1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.util; 28 29 import java.io.BufferedWriter; 30 import java.io.Closeable; 31 import java.io.IOException; 32 import java.io.File; 33 import java.io.FileOutputStream; 34 import java.io.FileNotFoundException; 35 import java.io.Flushable; 36 import java.io.OutputStream; 37 import java.io.OutputStreamWriter; 38 import java.io.PrintStream; 39 import java.io.UnsupportedEncodingException; 40 import java.math.BigDecimal; 41 import java.math.BigInteger; 42 import java.math.MathContext; 43 import java.math.RoundingMode; 44 import java.nio.charset.Charset; 45 import java.nio.charset.IllegalCharsetNameException; 46 import java.nio.charset.UnsupportedCharsetException; 47 import java.text.DateFormatSymbols; 48 import java.text.DecimalFormat; 49 import java.text.DecimalFormatSymbols; 50 import java.text.NumberFormat; 51 import java.time.DateTimeException; 52 import java.time.Instant; 53 import java.time.ZoneId; 54 import java.time.ZoneOffset; 55 import java.time.temporal.ChronoField; 56 import java.time.temporal.TemporalAccessor; 57 import java.time.temporal.TemporalQueries; 58 59 import libcore.icu.LocaleData; 60 import sun.misc.FpUtils; 61 import sun.misc.DoubleConsts; 62 import sun.misc.FormattedFloatingDecimal; 63 64 /** 65 * An interpreter for printf-style format strings. This class provides support 66 * for layout justification and alignment, common formats for numeric, string, 67 * and date/time data, and locale-specific output. Common Java types such as 68 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar} 69 * are supported. Limited formatting customization for arbitrary user types is 70 * provided through the {@link Formattable} interface. 71 * 72 * <p> Formatters are not necessarily safe for multithreaded access. Thread 73 * safety is optional and is the responsibility of users of methods in this 74 * class. 75 * 76 * <p> Formatted printing for the Java language is heavily inspired by C's 77 * {@code printf}. Although the format strings are similar to C, some 78 * customizations have been made to accommodate the Java language and exploit 79 * some of its features. Also, Java formatting is more strict than C's; for 80 * example, if a conversion is incompatible with a flag, an exception will be 81 * thrown. In C inapplicable flags are silently ignored. The format strings 82 * are thus intended to be recognizable to C programmers but not necessarily 83 * completely compatible with those in C. 84 * 85 * <p> Examples of expected usage: 86 * 87 * <blockquote><pre> 88 * StringBuilder sb = new StringBuilder(); 89 * // Send all output to the Appendable object sb 90 * Formatter formatter = new Formatter(sb, Locale.US); 91 * 92 * // Explicit argument indices may be used to re-order output. 93 * formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d") 94 * // -> " d c b a" 95 * 96 * // Optional locale as the first argument can be used to get 97 * // locale-specific formatting of numbers. The precision and width can be 98 * // given to round and align the value. 99 * formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E); 100 * // -> "e = +2,7183" 101 * 102 * // The '(' numeric flag may be used to format negative numbers with 103 * // parentheses rather than a minus sign. Group separators are 104 * // automatically inserted. 105 * formatter.format("Amount gained or lost since last statement: $ %(,.2f", 106 * balanceDelta); 107 * // -> "Amount gained or lost since last statement: $ (6,217.58)" 108 * </pre></blockquote> 109 * 110 * <p> Convenience methods for common formatting requests exist as illustrated 111 * by the following invocations: 112 * 113 * <blockquote><pre> 114 * // Writes a formatted string to System.out. 115 * System.out.format("Local time: %tT", Calendar.getInstance()); 116 * // -> "Local time: 13:34:18" 117 * 118 * // Writes formatted output to System.err. 119 * System.err.printf("Unable to open file '%1$s': %2$s", 120 * fileName, exception.getMessage()); 121 * // -> "Unable to open file 'food': No such file or directory" 122 * </pre></blockquote> 123 * 124 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static 125 * method {@link String#format(String,Object...) String.format}: 126 * 127 * <blockquote><pre> 128 * // Format a string containing a date. 129 * import java.util.Calendar; 130 * import java.util.GregorianCalendar; 131 * import static java.util.Calendar.