Home | History | Annotate | Download | only in sensorservice
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #include <binder/AppOpsManager.h>
     17 #include <binder/BinderService.h>
     18 #include <binder/IServiceManager.h>
     19 #include <binder/PermissionCache.h>
     20 #include <cutils/ashmem.h>
     21 #include <cutils/properties.h>
     22 #include <hardware/sensors.h>
     23 #include <hardware_legacy/power.h>
     24 #include <openssl/digest.h>
     25 #include <openssl/hmac.h>
     26 #include <openssl/rand.h>
     27 #include <sensor/SensorEventQueue.h>
     28 #include <utils/SystemClock.h>
     29 
     30 #include "BatteryService.h"
     31 #include "CorrectedGyroSensor.h"
     32 #include "GravitySensor.h"
     33 #include "LinearAccelerationSensor.h"
     34 #include "OrientationSensor.h"
     35 #include "RotationVectorSensor.h"
     36 #include "SensorFusion.h"
     37 #include "SensorInterface.h"
     38 
     39 #include "SensorService.h"
     40 #include "SensorDirectConnection.h"
     41 #include "SensorEventAckReceiver.h"
     42 #include "SensorEventConnection.h"
     43 #include "SensorRecord.h"
     44 #include "SensorRegistrationInfo.h"
     45 
     46 #include <inttypes.h>
     47 #include <math.h>
     48 #include <sched.h>
     49 #include <stdint.h>
     50 #include <sys/socket.h>
     51 #include <sys/stat.h>
     52 #include <sys/types.h>
     53 #include <unistd.h>
     54 
     55 namespace android {
     56 // ---------------------------------------------------------------------------
     57 
     58 /*
     59  * Notes:
     60  *
     61  * - what about a gyro-corrected magnetic-field sensor?
     62  * - run mag sensor from time to time to force calibration
     63  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
     64  *
     65  */
     66 
     67 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
     68 uint8_t SensorService::sHmacGlobalKey[128] = {};
     69 bool SensorService::sHmacGlobalKeyIsValid = false;
     70 
     71 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
     72 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
     73 #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
     74 
     75 // Permissions.
     76 static const String16 sDumpPermission("android.permission.DUMP");
     77 static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
     78 
     79 SensorService::SensorService()
     80     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
     81       mWakeLockAcquired(false) {
     82 }
     83 
     84 bool SensorService::initializeHmacKey() {
     85     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
     86     if (fd != -1) {
     87         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
     88         close(fd);
     89         if (result == sizeof(sHmacGlobalKey)) {
     90             return true;
     91         }
     92         ALOGW("Unable to read HMAC key; generating new one.");
     93     }
     94 
     95     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
     96         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
     97         return false;
     98     }
     99 
    100     // We need to make sure this is only readable to us.
    101     bool wroteKey = false;
    102     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
    103     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
    104               S_IRUSR|S_IWUSR);
    105     if (fd != -1) {
    106         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
    107         close(fd);
    108         wroteKey = (result == sizeof(sHmacGlobalKey));
    109     }
    110     if (wroteKey) {
    111         ALOGI("Generated new HMAC key.");
    112     } else {
    113         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
    114               "after reboot.");
    115     }
    116     // Even if we failed to write the key we return true, because we did
    117     // initialize the HMAC key.
    118     return true;
    119 }
    120 
    121 // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
    122 void SensorService::enableSchedFifoMode() {
    123     struct sched_param param = {0};
    124     param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
    125     if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
    126         ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
    127     }
    128 }
    129 
    130 void SensorService::onFirstRef() {
    131     ALOGD("nuSensorService starting...");
    132     SensorDevice& dev(SensorDevice::getInstance());
    133 
    134     sHmacGlobalKeyIsValid = initializeHmacKey();
    135 
    136     if (dev.initCheck() == NO_ERROR) {
    137         sensor_t const* list;
    138         ssize_t count = dev.getSensorList(&list);
    139         if (count > 0) {
    140             ssize_t orientationIndex = -1;
    141             bool hasGyro = false, hasAccel = false, hasMag = false;
    142             uint32_t virtualSensorsNeeds =
    143                     (1<<SENSOR_TYPE_GRAVITY) |
    144                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
    145                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
    146                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
    147                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
    148 
    149             for (ssize_t i=0 ; i<count ; i++) {
    150                 bool useThisSensor=true;
    151 
    152                 switch (list[i].type) {
    153                     case SENSOR_TYPE_ACCELEROMETER:
    154                         hasAccel = true;
    155                         break;
    156                     case SENSOR_TYPE_MAGNETIC_FIELD:
    157                         hasMag = true;
    158                         break;
    159                     case SENSOR_TYPE_ORIENTATION:
    160                         orientationIndex = i;
    161                         break;
    162                     case SENSOR_TYPE_GYROSCOPE:
    163                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
    164                         hasGyro = true;
    165                         break;
    166                     case SENSOR_TYPE_GRAVITY:
    167                     case SENSOR_TYPE_LINEAR_ACCELERATION:
    168                     case SENSOR_TYPE_ROTATION_VECTOR:
    169                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
    170                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
    171                         if (IGNORE_HARDWARE_FUSION) {
    172                             useThisSensor = false;
    173                         } else {
    174                             virtualSensorsNeeds &= ~(1<<list[i].type);
    175                         }
    176                         break;
    177                 }
    178                 if (useThisSensor) {
    179                     registerSensor( new HardwareSensor(list[i]) );
    180                 }
    181             }
    182 
    183             // it's safe to instantiate the SensorFusion object here
    184             // (it wants to be instantiated after h/w sensors have been
    185             // registered)
    186             SensorFusion::getInstance();
    187 
    188             if (hasGyro && hasAccel && hasMag) {
    189                 // Add Android virtual sensors if they're not already
    190                 // available in the HAL
    191                 bool needRotationVector =
    192                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
    193 
    194                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
    195                 registerSensor(new OrientationSensor(), !needRotationVector, true);
    196 
    197                 bool needLinearAcceleration =
    198                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
    199 
    200                 registerSensor(new LinearAccelerationSensor(list, count),
    201                                !needLinearAcceleration, true);
    202 
    203                 // virtual debugging sensors are not for user
    204                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
    205                 registerSensor( new GyroDriftSensor(), true, true);
    206             }
    207 
    208             if (hasAccel && hasGyro) {
    209                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
    210                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
    211 
    212                 bool needGameRotationVector =
    213                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
    214                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
    215             }
    216 
    217             if (hasAccel && hasMag) {
    218                 bool needGeoMagRotationVector =
    219                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
    220                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
    221             }
    222 
    223             // Check if the device really supports batching by looking at the FIFO event
    224             // counts for each sensor.
