626 } 627 } 628 foundC = utext_next32(ut); 629 TEST_ASSERT(foundC == U_SENTINEL); 630 631 // Repeat above, using macros 632 utext_setNativeIndex(ut, 0); 633 for (i=0; i<cpCount; i++) { 634 expectedIndex = cpMap[i].nativeIdx; 635 foundIndex = UTEXT_GETNATIVEINDEX(ut); 636 TEST_ASSERT(expectedIndex == foundIndex); 637 expectedC = cpMap[i].cp; 638 foundC = UTEXT_NEXT32(ut); 639 TEST_ASSERT(expectedC == foundC); 640 if (gFailed) { 641 return; 642 } 643 } 644 foundC = UTEXT_NEXT32(ut); 645 TEST_ASSERT(foundC == U_SENTINEL); 646 647 // 648 // Forward iteration (above) should have left index at the 649 // end of the input, which should == length(). 650 // 651 len = utext_nativeLength(ut); 652 foundIndex = utext_getNativeIndex(ut); 653 TEST_ASSERT(len == foundIndex); 654 655 // 656 // Iterate backwards over entire test string 657 // 658 len = utext_getNativeIndex(ut); 659 utext_setNativeIndex(ut, len); 660 for (i=cpCount-1; i>=0; i--) { 661 expectedC = cpMap[i].cp; 662 expectedIndex = cpMap[i].nativeIdx; 663 int64_t prevIndex = utext_getPreviousNativeIndex(ut); 664 foundC = utext_previous32(ut); 665 foundIndex = utext_getNativeIndex(ut); 666 TEST_ASSERT(expectedIndex == foundIndex); 667 TEST_ASSERT(expectedC == foundC); 668 TEST_ASSERT(prevIndex == foundIndex); 669 if (gFailed) { 670 return; 671 } 672 } 673 674 // 675 // Backwards iteration, above, should have left our iterator 676 // position at zero, and continued backwards iterationshould fail. 677 // 678 foundIndex = utext_getNativeIndex(ut); 679 TEST_ASSERT(foundIndex == 0); 680 foundIndex = utext_getPreviousNativeIndex(ut); 681 TEST_ASSERT(foundIndex == 0); 682 683 684 foundC = utext_previous32(ut); 685 TEST_ASSERT(foundC == U_SENTINEL); 686 foundIndex = utext_getNativeIndex(ut); 687 TEST_ASSERT(foundIndex == 0); 688 foundIndex = utext_getPreviousNativeIndex(ut); 689 TEST_ASSERT(foundIndex == 0); 690 691 692 // And again, with the macros 693 utext_setNativeIndex(ut, len); 694 for (i=cpCount-1; i>=0; i--) { 695 expectedC = cpMap[i].cp; 696 expectedIndex = cpMap[i].nativeIdx; 697 foundC = UTEXT_PREVIOUS32(ut); 698 foundIndex = UTEXT_GETNATIVEINDEX(ut); 699 TEST_ASSERT(expectedIndex == foundIndex); 700 TEST_ASSERT(expectedC == foundC); 701 if (gFailed) { 702 return; 703 } 704 } 705 706 // 707 // Backwards iteration, above, should have left our iterator 708 // position at zero, and continued backwards iterationshould fail. 709 // 710 foundIndex = UTEXT_GETNATIVEINDEX(ut); 711 TEST_ASSERT(foundIndex == 0); 712 713 foundC = UTEXT_PREVIOUS32(ut); 714 TEST_ASSERT(foundC == U_SENTINEL); 715 foundIndex = UTEXT_GETNATIVEINDEX(ut); 716 TEST_ASSERT(foundIndex == 0); 717 if (gFailed) { 718 return; 719 } 720 721 // 722 // next32From(), prevous32From(), Iterate in a somewhat random order. 723 // 724 int cpIndex = 0; 725 for (i=0; i<cpCount; i++) { 726 cpIndex = (cpIndex + 9973) % cpCount; 727 index = cpMap[cpIndex].nativeIdx; 728 expectedC = cpMap[cpIndex].cp; 729 foundC = utext_next32From(ut, index); 730 TEST_ASSERT(expectedC == foundC); 731 if (gFailed) { 732 return; 733 } 734 } 735 736 cpIndex = 0; 737 for (i=0; i<cpCount; i++) { 738 cpIndex = (cpIndex + 9973) % cpCount; 739 index = cpMap[cpIndex+1].nativeIdx; 740 expectedC = cpMap[cpIndex].cp; 741 foundC = utext_previous32From(ut, index); 742 TEST_ASSERT(expectedC == foundC); 743 if (gFailed) { 744 return; 745 } 746 } 747 748 749 // 750 // moveIndex(int32_t delta); 751 // 752 753 // Walk through frontwards, incrementing by one 754 utext_setNativeIndex(ut, 0); 755 for (i=1; i<=cpCount; i++) { 756 utext_moveIndex32(ut, 1); 757 index = utext_getNativeIndex(ut); 758 expectedIndex = cpMap[i].nativeIdx; 759 TEST_ASSERT(expectedIndex == index); 760 index = UTEXT_GETNATIVEINDEX(ut); 761 TEST_ASSERT(expectedIndex == index); 762 } 763 764 // Walk through