*; 132 * 133 * Calendar c = new GregorianCalendar(1995, MAY, 23); 134 * String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c); 135 * // -> s == "Duke's Birthday: May 23, 1995" 136 * </pre></blockquote> 137 * 138 * <h3><a name="org">Organization</a></h3> 139 * 140 * <p> This specification is divided into two sections. The first section, <a 141 * href="#summary">Summary</a>, covers the basic formatting concepts. This 142 * section is intended for users who want to get started quickly and are 143 * familiar with formatted printing in other programming languages. The second 144 * section, <a href="#detail">Details</a>, covers the specific implementation 145 * details. It is intended for users who want more precise specification of 146 * formatting behavior. 147 * 148 * <h3><a name="summary">Summary</a></h3> 149 * 150 * <p> This section is intended to provide a brief overview of formatting 151 * concepts. For precise behavioral details, refer to the <a 152 * href="#detail">Details</a> section. 153 * 154 * <h4><a name="syntax">Format String Syntax</a></h4> 155 * 156 * <p> Every method which produces formatted output requires a <i>format 157 * string</i> and an <i>argument list</i>. The format string is a {@link 158 * String} which may contain fixed text and one or more embedded <i>format 159 * specifiers</i>. Consider the following example: 160 * 161 * <blockquote><pre> 162 * Calendar c = ...; 163 * String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); 164 * </pre></blockquote> 165 * 166 * This format string is the first argument to the {@code format} method. It 167 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and 168 * "{@code %1$tY}" which indicate how the arguments should be processed and 169 * where they should be inserted in the text. The remaining portions of the 170 * format string are fixed text including {@code "Dukes Birthday: "} and any 171 * other spaces or punctuation. 172 * 173 * The argument list consists of all arguments passed to the method after the 174 * format string. In the above example, the argument list is of size one and 175 * consists of the {@link java.util.Calendar Calendar} object {@code c}. 176 * 177 * <ul> 178 * 179 * <li> The format specifiers for general, character, and numeric types have 180 * the following syntax: 181 * 182 * <blockquote><pre> 183 * %[argument_index$][flags][width][.precision]conversion 184 * </pre></blockquote> 185 * 186 * <p> The optional <i>argument_index</i> is a decimal integer indicating the 187 * position of the argument in the argument list. The first argument is 188 * referenced by "{@code 1$}", the second by "{@code 2$}", etc. 189 * 190 * <p> The optional <i>flags</i> is a set of characters that modify the output 191 * format. The set of valid flags depends on the conversion. 192 * 193 * <p> The optional <i>width</i> is a positive decimal integer indicating 194 * the minimum number of characters to be written to the output. 195 * 196 * <p> The optional <i>precision</i> is a non-negative decimal integer usually 197 * used to restrict the number of characters. The specific behavior depends on 198 * the conversion. 199 * 200 * <p> The required <i>conversion</i> is a character indicating how the 201 * argument should be formatted. The set of valid conversions for a given 202 * argument depends on the argument's data type. 203 * 204 * <li> The format specifiers for types which are used to represents dates and 205 * times have the following syntax: 206 * 207 * <blockquote><pre> 208 * %[argument_index$][flags][width]conversion 209 * </pre></blockquote> 210 * 211 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are 212 * defined as above. 213 * 214 * <p> The required <i>conversion</i> is a two character sequence. The first 215 * character is {@code 't'} or {@code 'T'}. The second character indicates 216 * the format to be used. These characters are similar to but not completely 217 * identical to those defined by GNU {@code date} and POSIX 218 * {@code strftime(3c)}. 219 * 220 * <li> The format specifiers which do not correspond to arguments have the 221 * following syntax: 222 * 223 * <blockquote><pre> 224 * %[flags][width]conversion 225 * </pre></blockquote> 226 * 227 * <p> The optional <i>flags</i> and <i>width</i> is defined as above. 228 * 229 * <p> The required <i>conversion</i> is a character indicating content to be 230 * inserted in the output. 