    225             bool batchingSupported = false;
    226             mSensors.forEachSensor(
    227                     [&batchingSupported] (const Sensor& s) -> bool {
    228                         if (s.getFifoMaxEventCount() > 0) {
    229                             batchingSupported = true;
    230                         }
    231                         return !batchingSupported;
    232                     });
    233 
    234             if (batchingSupported) {
    235                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
    236                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
    237             } else {
    238                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
    239             }
    240 
    241             // Compare the socketBufferSize value against the system limits and limit
    242             // it to maxSystemSocketBufferSize if necessary.
    243             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
    244             char line[128];
    245             if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
    246                 line[sizeof(line) - 1] = '\0';
    247                 size_t maxSystemSocketBufferSize;
    248                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
    249                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
    250                     mSocketBufferSize = maxSystemSocketBufferSize;
    251                 }
    252             }
    253             if (fp) {
    254                 fclose(fp);
    255             }
    256 
    257             mWakeLockAcquired = false;
    258             mLooper = new Looper(false);
    259             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    260             mSensorEventBuffer = new sensors_event_t[minBufferSize];
    261             mSensorEventScratch = new sensors_event_t[minBufferSize];
    262             mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
    263             mCurrentOperatingMode = NORMAL;
    264 
    265             mNextSensorRegIndex = 0;
    266             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
    267                 mLastNSensorRegistrations.push();
    268             }
    269 
    270             mInitCheck = NO_ERROR;
    271             mAckReceiver = new SensorEventAckReceiver(this);
    272             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
    273             run("SensorService", PRIORITY_URGENT_DISPLAY);
    274 
    275             // priority can only be changed after run
    276             enableSchedFifoMode();
    277         }
    278     }
    279 }
    280 
    281 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
    282     int handle = s->getSensor().getHandle();
    283     int type = s->getSensor().getType();
    284     if (mSensors.add(handle, s, isDebug, isVirtual)){
    285         mRecentEvent.emplace(handle, new RecentEventLogger(type));
    286         return s->getSensor();
    287     } else {
    288         return mSensors.getNonSensor();
    289     }
    290 }
    291 
    292 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
    293     return registerSensor(s, isDebug);
    294 }
    295 
    296 bool SensorService::unregisterDynamicSensorLocked(int handle) {
    297     bool ret = mSensors.remove(handle);
    298 
    299     const auto i = mRecentEvent.find(handle);
    300     if (i != mRecentEvent.end()) {
    301         delete i->second;
    302         mRecentEvent.erase(i);
    303     }
    304     return ret;
    305 }
    306 
    307 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
    308     return registerSensor(s, isDebug, true);
    309 }
    310 
    311 SensorService::~SensorService() {
    312     for (auto && entry : mRecentEvent) {
    313         delete entry.second;
    314     }
    315 }
    316 
    317 status_t SensorService::dump(int fd, const Vector<String16>& args) {
    318     String8 result;
    319     if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
    320         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
    321                 IPCThreadState::self()->getCallingPid(),
    322                 IPCThreadState::self()->getCallingUid());
    323     } else {
    324         bool privileged = IPCThreadState::self()->getCallingUid() == 0;
    325         if (args.size() > 2) {
    326            return INVALID_OPERATION;
    327         }
    328         Mutex::Autolock _l(mLock);
    329         SensorDevice& dev(SensorDevice::getInstance());
    330         if (args.size() == 2 && args[0] == String16("restrict")) {
    331             // If already in restricted mode. Ignore.
    332             if (mCurrentOperatingMode == RESTRICTED) {
    333                 return status_t(NO_ERROR);
    334             }
    335             // If in any mode other than normal, ignore.
    336             if (mCurrentOperatingMode != NORMAL) {
    337                 return INVALID_OPERATION;
    338             }
    339 
    340             mCurrentOperatingMode = RESTRICTED;
    341             // temporarily stop all sensor direct report
    342             for (auto &i : mDirectConnections) {
    343                 sp<SensorDirectConnection> connection(i.promote());
    344                 if (connection != nullptr) {
    345                     connection->stopAll(true /* backupRecord */);
    346                 }
    347             }
    348 
    349             dev.disableAllSensors();
    350             // Clear all pending flush connections for all active sensors. If one of the active
    351             // connections has called flush() and the underlying sensor has been disabled before a
    352             // flush complete event is returned, we need to remove the connection from this queue.
    353             for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
    354                 mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
    355             }
    356             mWhiteListedPackage.setTo(String8(args[1]));
    357             return status_t(NO_ERROR);
    358         } else if (args.size() == 1 && args[0] == String16("enable")) {
    359             // If currently in restricted mode, reset back to NORMAL mode else ignore.
    360             if (mCurrentOperatingMode == RESTRICTED) {
    361                 mCurrentOperatingMode = NORMAL;
    362                 dev.enableAllSensors();
    363                 // recover all sensor direct report
    364                 for (auto &i : mDirectConnections) {
    365                     sp<SensorDirectConnection> connection(i.promote());
    366                     if (connection != nullptr) {
    367                         connection->recoverAll();
    368                     }
    369                 }
    370             }
    371             if (mCurrentOperatingMode == DATA_INJECTION) {
    372                resetToNormalModeLocked();
    373             }
    374             mWhiteListedPackage.clear();
    375             return status_t(NO_ERROR);
    376         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
    377             if (mCurrentOperatingMode == NORMAL) {
    378                 dev.disableAllSensors();
    379                 status_t err = dev.setMode(DATA_INJECTION);
    380                 if (err == NO_ERROR) {
    381                     mCurrentOperatingMode = DATA_INJECTION;
    382                 } else {
    383                     // Re-enable sensors.
    384                     dev.enableAllSensors();
    385                 }
    386                 mWhiteListedPackage.setTo(String8(args[1]));
    387                 return NO_ERROR;
    388             } else if (mCurrentOperatingMode == DATA_INJECTION) {
    389                 // Already in DATA_INJECTION mode. Treat this as a no_op.
    390                 return NO_ERROR;
    391             } else {
    392                 // Transition to data injection mode supported only from NORMAL mode.