frontwards, incrementing by two 765 utext_setNativeIndex(ut, 0); 766 for (i=2; i<cpCount; i+=2) { 767 utext_moveIndex32(ut, 2); 768 index = utext_getNativeIndex(ut); 769 expectedIndex = cpMap[i].nativeIdx; 770 TEST_ASSERT(expectedIndex == index); 771 index = UTEXT_GETNATIVEINDEX(ut); 772 TEST_ASSERT(expectedIndex == index); 773 } 774 775 // walk through the string backwards, decrementing by one. 776 i = cpMap[cpCount].nativeIdx; 777 utext_setNativeIndex(ut, i); 778 for (i=cpCount; i>=0; i--) { 779 expectedIndex = cpMap[i].nativeIdx; 780 index = utext_getNativeIndex(ut); 781 TEST_ASSERT(expectedIndex == index); 782 index = UTEXT_GETNATIVEINDEX(ut); 783 TEST_ASSERT(expectedIndex == index); 784 utext_moveIndex32(ut, -1); 785 } 786 787 788 // walk through backwards, decrementing by three 789 i = cpMap[cpCount].nativeIdx; 790 utext_setNativeIndex(ut, i); 791 for (i=cpCount; i>=0; i-=3) { 792 expectedIndex = cpMap[i].nativeIdx; 793 index = utext_getNativeIndex(ut); 794 TEST_ASSERT(expectedIndex == index); 795 index = UTEXT_GETNATIVEINDEX(ut); 796 TEST_ASSERT(expectedIndex == index); 797 utext_moveIndex32(ut, -3); 798 } 799 800 801 // 802 // Extract 803 // 804 int bufSize = us.length() + 10; 805 UChar *buf = new UChar[bufSize]; 806 status = U_ZERO_ERROR; 807 expectedLen = us.length(); 808 len = utext_extract(ut, 0, utlen, buf, bufSize, &status); 809 TEST_SUCCESS(status); 810 TEST_ASSERT(len == expectedLen); 811 int compareResult = us.compare(buf, -1); 812 TEST_ASSERT(compareResult == 0); 813 814 status = U_ZERO_ERROR; 815 len = utext_extract(ut, 0, utlen, NULL, 0, &status); 816 if (utlen == 0) { 817 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 818 } else { 819 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 820 } 821 TEST_ASSERT(len == expectedLen); 822 823 status = U_ZERO_ERROR; 824 u_memset(buf, 0x5555, bufSize); 825 len = utext_extract(ut, 0, utlen, buf, 1, &status); 826 if (us.length() == 0) { 827 TEST_SUCCESS(status); 828 TEST_ASSERT(buf[0] == 0); 829 } else { 830 // Buf len == 1, extracting a single 16 bit value. 831 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, 832 // or whether the lead surrogate of the pair is extracted. 833 // It's a buffer overflow error in either case. 834 TEST_ASSERT(buf[0] == us.charAt(0) || 835 (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); 836 TEST_ASSERT(buf[1] == 0x5555); 837 if (us.length() == 1) { 838 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 839 } else { 840 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 841 } 842 } 843 844 delete []buf; 845 } 846 847 // 848 // ErrorTest() Check various error and edge cases. 849 // 850 void UTextTest::ErrorTest() 851 { 852 // Close of an unitialized UText. Shouldn't blow up. 853 { 854 UText ut; 855 memset(&ut, 0, sizeof(UText)); 856 utext_close(&ut); 857 utext_close(NULL); 858 } 859 860 // Double-close of a UText. Shouldn't blow up. UText should still be usable. 861 { 862 UErrorCode status = U_ZERO_ERROR; 863 UText ut = UTEXT_INITIALIZER; 864 UnicodeString s("Hello, World"); 865 UText *ut2 = utext_openUnicodeString(&ut, &s, &status); 866 TEST_SUCCESS(status); 867 TEST_ASSERT(ut2 == &ut); 868 869 UText *ut3 = utext_close(&ut); 870 TEST_ASSERT(ut3 == &ut); 871 872 UText *ut4 = utext_close(&ut); 873 TEST_ASSERT(ut4 == &ut); 874 875 utext_openUnicodeString(&ut, &s, &status); 876 TEST_SUCCESS(status); 877 utext_close(&ut); 878 } 879 880 // Re-use of a UText, chaining through each of the types of UText 881 // (If it doesn't blow up, and doesn't leak, it's probably working fine) 882 { 883 UErrorCode status = U_ZERO_ERROR; 884 UText ut = UTEXT_INITIALIZER; 885 UText *utp; 886 UnicodeString s1("Hello, World"); 887 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; 888 const char *s3 = "\x66\x67\x68"; 889 890 utp = utext_openUnicodeString(&ut, &s1, &status); 891 TEST_SUCCESS(status); 892 TEST_ASSERT(utp == &ut); 893 894 utp = utext_openConstUnicodeString(&ut, &s1, &status); 895 TEST_SUCCESS(status); 896 TEST_ASSERT(utp == &ut); 897 898 utp = utext_openUTF8(&ut, s3, -1, &status); 899 TEST_SUCCESS(status); 900 TEST_ASSERT(utp == &ut); 901 902 utp = utext_openUChars(&ut, s2, -1, &status); 903 TEST_SUCCESS(status); 904 TEST_ASSERT(utp == &ut); 905 906 utp = utext_close(&ut); 907 TEST_ASSERT(utp == &ut); 908 909 utp = utext_openUnicodeString(&ut, &s1, &status); 910 TEST_SUCCESS(status); 911 TEST_ASSERT(utp == &ut); 912 } 913 914 // Invalid parameters on open 915 // 916 { 917 UErrorCode status = U_ZERO_ERROR; 918 UText ut = UTEXT_INITIALIZER; 919 920 utext_openUChars(&ut, NULL, 5, &status); 921 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 922 923 status = U_ZERO_ERROR; 924 utext_openUChars(&ut, NULL, -1, &status); 925 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 926 927 status = U_ZERO_ERROR; 928 utext_openUTF8(&ut, NULL, 4, &status); 929 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 930 931 status = U_ZERO_ERROR; 932 utext_openUTF8(&ut, NULL, -1, &status); 933 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 934 } 935 936 // 937 // UTF-8 with malformed sequences. 938 // These should come through as the Unicode replacement char, \ufffd 939 // 940 { 941 UErrorCode status = U_ZERO_ERROR; 942 UText *ut = NULL; 943 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; 944 UChar32 c; 945 946 ut = utext_openUTF8(NULL, badUTF8, -1, &status); 947 TEST_SUCCESS(status); 948 c = utext_char32At(ut, 1); 949 TEST_ASSERT(c == 0xfffd); 950 c = utext_char32At(ut, 3); 951 TEST_ASSERT(c == 0xfffd); 952 c = utext_char32At(ut, 5); 953 TEST_ASSERT(c == 0xfffd); 954 c = utext_char32At(ut, 6); 955 TEST_ASSERT(c == 0x43); 956 957 UChar buf[10]; 958 int n = utext_extract(ut, 0, 9, buf, 10, &status); 959 TEST_SUCCESS(status); 960 TEST_ASSERT(n==5); 961 TEST_ASSERT(buf[1] == 0xfffd); 962 TEST_ASSERT(buf[3] == 0xfffd); 963 TEST_ASSERT(buf[2] == 0x42); 964 utext_close(ut); 965 } 966 967 968 // 969 // isLengthExpensive - does it make the exptected transitions after 970 // getting the length of a nul terminated string? 971 // 972 { 973 UErrorCode status = U_ZERO_ERROR; 974 UnicodeString sa("Hello, this is a string"); 975 UBool isExpensive; 976 977 UChar sb[100]; 978 memset(sb, 0x20, sizeof(sb)); 979 sb[99] = 0; 980 981 UText *uta = utext_openUnicodeString(NULL, &sa, &status); 982 TEST_SUCCESS(status); 983 isExpensive = utext_isLengthExpensive(uta); 984 TEST_ASSERT(isExpensive == FALSE); 985 utext_close(uta); 986 987 UText *utb = utext_openUChars(NULL, sb, -1, &status); 988 TEST_SUCCESS(status); 989 isExpensive = utext_isLengthExpensive(utb); 990 TEST_ASSERT(isExpensive == TRUE); 991 int64_t len = utext_nativeLength(utb); 992 TEST_ASSERT(len == 99); 993 isExpensive = utext_isLengthExpensive(utb); 994 TEST_ASSERT(isExpensive == FALSE); 995 utext_close(utb); 996 } 997 998 // 999 // Index to positions not on code point boundaries. 1000 // 1001 { 1002 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; 1003 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; 1004 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; 1005 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; 1006 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; 1007 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; 1008 1009 // extractLen is the size, in UChars, of what will be extracted between index and index+1. 1010 // is zero when both index positions lie within the same code point. 