231 * 232 * </ul> 233 * 234 * <h4> Conversions </h4> 235 * 236 * <p> Conversions are divided into the following categories: 237 * 238 * <ol> 239 * 240 * <li> <b>General</b> - may be applied to any argument 241 * type 242 * 243 * <li> <b>Character</b> - may be applied to basic types which represent 244 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link 245 * Byte}, {@code short}, and {@link Short}. This conversion may also be 246 * applied to the types {@code int} and {@link Integer} when {@link 247 * Character#isValidCodePoint} returns {@code true} 248 * 249 * <li> <b>Numeric</b> 250 * 251 * <ol> 252 * 253 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte}, 254 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link 255 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger 256 * BigInteger} (but not {@code char} or {@link Character}) 257 * 258 * <li><b>Floating Point</b> - may be applied to Java floating-point types: 259 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link 260 * java.math.BigDecimal BigDecimal} 261 * 262 * </ol> 263 * 264 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of 265 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, 266 * {@link Date} and {@link TemporalAccessor TemporalAccessor} 267 * 268 * <li> <b>Percent</b> - produces a literal {@code '%'} 269 * (<tt>'\u0025'</tt>) 270 * 271 * <li> <b>Line Separator</b> - produces the platform-specific line separator 272 * 273 * </ol> 274 * 275 * <p> The following table summarizes the supported conversions. Conversions 276 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'}, 277 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'}, 278 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding 279 * lower-case conversion characters except that the result is converted to 280 * upper case according to the rules of the prevailing {@link java.util.Locale 281 * Locale}. The result is equivalent to the following invocation of {@link 282 * String#toUpperCase()} 283 * 284 * <pre> 285 * out.toUpperCase() </pre> 286 * 287 * <table cellpadding=5 summary="genConv"> 288 * 289 * <tr><th valign="bottom"> Conversion 290 * <th valign="bottom"> Argument Category 291 * <th valign="bottom"> Description 292 * 293 * <tr><td valign="top"> {@code 'b'}, {@code 'B'} 294 * <td valign="top"> general 295 * <td> If the argument <i>arg</i> is {@code null}, then the result is 296 * "{@code false}". If <i>arg</i> is a {@code boolean} or {@link 297 * Boolean}, then the result is the string returned by {@link 298 * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is 299 * "true". 300 * 301 * <tr><td valign="top"> {@code 'h'}, {@code 'H'} 302 * <td valign="top"> general 303 * <td> If the argument <i>arg</i> is {@code null}, then the result is 304 * "{@code null}". Otherwise, the result is obtained by invoking 305 * {@code Integer.toHexString(arg.hashCode())}. 306 * 307 * <tr><td valign="top"> {@code 's'}, {@code 'S'} 308 * <td valign="top"> general 309 * <td> If the argument <i>arg</i> is {@code null}, then the result is 310 * "{@code null}". If <i>arg</i> implements {@link Formattable}, then 311 * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the 312 * result is obtained by invoking {@code arg.toString()}. 313 * 314 * <tr><td valign="top">{@code 'c'}, {@code 'C'} 315 * <td valign="top"> character 316 * <td> The result is a Unicode character 317 * 318 * <tr><td valign="top">{@code 'd'} 319 * <td valign="top"> integral 320 * <td> The result is formatted as a decimal integer 321 * 322 * <tr><td valign="top">{@code 'o'} 323 * <td valign="top"> integral 324 * <td> The result is formatted as an octal integer 325 * 326 * <tr><td valign="top">{@code 'x'}, {@code 'X'} 327 * <td valign="top"> integral 328 * <td> The result is formatted as a hexadecimal integer 329 * 330 * <tr><td valign="top">{@code 'e'}, {@code 'E'} 331 * <td valign="top"> floating point 332 * <td> The result is formatted as a decimal number in computerized 333 * scientific notation 334 * 335 * <tr><td valign="top">{@code 'f'} 336 * <td valign="top"> floating point 337 * <td> The result is formatted as a decimal number 338 * 339 * <tr><td valign="top">{@code 'g'}, {@code 'G'} 340 * <td valign="top"> floating point 341 * <td> The result is formatted using computerized scientific notation or 342 * decimal format, depending on the precision and the value after rounding. 343 * 344 * <tr><td valign="top">{@code 'a'}, {@code 'A'} 345 * <td valign="top"> floating point 346 * <td> The result is formatted as a hexadecimal floating-point number with 347 * a significand and an exponent. This conversion is <b>not</b> supported 348 * for the {@code BigDecimal} type despite the latter's being in the 349 * <i>floating point</i> argument category. 