    393                 return INVALID_OPERATION;
    394             }
    395         } else if (!mSensors.hasAnySensor()) {
    396             result.append("No Sensors on the device\n");
    397         } else {
    398             // Default dump the sensor list and debugging information.
    399             //
    400             result.append("Sensor Device:\n");
    401             result.append(SensorDevice::getInstance().dump().c_str());
    402 
    403             result.append("Sensor List:\n");
    404             result.append(mSensors.dump().c_str());
    405 
    406             result.append("Fusion States:\n");
    407             SensorFusion::getInstance().dump(result);
    408 
    409             result.append("Recent Sensor events:\n");
    410             for (auto&& i : mRecentEvent) {
    411                 sp<SensorInterface> s = mSensors.getInterface(i.first);
    412                 if (!i.second->isEmpty()) {
    413                     if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
    414                         i.second->setFormat("normal");
    415                     } else {
    416                         i.second->setFormat("mask_data");
    417                     }
    418                     // if there is events and sensor does not need special permission.
    419                     result.appendFormat("%s: ", s->getSensor().getName().string());
    420                     result.append(i.second->dump().c_str());
    421                 }
    422             }
    423 
    424             result.append("Active sensors:\n");
    425             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
    426                 int handle = mActiveSensors.keyAt(i);
    427                 result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
    428                         getSensorName(handle).string(),
    429                         handle,
    430                         mActiveSensors.valueAt(i)->getNumConnections());
    431             }
    432 
    433             result.appendFormat("Socket Buffer size = %zd events\n",
    434                                 mSocketBufferSize/sizeof(sensors_event_t));
    435             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
    436                     "not held");
    437             result.appendFormat("Mode :");
    438             switch(mCurrentOperatingMode) {
    439                case NORMAL:
    440                    result.appendFormat(" NORMAL\n");
    441                    break;
    442                case RESTRICTED:
    443                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
    444                    break;
    445                case DATA_INJECTION:
    446                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
    447             }
    448 
    449             result.appendFormat("%zd active connections\n", mActiveConnections.size());
    450             for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
    451                 sp<SensorEventConnection> connection(mActiveConnections[i].promote());
    452                 if (connection != 0) {
    453                     result.appendFormat("Connection Number: %zu \n", i);
    454                     connection->dump(result);
    455                 }
    456             }
    457 
    458             result.appendFormat("%zd direct connections\n", mDirectConnections.size());
    459             for (size_t i = 0 ; i < mDirectConnections.size() ; i++) {
    460                 sp<SensorDirectConnection> connection(mDirectConnections[i].promote());
    461                 if (connection != nullptr) {
    462                     result.appendFormat("Direct connection %zu:\n", i);
    463                     connection->dump(result);
    464                 }
    465             }
    466 
    467             result.appendFormat("Previous Registrations:\n");
    468             // Log in the reverse chronological order.
    469             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    470                 SENSOR_REGISTRATIONS_BUF_SIZE;
    471             const int startIndex = currentIndex;
    472             do {
    473                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
    474                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
    475                     // Ignore sentinel, proceed to next item.
    476                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    477                         SENSOR_REGISTRATIONS_BUF_SIZE;
    478                     continue;
    479                 }
    480                 result.appendFormat("%s\n", reg_info.dump().c_str());
    481                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    482                         SENSOR_REGISTRATIONS_BUF_SIZE;
    483             } while(startIndex != currentIndex);
    484         }
    485     }
    486     write(fd, result.string(), result.size());
    487     return NO_ERROR;
    488 }
    489 
    490 //TODO: move to SensorEventConnection later
    491 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
    492         sensors_event_t const* buffer, const int count) {
    493     for (int i=0 ; i<count ; i++) {
    494         int handle = buffer[i].sensor;
    495         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
    496             handle = buffer[i].meta_data.sensor;
    497         }
    498         if (connection->hasSensor(handle)) {
    499             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
    500             // If this buffer has an event from a one_shot sensor and this connection is registered
    501             // for this particular one_shot sensor, try cleaning up the connection.
    502             if (si != nullptr &&
    503                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
    504                 si->autoDisable(connection.get(), handle);
    505                 cleanupWithoutDisableLocked(connection, handle);
    506             }
    507 
    508         }
    509    }
    510 }
    511 
    512 bool SensorService::threadLoop() {
    513     ALOGD("nuSensorService thread starting...");
    514 
    515     // each virtual sensor could generate an event per "real" event, that's why we need to size
    516     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
    517     // aggressive, but guaranteed to be enough.
    518     const size_t vcount = mSensors.getVirtualSensors().size();
    519     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    520     const size_t numEventMax = minBufferSize / (1 + vcount);
    521 
    522     SensorDevice& device(SensorDevice::getInstance());
    523 
    524     const int halVersion = device.getHalDeviceVersion();
    525     do {
    526         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
    527         if (count < 0) {
    528             ALOGE("sensor poll failed (%s)", strerror(-count));
    529             break;
    530         }
    531 
    532         // Reset sensors_event_t.flags to zero for all events in the buffer.
    533         for (int i = 0; i < count; i++) {
    534              mSensorEventBuffer[i].flags = 0;
    535         }
    536 
    537         // Make a copy of the connection vector as some connections may be removed during the course
    538         // of this loop (especially when one-shot sensor events are present in the sensor_event
    539         // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
    540         // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
    541         // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
    542         // strongPointers to a vector before the lock is acquired.
    543         SortedVector< sp<SensorEventConnection> > activeConnections;
    544         populateActiveConnections(&activeConnections);
    545 
    546         Mutex::Autolock _l(mLock);
    547         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
    548         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
    549         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
    550         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
    551         // releasing the wakelock.