1011 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; 1012 1013 1014 UErrorCode status = U_ZERO_ERROR; 1015 UText *ut = utext_openUTF8(NULL, u8str, -1, &status); 1016 TEST_SUCCESS(status); 1017 1018 // Check setIndex 1019 int32_t i; 1020 int32_t startMapLimit = UPRV_LENGTHOF(startMap); 1021 for (i=0; i<startMapLimit; i++) { 1022 utext_setNativeIndex(ut, i); 1023 int64_t cpIndex = utext_getNativeIndex(ut); 1024 TEST_ASSERT(cpIndex == startMap[i]); 1025 cpIndex = UTEXT_GETNATIVEINDEX(ut); 1026 TEST_ASSERT(cpIndex == startMap[i]); 1027 } 1028 1029 // Check char32At 1030 for (i=0; i<startMapLimit; i++) { 1031 UChar32 c32 = utext_char32At(ut, i); 1032 TEST_ASSERT(c32 == c32Map[i]); 1033 int64_t cpIndex = utext_getNativeIndex(ut); 1034 TEST_ASSERT(cpIndex == startMap[i]); 1035 } 1036 1037 // Check utext_next32From 1038 for (i=0; i<startMapLimit; i++) { 1039 UChar32 c32 = utext_next32From(ut, i); 1040 TEST_ASSERT(c32 == c32Map[i]); 1041 int64_t cpIndex = utext_getNativeIndex(ut); 1042 TEST_ASSERT(cpIndex == nextMap[i]); 1043 } 1044 1045 // check utext_previous32From 1046 for (i=0; i<startMapLimit; i++) { 1047 gTestNum++; 1048 UChar32 c32 = utext_previous32From(ut, i); 1049 TEST_ASSERT(c32 == pr32Map[i]); 1050 int64_t cpIndex = utext_getNativeIndex(ut); 1051 TEST_ASSERT(cpIndex == prevMap[i]); 1052 } 1053 1054 // check Extract 1055 // Extract from i to i+1, which may be zero or one code points, 1056 // depending on whether the indices straddle a cp boundary. 1057 for (i=0; i<startMapLimit; i++) { 1058 UChar buf[3]; 1059 status = U_ZERO_ERROR; 1060 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1061 TEST_SUCCESS(status); 1062 TEST_ASSERT(extractedLen == exLen[i]); 1063 if (extractedLen > 0) { 1064 UChar32 c32; 1065 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1066 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1067 TEST_ASSERT(c32 == c32Map[i]); 1068 } 1069 } 1070 1071 utext_close(ut); 1072 } 1073 1074 1075 { // Similar test, with utf16 instead of utf8 1076 // TODO: merge the common parts of these tests. 1077 1078 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1079 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1080 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1081 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1082 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1083 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1084 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1085 1086 u16str = u16str.unescape(); 1087 UErrorCode status = U_ZERO_ERROR; 1088 UText *ut = utext_openUnicodeString(NULL, &u16str, &status); 1089 TEST_SUCCESS(status); 1090 1091 int32_t startMapLimit = UPRV_LENGTHOF(startMap); 1092 int i; 1093 for (i=0; i<startMapLimit; i++) { 1094 utext_setNativeIndex(ut, i); 1095 int64_t cpIndex = utext_getNativeIndex(ut); 1096 TEST_ASSERT(cpIndex == startMap[i]); 1097 } 1098 1099 // Check char32At 1100 for (i=0; i<startMapLimit; i++) { 1101 UChar32 c32 = utext_char32At(ut, i); 1102 TEST_ASSERT(c32 == c32Map[i]); 1103 int64_t cpIndex = utext_getNativeIndex(ut); 1104 TEST_ASSERT(cpIndex == startMap[i]); 1105 } 1106 1107 // Check utext_next32From 1108 for (i=0; i<startMapLimit; i++) { 1109 UChar32 c32 = utext_next32From(ut, i); 1110 TEST_ASSERT(c32 == c32Map[i]); 1111 int64_t cpIndex = utext_getNativeIndex(ut); 1112 TEST_ASSERT(cpIndex == nextMap[i]); 1113 } 1114 1115 // check utext_previous32From 1116 for (i=0; i<startMapLimit; i++) { 1117 UChar32 c32 = utext_previous32From(ut, i); 1118 TEST_ASSERT(c32 == pr32Map[i]); 1119 int64_t cpIndex = utext_getNativeIndex(ut); 1120 TEST_ASSERT(cpIndex == prevMap[i]); 1121 } 1122 1123 // check Extract 1124 // Extract from i to i+1, which may be zero or one code points, 1125 // depending on whether the indices straddle a cp boundary. 