350 * 351 * <tr><td valign="top">{@code 't'}, {@code 'T'} 352 * <td valign="top"> date/time 353 * <td> Prefix for date and time conversion characters. See <a 354 * href="#dt">Date/Time Conversions</a>. 355 * 356 * <tr><td valign="top">{@code '%'} 357 * <td valign="top"> percent 358 * <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>) 359 * 360 * <tr><td valign="top">{@code 'n'} 361 * <td valign="top"> line separator 362 * <td> The result is the platform-specific line separator 363 * 364 * </table> 365 * 366 * <p> Any characters not explicitly defined as conversions are illegal and are 367 * reserved for future extensions. 368 * 369 * <h4><a name="dt">Date/Time Conversions</a></h4> 370 * 371 * <p> The following date and time conversion suffix characters are defined for 372 * the {@code 't'} and {@code 'T'} conversions. The types are similar to but 373 * not completely identical to those defined by GNU {@code date} and POSIX 374 * {@code strftime(3c)}. Additional conversion types are provided to access 375 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the 376 * second). 377 * 378 * <p> The following conversion characters are used for formatting times: 379 * 380 * <table cellpadding=5 summary="time"> 381 * 382 * <tr><td valign="top"> {@code 'H'} 383 * <td> Hour of the day for the 24-hour clock, formatted as two digits with 384 * a leading zero as necessary i.e. {@code 00 - 23}. 385 * 386 * <tr><td valign="top">{@code 'I'} 387 * <td> Hour for the 12-hour clock, formatted as two digits with a leading 388 * zero as necessary, i.e. {@code 01 - 12}. 389 * 390 * <tr><td valign="top">{@code 'k'} 391 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. 392 * 393 * <tr><td valign="top">{@code 'l'} 394 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. 395 * 396 * <tr><td valign="top">{@code 'M'} 397 * <td> Minute within the hour formatted as two digits with a leading zero 398 * as necessary, i.e. {@code 00 - 59}. 399 * 400 * <tr><td valign="top">{@code 'S'} 401 * <td> Seconds within the minute, formatted as two digits with a leading 402 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special 403 * value required to support leap seconds). 404 * 405 * <tr><td valign="top">{@code 'L'} 406 * <td> Millisecond within the second formatted as three digits with 407 * leading zeros as necessary, i.e. {@code 000 - 999}. 408 * 409 * <tr><td valign="top">{@code 'N'} 410 * <td> Nanosecond within the second, formatted as nine digits with leading 411 * zeros as necessary, i.e. {@code 000000000 - 999999999}. 412 * 413 * <tr><td valign="top">{@code 'p'} 414 * <td> Locale-specific {@linkplain 415 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker 416 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion 417 * prefix {@code 'T'} forces this output to upper case. 418 * 419 * <tr><td valign="top">{@code 'z'} 420 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a> 421 * style numeric time zone offset from GMT, e.g. {@code -0800}. This 422 * value will be adjusted as necessary for Daylight Saving Time. For 423 * {@code long}, {@link Long}, and {@link Date} the time zone used is 424 * the {@linkplain TimeZone#getDefault() default time zone} for this 425 * instance of the Java virtual machine. 426 * 427 * <tr><td valign="top">{@code 'Z'} 428 * <td> A string representing the abbreviation for the time zone. This 429 * value will be adjusted as necessary for Daylight Saving Time. For 430 * {@code long}, {@link Long}, and {@link Date} the time zone used is 431 * the {@linkplain TimeZone#getDefault() default time zone} for this 432 * instance of the Java virtual machine. The Formatter's locale will 433 * supersede the locale of the argument (if any). 434 * 435 * <tr><td valign="top">{@code 's'} 436 * <td> Seconds since the beginning of the epoch starting at 1 January 1970 437 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to 438 * {@code Long.MAX_VALUE/1000}. 439 * 440 * <tr><td valign="top">{@code 'Q'} 441 * <td> Milliseconds since the beginning of the epoch starting at 1 January 442 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to 443 * {@code Long.MAX_VALUE}. 444 * 445 * </table> 446 * 447 * <p> The following conversion characters are used for formatting dates: 448 * 449 * <table cellpadding=5 summary="date"> 450 * 451 * <tr><td valign="top">{@code 'B'} 452 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths 453 * full month name}, e.g. {@code "January"}, {@code "February"}. 