    552         bool bufferHasWakeUpEvent = false;
    553         for (int i = 0; i < count; i++) {
    554             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
    555                 bufferHasWakeUpEvent = true;
    556                 break;
    557             }
    558         }
    559 
    560         if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
    561             setWakeLockAcquiredLocked(true);
    562         }
    563         recordLastValueLocked(mSensorEventBuffer, count);
    564 
    565         // handle virtual sensors
    566         if (count && vcount) {
    567             sensors_event_t const * const event = mSensorEventBuffer;
    568             if (!mActiveVirtualSensors.empty()) {
    569                 size_t k = 0;
    570                 SensorFusion& fusion(SensorFusion::getInstance());
    571                 if (fusion.isEnabled()) {
    572                     for (size_t i=0 ; i<size_t(count) ; i++) {
    573                         fusion.process(event[i]);
    574                     }
    575                 }
    576                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
    577                     for (int handle : mActiveVirtualSensors) {
    578                         if (count + k >= minBufferSize) {
    579                             ALOGE("buffer too small to hold all events: "
    580                                     "count=%zd, k=%zu, size=%zu",
    581                                     count, k, minBufferSize);
    582                             break;
    583                         }
    584                         sensors_event_t out;
    585                         sp<SensorInterface> si = mSensors.getInterface(handle);
    586                         if (si == nullptr) {
    587                             ALOGE("handle %d is not an valid virtual sensor", handle);
    588                             continue;
    589                         }
    590 
    591                         if (si->process(&out, event[i])) {
    592                             mSensorEventBuffer[count + k] = out;
    593                             k++;
    594                         }
    595                     }
    596                 }
    597                 if (k) {
    598                     // record the last synthesized values
    599                     recordLastValueLocked(&mSensorEventBuffer[count], k);
    600                     count += k;
    601                     // sort the buffer by time-stamps
    602                     sortEventBuffer(mSensorEventBuffer, count);
    603                 }
    604             }
    605         }
    606 
    607         // handle backward compatibility for RotationVector sensor
    608         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
    609             for (int i = 0; i < count; i++) {
    610                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
    611                     // All the 4 components of the quaternion should be available
    612                     // No heading accuracy. Set it to -1
    613                     mSensorEventBuffer[i].data[4] = -1;
    614                 }
    615             }
    616         }
    617 
    618         for (int i = 0; i < count; ++i) {
    619             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
    620             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
    621             // SensorEventConnection mapped to the corresponding flush_complete_event in
    622             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
    623             mMapFlushEventsToConnections[i] = NULL;
    624             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
    625                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
    626                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
    627                 if (rec != NULL) {
    628                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
    629                     rec->removeFirstPendingFlushConnection();
    630                 }
    631             }
    632 
    633             // handle dynamic sensor meta events, process registration and unregistration of dynamic
    634             // sensor based on content of event.
    635             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
    636                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
    637                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    638                     const sensor_t& dynamicSensor =
    639                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
    640                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
    641                           handle, dynamicSensor.type, dynamicSensor.name);
    642 
    643                     if (mSensors.isNewHandle(handle)) {
    644                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
    645                         sensor_t s = dynamicSensor;
    646                         // make sure the dynamic sensor flag is set
    647                         s.flags |= DYNAMIC_SENSOR_MASK;
    648                         // force the handle to be consistent
    649                         s.handle = handle;
    650 
    651                         SensorInterface *si = new HardwareSensor(s, uuid);
    652 
    653                         // This will release hold on dynamic sensor meta, so it should be called
    654                         // after Sensor object is created.
    655                         device.handleDynamicSensorConnection(handle, true /*connected*/);
    656                         registerDynamicSensorLocked(si);
    657                     } else {
    658                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
    659                     }
    660                 } else {
    661                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    662                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
    663 
    664                     device.handleDynamicSensorConnection(handle, false /*connected*/);
    665                     if (!unregisterDynamicSensorLocked(handle)) {
    666                         ALOGE("Dynamic sensor release error.");
    667                     }
    668 
    669                     size_t numConnections = activeConnections.size();
    670                     for (size_t i=0 ; i < numConnections; ++i) {
    671                         if (activeConnections[i] != NULL) {
    672                             activeConnections[i]->removeSensor(handle);
    673                         }
    674                     }
    675                 }
    676             }
    677         }
    678 
    679 
    680         // Send our events to clients. Check the state of wake lock for each client and release the
    681         // lock if none of the clients need it.
    682         bool needsWakeLock = false;
    683         size_t numConnections = activeConnections.size();
    684         for (size_t i=0 ; i < numConnections; ++i) {
    685             if (activeConnections[i] != 0) {
    686                 activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
    687                         mMapFlushEventsToConnections);
    688                 needsWakeLock |= activeConnections[i]->needsWakeLock();
    689                 // If the connection has one-shot sensors, it may be cleaned up after first trigger.
    690                 // Early check for one-shot sensors.
    691                 if (activeConnections[i]->hasOneShotSensors()) {
    692                     cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
    693                             count);
    694                 }
    695             }
    696         }
    697 
    698         if (mWakeLockAcquired && !needsWakeLock) {
    699             setWakeLockAcquiredLocked(false);
    700         }
    701     } while (!Thread::exitPending());
    702 
    703     ALOGW("Exiting SensorService::threadLoop => aborting...");
    704     abort();
    705     return false;
    706 }
    707 
    708 sp<Looper> SensorService::getLooper() const {
    709     return mLooper;
    710 }
    711 
    712 void SensorService::resetAllWakeLockRefCounts() {
    713     SortedVector< sp<SensorEventConnection> > activeConnections;
    714     populateActiveConnections(&activeConnections);
    715     {
    716         Mutex::Autolock _l(mLock);
    717         for (size_t i=0 ; i < activeConnections.size(); ++i) {
    718             if (activeConnections[i] != 0) {
    719                 activeConnections[i]->resetWakeLockRefCount();
    720             }
    721         }
    722         setWakeLockAcquiredLocked(false);
    723     }
    724 }
    725 
    726 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
    727     if (acquire) {
    728         if (!mWakeLockAcquired) {
    729             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
    730             mWakeLockAcquired = true;
    731         }
    732         mLooper->wake();
    733     } else {
    734         if (mWakeLockAcquired) {
    735             release_wake_lock(WAKE_LOCK_NAME);
    736             mWakeLockAcquired = false;
    737         }
    738     }
    739 }
    740 
    741 bool SensorService::isWakeLockAcquired() {
    742     Mutex::Autolock _l(mLock);
    743     return mWakeLockAcquired;
    744 }
    745 
    746 bool SensorService::SensorEventAckReceiver::threadLoop() {
    747     ALOGD("new thread SensorEventAckReceiver");
    748     sp<Looper> looper = mService->getLooper();
    749     do {
    750         bool wakeLockAcquired = mService->isWakeLockAcquired();
    751         int timeout = -1;
    752         if (wakeLockAcquired) timeout = 5000;
    753         int ret = looper->pollOnce(timeout);
    754         if (ret == ALOOPER_POLL_TIMEOUT) {
    755            mService->resetAllWakeLockRefCounts();
    756         }
    757     } while(!Thread::exitPending());
    758     return false;
    759 }
    760 
    761 void SensorService::recordLastValueLocked(
    762         const sensors_event_t* buffer, size_t count) {
    763     for (size_t i = 0; i < count; i++) {
    764         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
    765             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
    766             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
    767             continue;
    768         }
    769 
    770         auto logger = mRecentEvent.find(buffer[i].sensor);
    771         if (logger != mRecentEvent.end()) {
    772             logger->second->addEvent(buffer[i]);
    773         }
    774     }
    775 }
    776 
    777 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
    778     struct compar {
    779         static int cmp(void const* lhs, void const* rhs) {
    780             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
    781             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
    782             return l->timestamp - r->timestamp;
    783         }
    784     };
    785     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
    786 }
    787 
    788 String8 SensorService::getSensorName(int handle) const {
    789     return mSensors.getName(handle);
    790 }
    791 
    792 bool SensorService::isVirtualSensor(int handle) const {
    793     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    794     return sensor != nullptr && sensor->isVirtual();
    795 }
    796 
    797 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
    798     int handle = event.sensor;
    799     if (event.type == SENSOR_TYPE_META_DATA) {
    800         handle = event.meta_data.sensor;
    801     }
    802     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    803     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
    804 }
    805 
    806 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
    807     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
    808         // UUID is not supported for this device.