1126 for (i=0; i<startMapLimit; i++) { 1127 UChar buf[3]; 1128 status = U_ZERO_ERROR; 1129 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1130 TEST_SUCCESS(status); 1131 TEST_ASSERT(extractedLen == exLen[i]); 1132 if (extractedLen > 0) { 1133 UChar32 c32; 1134 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1135 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1136 TEST_ASSERT(c32 == c32Map[i]); 1137 } 1138 } 1139 1140 utext_close(ut); 1141 } 1142 1143 { // Similar test, with UText over Replaceable 1144 // TODO: merge the common parts of these tests. 1145 1146 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1147 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1148 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1149 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1150 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1151 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1152 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1153 1154 u16str = u16str.unescape(); 1155 UErrorCode status = U_ZERO_ERROR; 1156 UText *ut = utext_openReplaceable(NULL, &u16str, &status); 1157 TEST_SUCCESS(status); 1158 1159 int32_t startMapLimit = UPRV_LENGTHOF(startMap); 1160 int i; 1161 for (i=0; i<startMapLimit; i++) { 1162 utext_setNativeIndex(ut, i); 1163 int64_t cpIndex = utext_getNativeIndex(ut); 1164 TEST_ASSERT(cpIndex == startMap[i]); 1165 } 1166 1167 // Check char32At 1168 for (i=0; i<startMapLimit; i++) { 1169 UChar32 c32 = utext_char32At(ut, i); 1170 TEST_ASSERT(c32 == c32Map[i]); 1171 int64_t cpIndex = utext_getNativeIndex(ut); 1172 TEST_ASSERT(cpIndex == startMap[i]); 1173 } 1174 1175 // Check utext_next32From 1176 for (i=0; i<startMapLimit; i++) { 1177 UChar32 c32 = utext_next32From(ut, i); 1178 TEST_ASSERT(c32 == c32Map[i]); 1179 int64_t cpIndex = utext_getNativeIndex(ut); 1180 TEST_ASSERT(cpIndex == nextMap[i]); 1181 } 1182 1183 // check utext_previous32From 1184 for (i=0; i<startMapLimit; i++) { 1185 UChar32 c32 = utext_previous32From(ut, i); 1186 TEST_ASSERT(c32 == pr32Map[i]); 1187 int64_t cpIndex = utext_getNativeIndex(ut); 1188 TEST_ASSERT(cpIndex == prevMap[i]); 1189 } 1190 1191 // check Extract 1192 // Extract from i to i+1, which may be zero or one code points, 1193 // depending on whether the indices straddle a cp boundary. 1194 for (i=0; i<startMapLimit; i++) { 1195 UChar buf[3]; 1196 status = U_ZERO_ERROR; 1197 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1198 TEST_SUCCESS(status); 1199 TEST_ASSERT(extractedLen == exLen[i]); 1200 if (extractedLen > 0) { 1201 UChar32 c32; 1202 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1203 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1204 TEST_ASSERT(c32 == c32Map[i]); 1205 } 1206 } 1207 1208 utext_close(ut); 1209 } 1210 } 1211 1212 1213 void UTextTest::FreezeTest() { 1214 // Check isWritable() and freeze() behavior. 1215 // 1216 1217 UnicodeString ustr("Hello, World."); 1218 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; 1219 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; 1220 1221 UErrorCode status = U_ZERO_ERROR; 1222 UText *ut = NULL; 1223 UText *ut2 = NULL; 1224 1225 ut = utext_openUTF8(ut, u8str, -1, &status); 1226 TEST_SUCCESS(status); 1227 UBool writable = utext_isWritable(ut); 1228 TEST_ASSERT(writable == FALSE); 1229 utext_copy(ut, 1, 2, 0, TRUE, &status); 1230 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1231 1232 status = U_ZERO_ERROR; 1233 ut = utext_openUChars(ut, u16str, -1, &status); 1234 TEST_SUCCESS(status); 1235 writable = utext_isWritable(ut); 1236 TEST_ASSERT(writable == FALSE); 1237 utext_copy(ut, 1, 2, 0, TRUE, &status); 1238 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1239 1240 status = U_ZERO_ERROR; 1241 ut = utext_openUnicodeString(ut, &ustr, &status); 1242 TEST_SUCCESS(status); 1243 writable = utext_isWritable(ut); 1244 TEST_ASSERT(writable == TRUE); 1245 utext_freeze(ut); 1246 writable = utext_isWritable(ut); 1247 TEST_ASSERT(writable == FALSE); 1248 utext_copy(ut, 1, 2, 0, TRUE, &status); 