454 * 455 * <tr><td valign="top">{@code 'b'} 456 * <td> Locale-specific {@linkplain 457 * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, 458 * e.g. {@code "Jan"}, {@code "Feb"}. 459 * 460 * <tr><td valign="top">{@code 'h'} 461 * <td> Same as {@code 'b'}. 462 * 463 * <tr><td valign="top">{@code 'A'} 464 * <td> Locale-specific full name of the {@linkplain 465 * java.text.DateFormatSymbols#getWeekdays day of the week}, 466 * e.g. {@code "Sunday"}, {@code "Monday"} 467 * 468 * <tr><td valign="top">{@code 'a'} 469 * <td> Locale-specific short name of the {@linkplain 470 * java.text.DateFormatSymbols#getShortWeekdays day of the week}, 471 * e.g. {@code "Sun"}, {@code "Mon"} 472 * 473 * <tr><td valign="top">{@code 'C'} 474 * <td> Four-digit year divided by {@code 100}, formatted as two digits 475 * with leading zero as necessary, i.e. {@code 00 - 99} 476 * 477 * <tr><td valign="top">{@code 'Y'} 478 * <td> Year, formatted as at least four digits with leading zeros as 479 * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian 480 * calendar. 481 * 482 * <tr><td valign="top">{@code 'y'} 483 * <td> Last two digits of the year, formatted with leading zeros as 484 * necessary, i.e. {@code 00 - 99}. 485 * 486 * <tr><td valign="top">{@code 'j'} 487 * <td> Day of year, formatted as three digits with leading zeros as 488 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. 489 * 490 * <tr><td valign="top">{@code 'm'} 491 * <td> Month, formatted as two digits with leading zeros as necessary, 492 * i.e. {@code 01 - 13}. 493 * 494 * <tr><td valign="top">{@code 'd'} 495 * <td> Day of month, formatted as two digits with leading zeros as 496 * necessary, i.e. {@code 01 - 31} 497 * 498 * <tr><td valign="top">{@code 'e'} 499 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}. 500 * 501 * </table> 502 * 503 * <p> The following conversion characters are used for formatting common 504 * date/time compositions. 505 * 506 * <table cellpadding=5 summary="composites"> 507 * 508 * <tr><td valign="top">{@code 'R'} 509 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"} 510 * 511 * <tr><td valign="top">{@code 'T'} 512 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. 513 * 514 * <tr><td valign="top">{@code 'r'} 515 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}. 516 * The location of the morning or afternoon marker ({@code '%Tp'}) may be 517 * locale-dependent. 518 * 519 * <tr><td valign="top">{@code 'D'} 520 * <td> Date formatted as {@code "%tm/%td/%ty"}. 521 * 522 * <tr><td valign="top">{@code 'F'} 523 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a> 524 * complete date formatted as {@code "%tY-%tm-%td"}. 525 * 526 * <tr><td valign="top">{@code 'c'} 527 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, 528 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. 529 * 530 * </table> 531 * 532 * <p> Any characters not explicitly defined as date/time conversion suffixes 533 * are illegal and are reserved for future extensions. 534 * 535 * <h4> Flags </h4> 536 * 537 * <p> The following table summarizes the supported flags. <i>y</i> means the 538 * flag is supported for the indicated argument types. 539 * 540 * <table cellpadding=5 summary="genConv"> 541 * 542 * <tr><th valign="bottom"> Flag <th valign="bottom"> General 543 * <th valign="bottom"> Character <th valign="bottom"> Integral 544 * <th valign="bottom"> Floating Point 545 * <th valign="bottom"> Date/Time 546 * <th valign="bottom"> Description 547 * 548 * <tr><td> '-' <td align="center" valign="top"> y 549 * <td align="center" valign="top"> y 550 * <td align="center" valign="top"> y 551 * <td align="center" valign="top"> y 552 * <td align="center" valign="top"> y 553 * <td> The result will be left-justified. 554 * 555 * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup> 556 * <td align="center" valign="top"> - 557 * <td align="center" valign="top"> y<sup>3</sup> 558 * <td align="center" valign="top"> y 559 * <td align="center" valign="top"> - 560 * <td> The result should use a conversion-dependent alternate form 561 * 562 * <tr><td> '+' <td align="center" valign="top"> - 563 * <td align="center" valign="top"> - 564 * <td align="center" valign="top"> y<sup>4</sup> 565 * <td align="center" valign="top"> y 566 * <td align="center" valign="top"> - 567 * <td> The result will always include a sign 568 * 569 * <tr><td> ' ' <td align="center" valign="top"> - 570 * <td align="center" valign="top"> - 571 * <td align="center" valign="top"> y<sup>4</sup> 572 * <td align="center" valign="top"> y 573 * <td align="center" valign="top"> - 574 * <td> The result will include