    809         return 0;
    810     }
    811     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
    812         // This sensor can be uniquely identified in the system by
    813         // the combination of its type and name.
    814         return -1;
    815     }
    816 
    817     // We have a dynamic sensor.
    818 
    819     if (!sHmacGlobalKeyIsValid) {
    820         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    821         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
    822         return 0;
    823     }
    824 
    825     // We want each app author/publisher to get a different ID, so that the
    826     // same dynamic sensor cannot be tracked across apps by multiple
    827     // authors/publishers.  So we use both our UUID and our User ID.
    828     // Note potential confusion:
    829     //     UUID => Universally Unique Identifier.
    830     //     UID  => User Identifier.
    831     // We refrain from using "uid" except as needed by API to try to
    832     // keep this distinction clear.
    833 
    834     auto appUserId = IPCThreadState::self()->getCallingUid();
    835     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
    836     memcpy(uuidAndApp, &uuid, sizeof(uuid));
    837     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
    838 
    839     // Now we use our key on our UUID/app combo to get the hash.
    840     uint8_t hash[EVP_MAX_MD_SIZE];
    841     unsigned int hashLen;
    842     if (HMAC(EVP_sha256(),
    843              sHmacGlobalKey, sizeof(sHmacGlobalKey),
    844              uuidAndApp, sizeof(uuidAndApp),
    845              hash, &hashLen) == nullptr) {
    846         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    847         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
    848         return 0;
    849     }
    850 
    851     int32_t id = 0;
    852     if (hashLen < sizeof(id)) {
    853         // We never expect this case, but out of paranoia, we handle it.
    854         // Our 'id' length is already quite small, we don't want the
    855         // effective length of it to be even smaller.
    856         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    857         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
    858         return 0;
    859     }
    860 
    861     // This is almost certainly less than all of 'hash', but it's as secure
    862     // as we can be with our current 'id' length.
    863     memcpy(&id, hash, sizeof(id));
    864 
    865     // Note at the beginning of the function that we return the values of
    866     // 0 and -1 to represent special cases.  As a result, we can't return
    867     // those as dynamic sensor IDs.  If we happened to hash to one of those
    868     // values, we change 'id' so we report as a dynamic sensor, and not as
    869     // one of those special cases.
    870     if (id == -1) {
    871         id = -2;
    872     } else if (id == 0) {
    873         id = 1;
    874     }
    875     return id;
    876 }
    877 
    878 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
    879     for (auto &sensor : sensorList) {
    880         int32_t id = getIdFromUuid(sensor.getUuid());
    881         sensor.setId(id);
    882     }
    883 }
    884 
    885 Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
    886     char value[PROPERTY_VALUE_MAX];
    887     property_get("debug.sensors", value, "0");
    888     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
    889             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
    890     Vector<Sensor> accessibleSensorList;
    891     for (size_t i = 0; i < initialSensorList.size(); i++) {
    892         Sensor sensor = initialSensorList[i];
    893         accessibleSensorList.add(sensor);
    894     }
    895     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    896     return accessibleSensorList;
    897 }
    898 
    899 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
    900     Vector<Sensor> accessibleSensorList;
    901     mSensors.forEachSensor(
    902             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
    903                 if (sensor.isDynamicSensor()) {
    904                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
    905                         accessibleSensorList.add(sensor);
    906                     } else {
    907                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
    908                               sensor.getName().string(),
    909                               sensor.getRequiredPermission().string(),
    910                               sensor.getRequiredAppOp());
    911                     }
    912                 }
    913                 return true;
    914             });
    915     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    916     return accessibleSensorList;
    917 }
    918 
    919 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
    920         int requestedMode, const String16& opPackageName) {
    921     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
    922     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
    923         return NULL;
    924     }
    925 
    926     Mutex::Autolock _l(mLock);
    927     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
    928     // operating in DI mode.
    929     if (requestedMode == DATA_INJECTION) {
    930         if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
    931         if (!isWhiteListedPackage(packageName)) return NULL;
    932     }
    933 
    934     uid_t uid = IPCThreadState::self()->getCallingUid();
    935     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName,
    936             requestedMode == DATA_INJECTION, opPackageName));
    937     if (requestedMode == DATA_INJECTION) {
    938         if (mActiveConnections.indexOf(result) < 0) {
    939             mActiveConnections.add(result);
    940         }
    941         // Add the associated file descriptor to the Looper for polling whenever there is data to
    942         // be injected.