1249 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1250 1251 status = U_ZERO_ERROR; 1252 ut = utext_openUnicodeString(ut, &ustr, &status); 1253 TEST_SUCCESS(status); 1254 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false 1255 TEST_SUCCESS(status); 1256 writable = utext_isWritable(ut2); 1257 TEST_ASSERT(writable == TRUE); 1258 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true 1259 TEST_SUCCESS(status); 1260 writable = utext_isWritable(ut2); 1261 TEST_ASSERT(writable == FALSE); 1262 utext_copy(ut2, 1, 2, 0, TRUE, &status); 1263 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1264 1265 status = U_ZERO_ERROR; 1266 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); 1267 TEST_SUCCESS(status); 1268 writable = utext_isWritable(ut); 1269 TEST_ASSERT(writable == FALSE); 1270 utext_copy(ut, 1, 2, 0, TRUE, &status); 1271 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1272 1273 // Deep Clone of a frozen UText should re-enable writing in the copy. 1274 status = U_ZERO_ERROR; 1275 ut = utext_openUnicodeString(ut, &ustr, &status); 1276 TEST_SUCCESS(status); 1277 utext_freeze(ut); 1278 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1279 TEST_SUCCESS(status); 1280 writable = utext_isWritable(ut2); 1281 TEST_ASSERT(writable == TRUE); 1282 1283 1284 // Deep clone of a frozen UText, where the base type is intrinsically non-writable, 1285 // should NOT enable writing in the copy. 1286 status = U_ZERO_ERROR; 1287 ut = utext_openUChars(ut, u16str, -1, &status); 1288 TEST_SUCCESS(status); 1289 utext_freeze(ut); 1290 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1291 TEST_SUCCESS(status); 1292 writable = utext_isWritable(ut2); 1293 TEST_ASSERT(writable == FALSE); 1294 1295 // cleanup 1296 utext_close(ut); 1297 utext_close(ut2); 1298 } 1299 1300 1301 // 1302 // Fragmented UText 1303 // A UText type that works with a chunk size of 1. 1304 // Intended to test for edge cases. 1305 // Input comes from a UnicodeString. 1306 // 1307 // ut.b the character. Put into both halves. 1308 // 1309 1310 U_CDECL_BEGIN 1311 static UBool U_CALLCONV 1312 fragTextAccess(UText *ut, int64_t index, UBool forward) { 1313 const UnicodeString *us = (const UnicodeString *)ut->context; 1314 UChar c; 1315 int32_t length = us->length(); 1316 if (forward && index>=0 && index<length) { 1317 c = us->charAt((int32_t)index); 1318 ut->b = c | c<<16; 1319 ut->chunkOffset = 0; 1320 ut->chunkLength = 1; 1321 ut->chunkNativeStart = index; 1322 ut->chunkNativeLimit = index+1; 1323 return true; 1324 } 1325 if (!forward && index>0 && index <=length) { 1326 c = us->charAt((int32_t)index-1); 1327 ut->b = c | c<<16; 1328 ut->chunkOffset = 1; 1329 ut->chunkLength = 1; 1330 ut->chunkNativeStart = index-1; 1331 ut->chunkNativeLimit = index; 1332 return true; 1333 } 1334 ut->b = 0; 1335 ut->chunkOffset = 0; 1336 ut->chunkLength = 0; 1337 if (index <= 0) { 1338 ut->chunkNativeStart = 0; 1339 ut->chunkNativeLimit = 0; 1340 } else { 1341 ut->chunkNativeStart = length; 1342 ut->chunkNativeLimit = length; 1343 } 1344 return false; 1345 } 1346 1347 // Function table to be used with this fragmented text provider. 1348 // Initialized in the open function. 1349 static UTextFuncs fragmentFuncs; 1350 1351 // Clone function for fragmented text provider. 1352 // Didn't really want to provide this, but it's easier to provide it than to keep it 1353 // out of the tests. 1354 // 1355 UText * 1356 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 1357 if (U_FAILURE(*status)) { 1358 return NULL; 1359 } 1360 if (deep) { 1361 *status = U_UNSUPPORTED_ERROR; 1362 return NULL; 1363 } 1364 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); 1365 utext_setNativeIndex(dest, utext_getNativeIndex(src)); 1366 return dest; 1367 } 1368 1369 U_CDECL_END 1370 1371 // Open function for the fragmented text provider. 