a leading space for positive values 575 * 576 * <tr><td> '0' <td align="center" valign="top"> - 577 * <td align="center" valign="top"> - 578 * <td align="center" valign="top"> y 579 * <td align="center" valign="top"> y 580 * <td align="center" valign="top"> - 581 * <td> The result will be zero-padded 582 * 583 * <tr><td> ',' <td align="center" valign="top"> - 584 * <td align="center" valign="top"> - 585 * <td align="center" valign="top"> y<sup>2</sup> 586 * <td align="center" valign="top"> y<sup>5</sup> 587 * <td align="center" valign="top"> - 588 * <td> The result will include locale-specific {@linkplain 589 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators} 590 * 591 * <tr><td> '(' <td align="center" valign="top"> - 592 * <td align="center" valign="top"> - 593 * <td align="center" valign="top"> y<sup>4</sup> 594 * <td align="center" valign="top"> y<sup>5</sup> 595 * <td align="center"> - 596 * <td> The result will enclose negative numbers in parentheses 597 * 598 * </table> 599 * 600 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}. 601 * 602 * <p> <sup>2</sup> For {@code 'd'} conversion only. 603 * 604 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'} 605 * conversions only. 606 * 607 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and 608 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger} 609 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link 610 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}. 611 * 612 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'}, 613 * {@code 'g'}, and {@code 'G'} conversions only. 614 * 615 * <p> Any characters not explicitly defined as flags are illegal and are 616 * reserved for future extensions. 617 * 618 * <h4> Width </h4> 619 * 620 * <p> The width is the minimum number of characters to be written to the 621 * output. For the line separator conversion, width is not applicable; if it 622 * is provided, an exception will be thrown. 623 * 624 * <h4> Precision </h4> 625 * 626 * <p> For general argument types, the precision is the maximum number of 627 * characters to be written to the output. 628 * 629 * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'}, 630 * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the 631 * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the 632 * precision is the total number of digits in the resulting magnitude after 633 * rounding. 634 * 635 * <p> For character, integral, and date/time argument types and the percent 636 * and line separator conversions, the precision is not applicable; if a 637 * precision is provided, an exception will be thrown. 638 * 639 * <h4> Argument Index </h4> 640 * 641 * <p> The argument index is a decimal integer indicating the position of the 642 * argument in the argument list. The first argument is referenced by 643 * "{@code 1$}", the second by "{@code 2$}", etc. 644 * 645 * <p> Another way to reference arguments by position is to use the 646 * {@code '<'} (<tt>'\u003c'</tt>) flag, which causes the argument for 647 * the previous format specifier to be re-used. For example, the following two 648 * statements would produce identical strings: 649 * 650 * <blockquote><pre> 651 * Calendar c = ...; 652 * String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); 653 * 654 * String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c); 655 * </pre></blockquote> 656 * 657 * <hr> 658 * <h3><a name="detail">Details</a></h3> 659 * 660 * <p> This section is intended to provide behavioral details for formatting, 661 * including conditions and exceptions, supported data types, localization, and 662 * interactions between flags, conversions, and data types. For an overview of 663 * formatting concepts, refer to the <a href="#summary">Summary</a> 664 * 665 * <p> Any characters not explicitly defined as conversions, date/time 666 * conversion suffixes, or flags are illegal and are reserved for 667 * future extensions. Use of such a character in a format string will 668 * cause an {@link UnknownFormatConversionException} or {@link 669 * UnknownFormatFlagsException} to be thrown. 670 * 671 * <p> If the format specifier contains a width or precision with an invalid 672 * value or which is otherwise unsupported, then a {@link 673 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException} 674 * respectively will be thrown. 675 * 676 * <p> If a format specifier contains a conversion character that is not 677 * applicable to the corresponding argument, then an {@link 678 * IllegalFormatConversionException} will be thrown. 