    943         result->updateLooperRegistration(mLooper);
    944     }
    945     return result;
    946 }
    947 
    948 int SensorService::isDataInjectionEnabled() {
    949     Mutex::Autolock _l(mLock);
    950     return (mCurrentOperatingMode == DATA_INJECTION);
    951 }
    952 
    953 sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
    954         const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
    955         const native_handle *resource) {
    956     Mutex::Autolock _l(mLock);
    957 
    958     struct sensors_direct_mem_t mem = {
    959         .type = type,
    960         .format = format,
    961         .size = size,
    962         .handle = resource,
    963     };
    964     uid_t uid = IPCThreadState::self()->getCallingUid();
    965 
    966     if (mem.handle == nullptr) {
    967         ALOGE("Failed to clone resource handle");
    968         return nullptr;
    969     }
    970 
    971     // check format
    972     if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
    973         ALOGE("Direct channel format %d is unsupported!", format);
    974         return nullptr;
    975     }
    976 
    977     // check for duplication
    978     for (auto &i : mDirectConnections) {
    979         sp<SensorDirectConnection> connection(i.promote());
    980         if (connection != nullptr && connection->isEquivalent(&mem)) {
    981             ALOGE("Duplicate create channel request for the same share memory");
    982             return nullptr;
    983         }
    984     }
    985 
    986     // check specific to memory type
    987     switch(type) {
    988         case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
    989             int fd = resource->data[0];
    990             int size2 = ashmem_get_size_region(fd);
    991             // check size consistency
    992             if (size2 < static_cast<int>(size)) {
    993                 ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
    994                       size, size2);
    995                 return nullptr;
    996             }
    997             break;
    998         }
    999         case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
   1000             // no specific checks for gralloc
   1001             break;
   1002         default:
   1003             ALOGE("Unknown direct connection memory type %d", type);
   1004             return nullptr;
   1005     }
   1006 
   1007     native_handle_t *clone = native_handle_clone(resource);
   1008     if (!clone) {
   1009         return nullptr;
   1010     }
   1011 
   1012     SensorDirectConnection* conn = nullptr;
   1013     SensorDevice& dev(SensorDevice::getInstance());
   1014     int channelHandle = dev.registerDirectChannel(&mem);
   1015 
   1016     if (channelHandle <= 0) {
   1017         ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
   1018     } else {
   1019         mem.handle = clone;
   1020         conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
   1021     }
   1022 
   1023     if (conn == nullptr) {
   1024         native_handle_close(clone);
   1025         native_handle_delete(clone);
   1026     } else {
   1027         // add to list of direct connections
   1028         // sensor service should never hold pointer or sp of SensorDirectConnection object.
   1029         mDirectConnections.add(wp<SensorDirectConnection>(conn));
   1030     }
   1031     return conn;
   1032 }
   1033 
   1034 int SensorService::setOperationParameter(
   1035             int32_t type, const Vector<float> &floats, const Vector<int32_t> &ints) {
   1036     Mutex::Autolock _l(mLock);
   1037 
   1038     // check permission
   1039     int32_t uid;
   1040     bool hasPermission = checkCallingPermission(sLocationHardwarePermission, nullptr, &uid);
   1041     if (!hasPermission || (uid != 1000 && uid != 0)) {
   1042         return PERMISSION_DENIED;
   1043     }
   1044 
   1045     bool isFloat = true;
   1046     size_t expectSize = INT32_MAX;
   1047     switch (type) {
   1048         case AINFO_LOCAL_GEOMAGNETIC_FIELD:
   1049             isFloat = true;
   1050             expectSize = 3;
   1051             break;
   1052         case AINFO_LOCAL_GRAVITY:
   1053             isFloat = true;
   1054             expectSize = 1;
   1055             break;
   1056         case AINFO_DOCK_STATE:
   1057         case AINFO_HIGH_PERFORMANCE_MODE:
   1058         case AINFO_MAGNETIC_FIELD_CALIBRATION:
   1059             isFloat = false;
   1060             expectSize = 1;
   1061             break;
   1062         default:
   1063             return BAD_VALUE;
   1064     }
   1065 
   1066     // three events: first one is begin tag, last one is end tag, the one in the middle
   1067     // is the payload.
   1068     sensors_event_t event[3];
   1069     int64_t timestamp = elapsedRealtimeNano();
   1070     for (sensors_event_t* i = event; i < event + 3; i++) {
   1071         *i = (sensors_event_t) {
   1072             .version = sizeof(sensors_event_t),
   1073             .sensor = SENSORS_HANDLE_BASE - 1, // sensor that never exists
   1074             .type = SENSOR_TYPE_ADDITIONAL_INFO,
   1075             .timestamp = timestamp++,
   1076             .additional_info = (additional_info_event_t) {
   1077                 .serial = 0
   1078             }
   1079         };
   1080     }
   1081 
   1082     event[0].additional_info.type = AINFO_BEGIN;
   1083     event[1].additional_info.type = type;
   1084     event[2].additional_info.type = AINFO_END;
   1085 
   1086     if (isFloat) {
   1087         if (floats.size() != expectSize) {
   1088             return BAD_VALUE;
   1089         }
   1090         for (size_t i = 0; i < expectSize; ++i) {
   1091             event[1].additional_info.data_float[i] = floats[i];
   1092         }
   1093     } else {
   1094         if (ints.size() != expectSize) {
   1095             return BAD_VALUE;
   1096         }
   1097         for (size_t i = 0; i < expectSize; ++i) {
   1098             event[1].additional_info.data_int32[i] = ints[i];
   1099         }
   1100     }
   1101 
   1102     SensorDevice& dev(SensorDevice::getInstance());
   1103     for (sensors_event_t* i = event; i < event + 3; i++) {
   1104         int ret = dev.injectSensorData(i);
   1105         if (ret != NO_ERROR) {
   1106             return ret;
   1107         }
   1108     }
   1109     return NO_ERROR;
   1110 }
   1111 
   1112 status_t SensorService::resetToNormalMode() {
   1113     Mutex::Autolock _l(mLock);
   1114     return resetToNormalModeLocked();
   1115 }
   1116 
   1117 status_t SensorService::resetToNormalModeLocked() {
   1118     SensorDevice& dev(SensorDevice::getInstance());
   1119     status_t err = dev.setMode(NORMAL);
   1120     if (err == NO_ERROR) {
   1121         mCurrentOperatingMode = NORMAL;
   1122         dev.enableAllSensors();
   1123     }
   1124     return err;
   1125 }
   1126 
   1127 void SensorService::cleanupConnection(SensorEventConnection* c) {
   1128     Mutex::Autolock _l(mLock);
   1129     const wp<SensorEventConnection> connection(c);
   1130     size_t size = mActiveSensors.size();
   1131     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
   1132     for (size_t i=0 ; i<size ; ) {
   1133         int handle = mActiveSensors.keyAt(i);
   1134         if (c->hasSensor(handle)) {
   1135             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
   1136             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1137             if (sensor != nullptr) {
   1138                 sensor->activate(c, false);
   1139             } else {