1372 UText * 1373 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { 1374 ut = utext_openUnicodeString(ut, s, status); 1375 if (U_FAILURE(*status)) { 1376 return ut; 1377 } 1378 1379 // Copy of the function table from the stock UnicodeString UText, 1380 // and replace the entry for the access function. 1381 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); 1382 fragmentFuncs.access = fragTextAccess; 1383 fragmentFuncs.clone = cloneFragmentedUnicodeString; 1384 ut->pFuncs = &fragmentFuncs; 1385 1386 ut->chunkContents = (UChar *)&ut->b; 1387 ut->pFuncs->access(ut, 0, TRUE); 1388 return ut; 1389 } 1390 1391 // Regression test for Ticket 5560 1392 // Clone fails to update chunkContentPointer in the cloned copy. 1393 // This is only an issue for UText types that work in a local buffer, 1394 // (UTF-8 wrapper, for example) 1395 // 1396 // The test: 1397 // 1. Create an inital UText 1398 // 2. Deep clone it. Contents should match original. 1399 // 3. Reset original to something different. 1400 // 4. Check that clone contents did not change. 1401 // 1402 void UTextTest::Ticket5560() { 1403 /* The following two strings are in UTF-8 even on EBCDIC platforms. */ 1404 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ 1405 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ 1406 UErrorCode status = U_ZERO_ERROR; 1407 1408 UText ut1 = UTEXT_INITIALIZER; 1409 UText ut2 = UTEXT_INITIALIZER; 1410 1411 utext_openUTF8(&ut1, s1, -1, &status); 1412 UChar c = utext_next32(&ut1); 1413 TEST_ASSERT(c == 0x41); // c == 'A' 1414 1415 utext_clone(&ut2, &ut1, TRUE, FALSE, &status); 1416 TEST_SUCCESS(status); 1417 c = utext_next32(&ut2); 1418 TEST_ASSERT(c == 0x42); // c == 'B' 1419 c = utext_next32(&ut1); 1420 TEST_ASSERT(c == 0x42); // c == 'B' 1421 1422 utext_openUTF8(&ut1, s2, -1, &status); 1423 c = utext_next32(&ut1); 1424 TEST_ASSERT(c == 0x31); // c == '1' 1425 c = utext_next32(&ut2); 1426 TEST_ASSERT(c == 0x43); // c == 'C' 1427 1428 utext_close(&ut1); 1429 utext_close(&ut2); 1430 } 1431 1432 1433 // Test for Ticket 6847 1434 // 1435 void UTextTest::Ticket6847() { 1436 const int STRLEN = 90; 1437 UChar s[STRLEN+1]; 1438 u_memset(s, 0x41, STRLEN); 1439 s[STRLEN] = 0; 1440 1441 UErrorCode status = U_ZERO_ERROR; 1442 UText *ut = utext_openUChars(NULL, s, -1, &status); 1443 1444 utext_setNativeIndex(ut, 0); 1445 int32_t count = 0; 1446 UChar32 c = 0; 1447 int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1448 TEST_ASSERT(nativeIndex == 0); 1449 while ((c = utext_next32(ut)) != U_SENTINEL) { 1450 TEST_ASSERT(c == 0x41); 1451 TEST_ASSERT(count < STRLEN); 1452 if (count >= STRLEN) { 1453 break; 1454 } 1455 count++; 1456 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1457 TEST_ASSERT(nativeIndex == count); 1458 } 1459 TEST_ASSERT(count == STRLEN); 1460 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1461 TEST_ASSERT(nativeIndex == STRLEN); 1462 utext_close(ut); 1463 } 1464 1465 1466 void UTextTest::Ticket10562() { 1467 // Note: failures show as a heap error when the test is run under valgrind. 1468 UErrorCode status = U_ZERO_ERROR; 1469 1470 const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; 1471 UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); 1472 TEST_SUCCESS(status); 1473 UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); 1474 TEST_SUCCESS(status); 1475 UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); 1476 TEST_SUCCESS(status); 1477 utext_close(shallowClone); 1478 utext_close(deepClone); 1479 utext_close(utf8Text); 1480 1481 status = U_ZERO_ERROR; 1482 UnicodeString usString("Hello, World."); 1483 UText *usText = utext_openUnicodeString(NULL, &usString, &status); 1484 TEST_SUCCESS(status); 1485 UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); 1486 TEST_SUCCESS(status); 1487 UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); 1488 TEST_SUCCESS(status); 1489 utext_close(usShallowClone); 1490 utext_close(usDeepClone); 1491 utext_close(usText); 1492 } 1493 1494 1495 void UTextTest::Ticket10983() { 1496 // Note: failure shows as a seg fault when the defect is present. 