679 * 680 * <p> All specified exceptions may be thrown by any of the {@code format} 681 * methods of {@code Formatter} as well as by any {@code format} convenience 682 * methods such as {@link String#format(String,Object...) String.format} and 683 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}. 684 * 685 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'}, 686 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, 687 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the 688 * corresponding lower-case conversion characters except that the result is 689 * converted to upper case according to the rules of the prevailing {@link 690 * java.util.Locale Locale}. The result is equivalent to the following 691 * invocation of {@link String#toUpperCase()} 692 * 693 * <pre> 694 * out.toUpperCase() </pre> 695 * 696 * <h4><a name="dgen">General</a></h4> 697 * 698 * <p> The following general conversions may be applied to any argument type: 699 * 700 * <table cellpadding=5 summary="dgConv"> 701 * 702 * <tr><td valign="top"> {@code 'b'} 703 * <td valign="top"> <tt>'\u0062'</tt> 704 * <td> Produces either "{@code true}" or "{@code false}" as returned by 705 * {@link Boolean#toString(boolean)}. 706 * 707 * <p> If the argument is {@code null}, then the result is 708 * "{@code false}". If the argument is a {@code boolean} or {@link 709 * Boolean}, then the result is the string returned by {@link 710 * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is 711 * "{@code true}". 712 * 713 * <p> If the {@code '#'} flag is given, then a {@link 714 * FormatFlagsConversionMismatchException} will be thrown. 715 * 716 * <tr><td valign="top"> {@code 'B'} 717 * <td valign="top"> <tt>'\u0042'</tt> 718 * <td> The upper-case variant of {@code 'b'}. 719 * 720 * <tr><td valign="top"> {@code 'h'} 721 * <td valign="top"> <tt>'\u0068'</tt> 722 * <td> Produces a string representing the hash code value of the object. 723 * 724 * <p> If the argument, <i>arg</i> is {@code null}, then the 725 * result is "{@code null}". Otherwise, the result is obtained 726 * by invoking {@code Integer.toHexString(arg.hashCode())}. 727 * 728 * <p> If the {@code '#'} flag is given, then a {@link 729 * FormatFlagsConversionMismatchException} will be thrown. 730 * 731 * <tr><td valign="top"> {@code 'H'} 732 * <td valign="top"> <tt>'\u0048'</tt> 733 * <td> The upper-case variant of {@code 'h'}. 734 * 735 * <tr><td valign="top"> {@code 's'} 736 * <td valign="top"> <tt>'\u0073'</tt> 737 * <td> Produces a string. 738 * 739 * <p> If the argument is {@code null}, then the result is 740 * "{@code null}". If the argument implements {@link Formattable}, then 741 * its {@link Formattable#formatTo formatTo} method is invoked. 742 * Otherwise, the result is obtained by invoking the argument's 743 * {@code toString()} method. 744 * 745 * <p> If the {@code '#'} flag is given and the argument is not a {@link 746 * Formattable} , then a {@link FormatFlagsConversionMismatchException} 747 * will be thrown. 748 * 749 * <tr><td valign="top"> {@code 'S'} 750 * <td valign="top"> <tt>'\u0053'</tt> 751 * <td> The upper-case variant of {@code 's'}. 752 * 753 * </table> 754 * 755 * <p> The following <a name="dFlags">flags</a> apply to general conversions: 756 * 757 * <table cellpadding=5 summary="dFlags"> 758 * 759 * <tr><td valign="top"> {@code '-'} 760 * <td valign="top"> <tt>'\u002d'</tt> 761 * <td> Left justifies the output. Spaces (<tt>'\u0020'</tt>) will be 762 * added at the end of the converted value as required to fill the minimum 763 * width of the field. If the width is not provided, then a {@link 764 * MissingFormatWidthException} will be thrown. If this flag is not given 765 * then the output will be right-justified. 766 * 767 * <tr><td valign="top"> {@code '#'} 768 * <td valign="top"> <tt>'\u0023'</tt> 769 * <td> Requires the output use an alternate form. The definition of the 770 * form is specified by the conversion. 771 * 772 * </table> 773 * 774 * <p> The <a name="genWidth">width</a> is the minimum number of characters to 775 * be written to the 776 * output. If the length of the converted value is less than the width then 777 * the output will be padded by <tt>' '</tt> (<tt>'\u0020'</tt>) 778 * until the total number of characters equals the width. The padding is on 779 * the left by default. If the {@code '-'} flag is given, then the padding 780 * will be on the right. If the width is not specified then there is no 781 * minimum. 