   1140                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
   1141             }
   1142             c->removeSensor(handle);
   1143         }
   1144         SensorRecord* rec = mActiveSensors.valueAt(i);
   1145         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
   1146         ALOGD_IF(DEBUG_CONNECTIONS,
   1147                 "removing connection %p for sensor[%zu].handle=0x%08x",
   1148                 c, i, handle);
   1149 
   1150         if (rec && rec->removeConnection(connection)) {
   1151             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
   1152             mActiveSensors.removeItemsAt(i, 1);
   1153             mActiveVirtualSensors.erase(handle);
   1154             delete rec;
   1155             size--;
   1156         } else {
   1157             i++;
   1158         }
   1159     }
   1160     c->updateLooperRegistration(mLooper);
   1161     mActiveConnections.remove(connection);
   1162     BatteryService::cleanup(c->getUid());
   1163     if (c->needsWakeLock()) {
   1164         checkWakeLockStateLocked();
   1165     }
   1166 
   1167     SensorDevice& dev(SensorDevice::getInstance());
   1168     dev.notifyConnectionDestroyed(c);
   1169 }
   1170 
   1171 void SensorService::cleanupConnection(SensorDirectConnection* c) {
   1172     Mutex::Autolock _l(mLock);
   1173 
   1174     SensorDevice& dev(SensorDevice::getInstance());
   1175     dev.unregisterDirectChannel(c->getHalChannelHandle());
   1176     mDirectConnections.remove(c);
   1177 }
   1178 
   1179 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
   1180     return mSensors.getInterface(handle);
   1181 }
   1182 
   1183 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
   1184         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
   1185         const String16& opPackageName) {
   1186     if (mInitCheck != NO_ERROR)
   1187         return mInitCheck;
   1188 
   1189     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1190     if (sensor == nullptr ||
   1191         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
   1192         return BAD_VALUE;
   1193     }
   1194 
   1195     Mutex::Autolock _l(mLock);
   1196     if (mCurrentOperatingMode != NORMAL
   1197            && !isWhiteListedPackage(connection->getPackageName())) {
   1198         return INVALID_OPERATION;
   1199     }
   1200 
   1201     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1202     if (rec == 0) {
   1203         rec = new SensorRecord(connection);
   1204         mActiveSensors.add(handle, rec);
   1205         if (sensor->isVirtual()) {
   1206             mActiveVirtualSensors.emplace(handle);
   1207         }
   1208     } else {
   1209         if (rec->addConnection(connection)) {
   1210             // this sensor is already activated, but we are adding a connection that uses it.
   1211             // Immediately send down the last known value of the requested sensor if it's not a
   1212             // "continuous" sensor.
   1213             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
   1214                 // NOTE: The wake_up flag of this event may get set to
   1215                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
   1216 
   1217                 auto logger = mRecentEvent.find(handle);
   1218                 if (logger != mRecentEvent.end()) {
   1219                     sensors_event_t event;
   1220                     // It is unlikely that this buffer is empty as the sensor is already active.
   1221                     // One possible corner case may be two applications activating an on-change
   1222                     // sensor at the same time.
   1223                     if(logger->second->populateLastEvent(&event)) {
   1224                         event.sensor = handle;
   1225                         if (event.version == sizeof(sensors_event_t)) {
   1226                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
   1227                                 setWakeLockAcquiredLocked(true);
   1228                             }
   1229                             connection->sendEvents(&event, 1, NULL);
   1230                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
   1231                                 checkWakeLockStateLocked();
   1232                             }
   1233                         }
   1234                     }
   1235                 }
   1236             }
   1237         }
   1238     }
   1239 
   1240     if (connection->addSensor(handle)) {
   1241         BatteryService::enableSensor(connection->getUid(), handle);
   1242         // the sensor was added (which means it wasn't already there)
   1243         // so, see if this connection becomes active
   1244         if (mActiveConnections.indexOf(connection) < 0) {
   1245             mActiveConnections.add(connection);
   1246         }
   1247     } else {
   1248         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
   1249             handle, connection.get());
   1250     }
   1251 
   1252     // Check maximum delay for the sensor.
   1253     nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
   1254     if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
   1255         samplingPeriodNs = maxDelayNs;
   1256     }
   1257 
   1258     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1259     if (samplingPeriodNs < minDelayNs) {
   1260         samplingPeriodNs = minDelayNs;
   1261     }
   1262 
   1263     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
   1264                                 "rate=%" PRId64 " timeout== %" PRId64"",
   1265              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
   1266 
   1267     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
   1268                                  maxBatchReportLatencyNs);
   1269 
   1270     // Call flush() before calling activate() on the sensor. Wait for a first
   1271     // flush complete event before sending events on this connection. Ignore
   1272     // one-shot sensors which don't support flush(). Ignore on-change sensors
   1273     // to maintain the on-change logic (any on-change events except the initial
   1274     // one should be trigger by a change in value). Also if this sensor isn't
   1275     // already active, don't call flush().
   1276     if (err == NO_ERROR &&
   1277             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
   1278             rec->getNumConnections() > 1) {
   1279         connection->setFirstFlushPending(handle, true);
   1280         status_t err_flush = sensor->flush(connection.get(), handle);
   1281         // Flush may return error if the underlying h/w sensor uses an older HAL.
   1282         if (err_flush == NO_ERROR) {
   1283             rec->addPendingFlushConnection(connection.get());
   1284         } else {
   1285             connection->setFirstFlushPending(handle, false);
   1286         }
   1287     }
   1288 
   1289     if (err == NO_ERROR) {
   1290         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
   1291         err = sensor->activate(connection.get(), true);
   1292     }
   1293 
   1294     if (err == NO_ERROR) {
   1295         connection->updateLooperRegistration(mLooper);
   1296 
   1297         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
   1298                 SensorRegistrationInfo(handle, connection->getPackageName(),
   1299                                        samplingPeriodNs, maxBatchReportLatencyNs, true);
   1300         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1301     }
   1302 
   1303     if (err != NO_ERROR) {
   1304         // batch/activate has failed, reset our state.