1497 1498 UErrorCode status = U_ZERO_ERROR; 1499 UnicodeString s("Hello, World"); 1500 UText *ut = utext_openConstUnicodeString(NULL, &s, &status); 1501 TEST_SUCCESS(status); 1502 1503 status = U_INVALID_STATE_ERROR; 1504 UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); 1505 TEST_ASSERT(cloned == NULL); 1506 TEST_ASSERT(status == U_INVALID_STATE_ERROR); 1507 1508 utext_close(ut); 1509 } 1510 1511 // Ticket 12130 - extract on a UText wrapping a null terminated UChar * string 1512 // leaves the iteration position set incorrectly when the 1513 // actual string length is not yet known. 1514 // 1515 // The test text needs to be long enough that UText defers getting the length. 1516 1517 void UTextTest::Ticket12130() { 1518 UErrorCode status = U_ZERO_ERROR; 1519 1520 const char *text8 = 1521 "Fundamentally, computers just deal with numbers. They store letters and other characters " 1522 "by assigning a number for each one. Before Unicode was invented, there were hundreds " 1523 "of different encoding systems for assigning these numbers. No single encoding could " 1524 "contain enough characters: for example, the European Union alone requires several " 1525 "different encodings to cover all its languages. Even for a single language like " 1526 "English no single encoding was adequate for all the letters, punctuation, and technical " 1527 "symbols in common use."; 1528 1529 UnicodeString str(text8); 1530 const UChar *ustr = str.getTerminatedBuffer(); 1531 UText ut = UTEXT_INITIALIZER; 1532 utext_openUChars(&ut, ustr, -1, &status); 1533 UChar extractBuffer[50]; 1534 1535 for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { 1536 int32_t endIdx = startIdx + 20; 1537 1538 u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); 1539 utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); 1540 if (U_FAILURE(status)) { 1541 errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); 1542 return; 1543 } 1544 int64_t ni = utext_getNativeIndex(&ut); 1545 int64_t expectedni = startIdx + 20; 1546 if (expectedni > str.length()) { 1547 expectedni = str.length(); 1548 } 1549 if (expectedni != ni) { 1550 errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); 1551 } 1552 if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { 1553 errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", 1554 __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); 1555 } 1556 } 1557 utext_close(&ut); 1558 1559 // Similar utext extract, this time with the string length provided to the UText in advance, 1560 // and a buffer of larger than required capacity. 1561 1562 utext_openUChars(&ut, ustr, str.length(), &status); 1563 for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { 1564 int32_t endIdx = startIdx + 20; 1565 u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); 1566 utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); 1567 if (U_FAILURE(status)) { 1568 errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); 1569 return; 1570 } 1571 int64_t ni = utext_getNativeIndex(&ut); 1572 int64_t expectedni = startIdx + 20; 1573 if (expectedni > str.length()) { 1574 expectedni = str.length(); 1575 } 1576 if (expectedni != ni) { 1577 errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); 1578 } 1579 if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { 1580 errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", 1581 __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); 1582 } 1583 } 1584 utext_close(&ut); 1585 } 1586