   1305         cleanupWithoutDisableLocked(connection, handle);
   1306     }
   1307     return err;
   1308 }
   1309 
   1310 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
   1311     if (mInitCheck != NO_ERROR)
   1312         return mInitCheck;
   1313 
   1314     Mutex::Autolock _l(mLock);
   1315     status_t err = cleanupWithoutDisableLocked(connection, handle);
   1316     if (err == NO_ERROR) {
   1317         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1318         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
   1319 
   1320     }
   1321     if (err == NO_ERROR) {
   1322         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
   1323                 SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
   1324         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1325     }
   1326     return err;
   1327 }
   1328 
   1329 status_t SensorService::cleanupWithoutDisable(
   1330         const sp<SensorEventConnection>& connection, int handle) {
   1331     Mutex::Autolock _l(mLock);
   1332     return cleanupWithoutDisableLocked(connection, handle);
   1333 }
   1334 
   1335 status_t SensorService::cleanupWithoutDisableLocked(
   1336         const sp<SensorEventConnection>& connection, int handle) {
   1337     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1338     if (rec) {
   1339         // see if this connection becomes inactive
   1340         if (connection->removeSensor(handle)) {
   1341             BatteryService::disableSensor(connection->getUid(), handle);
   1342         }
   1343         if (connection->hasAnySensor() == false) {
   1344             connection->updateLooperRegistration(mLooper);
   1345             mActiveConnections.remove(connection);
   1346         }
   1347         // see if this sensor becomes inactive
   1348         if (rec->removeConnection(connection)) {
   1349             mActiveSensors.removeItem(handle);
   1350             mActiveVirtualSensors.erase(handle);
   1351             delete rec;
   1352         }
   1353         return NO_ERROR;
   1354     }
   1355     return BAD_VALUE;
   1356 }
   1357 
   1358 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
   1359         int handle, nsecs_t ns, const String16& opPackageName) {
   1360     if (mInitCheck != NO_ERROR)
   1361         return mInitCheck;
   1362 
   1363     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1364     if (sensor == nullptr ||
   1365         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
   1366         return BAD_VALUE;
   1367     }
   1368 
   1369     if (ns < 0)
   1370         return BAD_VALUE;
   1371 
   1372     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1373     if (ns < minDelayNs) {
   1374         ns = minDelayNs;
   1375     }
   1376 
   1377     return sensor->setDelay(connection.get(), handle, ns);
   1378 }
   1379 
   1380 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
   1381         const String16& opPackageName) {
   1382     if (mInitCheck != NO_ERROR) return mInitCheck;
   1383     SensorDevice& dev(SensorDevice::getInstance());
   1384     const int halVersion = dev.getHalDeviceVersion();
   1385     status_t err(NO_ERROR);
   1386     Mutex::Autolock _l(mLock);
   1387     // Loop through all sensors for this connection and call flush on each of them.
   1388     for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
   1389         const int handle = connection->mSensorInfo.keyAt(i);
   1390         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1391         if (sensor == nullptr) {
   1392             continue;
   1393         }
   1394         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
   1395             ALOGE("flush called on a one-shot sensor");
   1396             err = INVALID_OPERATION;
   1397             continue;
   1398         }
   1399         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
   1400             // For older devices just increment pending flush count which will send a trivial
   1401             // flush complete event.
   1402             connection->incrementPendingFlushCount(handle);
   1403         } else {
   1404             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
   1405                 err = INVALID_OPERATION;
   1406                 continue;
   1407             }
   1408             status_t err_flush = sensor->flush(connection.get(), handle);
   1409             if (err_flush == NO_ERROR) {
   1410                 SensorRecord* rec = mActiveSensors.valueFor(handle);
   1411                 if (rec != NULL) rec->addPendingFlushConnection(connection);
   1412             }
   1413             err = (err_flush != NO_ERROR) ? err_flush : err;
   1414         }
   1415     }
   1416     return err;
   1417 }
   1418 
   1419 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
   1420         const String16& opPackageName) {
   1421     const String8& requiredPermission = sensor.getRequiredPermission();
   1422 
   1423     if (requiredPermission.length() <= 0) {
   1424         return true;
   1425     }
   1426 
   1427     bool hasPermission = false;
   1428 
   1429     // Runtime permissions can't use the cache as they may change.
   1430     if (sensor.isRequiredPermissionRuntime()) {
   1431         hasPermission = checkPermission(String16(requiredPermission),
   1432                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
   1433     } else {
   1434         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
   1435     }
   1436 
   1437     if (!hasPermission) {
   1438         ALOGE("%s a sensor (%s) without holding its required permission: %s",
   1439                 operation, sensor.getName().string(), sensor.getRequiredPermission().string());
   1440         return false;
   1441     }
   1442 
   1443     const int32_t opCode = sensor.getRequiredAppOp();
   1444     if (opCode >= 0) {
   1445         AppOpsManager appOps;
   1446         if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
   1447                         != AppOpsManager::MODE_ALLOWED) {
   1448             ALOGE("%s a sensor (%s) without enabled required app op: %d",
   1449                     operation, sensor.getName().string(), opCode);
   1450             return false;
   1451         }
   1452     }
   1453 
   1454     return true;
   1455 }
   1456 
   1457 void SensorService::checkWakeLockState() {
   1458     Mutex::Autolock _l(mLock);
   1459     checkWakeLockStateLocked();
   1460 }
   1461 
   1462 void SensorService::checkWakeLockStateLocked() {
   1463     if (!mWakeLockAcquired) {
   1464         return;
   1465     }
   1466     bool releaseLock = true;
   1467     for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
   1468         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1469         if (connection != 0) {
   1470             if (connection->needsWakeLock()) {
   1471                 releaseLock = false;
   1472                 break;
   1473             }
   1474         }
   1475     }
   1476     if (releaseLock) {
   1477         setWakeLockAcquiredLocked(false);
   1478     }
   1479 }
   1480 
   1481 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
   1482     Mutex::Autolock _l(mLock);
   1483     connection->writeToSocketFromCache();
   1484     if (connection->needsWakeLock()) {
   1485         setWakeLockAcquiredLocked(true);
   1486     }
   1487 }
   1488 
   1489 void SensorService::populateActiveConnections(
   1490         SortedVector< sp<SensorEventConnection> >* activeConnections) {
   1491     Mutex::Autolock _l(mLock);
   1492     for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
   1493         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1494         if (connection != 0) {
   1495             activeConnections->add(connection);
   1496         }
   1497     }
   1498 }
   1499 
   1500 bool SensorService::isWhiteListedPackage(const String8& packageName) {
   1501     return (packageName.contains(mWhiteListedPackage.string()));
   1502 }
   1503 
   1504 bool SensorService::isOperationRestricted(const String16& opPackageName) {
   1505     Mutex::Autolock _l(mLock);
   1506     if (mCurrentOperatingMode != RESTRICTED) {
   1507         String8 package(opPackageName);
   1508         return !isWhiteListedPackage(package);
   1509     }
   1510     return false;
   1511 }
   1512 
   1513 }; // namespace android
   1514