782 * 783 * <p> The precision is the maximum number of characters to be written to the 784 * output. The precision is applied before the width, thus the output will be 785 * truncated to {@code precision} characters even if the width is greater than 786 * the precision. If the precision is not specified then there is no explicit 787 * limit on the number of characters. 788 * 789 * <h4><a name="dchar">Character</a></h4> 790 * 791 * This conversion may be applied to {@code char} and {@link Character}. It 792 * may also be applied to the types {@code byte}, {@link Byte}, 793 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when 794 * {@link Character#isValidCodePoint} returns {@code true}. If it returns 795 * {@code false} then an {@link IllegalFormatCodePointException} will be 796 * thrown. 797 * 798 * <table cellpadding=5 summary="charConv"> 799 * 800 * <tr><td valign="top"> {@code 'c'} 801 * <td valign="top"> <tt>'\u0063'</tt> 802 * <td> Formats the argument as a Unicode character as described in <a 803 * href="../lang/Character.html#unicode">Unicode Character 804 * Representation</a>. This may be more than one 16-bit {@code char} in 805 * the case where the argument represents a supplementary character. 806 * 807 * <p> If the {@code '#'} flag is given, then a {@link 808 * FormatFlagsConversionMismatchException} will be thrown. 809 * 810 * <tr><td valign="top"> {@code 'C'} 811 * <td valign="top"> <tt>'\u0043'</tt> 812 * <td> The upper-case variant of {@code 'c'}. 813 * 814 * </table> 815 * 816 * <p> The {@code '-'} flag defined for <a href="#dFlags">General 817 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link 818 * FormatFlagsConversionMismatchException} will be thrown. 819 * 820 * <p> The width is defined as for <a href="#genWidth">General conversions</a>. 821 * 822 * <p> The precision is not applicable. If the precision is specified then an 823 * {@link IllegalFormatPrecisionException} will be thrown. 824 * 825 * <h4><a name="dnum">Numeric</a></h4> 826 * 827 * <p> Numeric conversions are divided into the following categories: 828 * 829 * <ol> 830 * 831 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a> 832 * 833 * <li> <a href="#dnbint"><b>BigInteger</b></a> 834 * 835 * <li> <a href="#dndec"><b>Float and Double</b></a> 836 * 837 * <li> <a href="#dnbdec"><b>BigDecimal</b></a> 838 * 839 * </ol> 840 * 841 * <p> Numeric types will be formatted according to the following algorithm: 842 * 843 * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b> 844 * 845 * <p> After digits are obtained for the integer part, fractional part, and 846 * exponent (as appropriate for the data type), the following transformation 847 * is applied: 848 * 849 * <ol> 850 * 851 * <li> Each digit character <i>d</i> in the string is replaced by a 852 * locale-specific digit computed relative to the current locale's 853 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit} 854 * <i>z</i>; that is <i>d - </i> {@code '0'} 855 * <i> + z</i>. 856 * 857 * <li> If a decimal separator is present, a locale-specific {@linkplain 858 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is 859 * substituted. 860 * 861 * <li> If the {@code ','} (<tt>'\u002c'</tt>) 862 * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain 863 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is 864 * inserted by scanning the integer part of the string from least significant 865 * to most significant digits and inserting a separator at intervals defined by 866 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping 867 * size}. 868 * 869 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain 870 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted 871 * after the sign character, if any, and before the first non-zero digit, until 872 * the length of the string is equal to the requested field width. 873 * 874 * <li> If the value is negative and the {@code '('} flag is given, then a 875 * {@code '('} (<tt>'\u0028'</tt>) is prepended and a {@code ')'} 876 * (<tt>'\u0029'</tt>) is appended. 877 * 878 * <li> If the value is negative (or floating-point negative zero) and 879 * {@code '('} flag is not given, then a {@code '-'} (<tt>'\u002d'</tt>) 880 * is prepended. 881 * 882 * <li> If the {@code '+'} flag is given and the value is positive or zero (or 883 * floating-point positive zero), then a {@code '+'} (<tt>'\u002b'</tt>) 884 * will be prepended. 885 * 886 * </ol> 887 * 888 * <p> If the value is NaN or positive infinity the literal strings "NaN" or 889 * "Infinity" respectively, will be output. If the value is negative infinity, 890 * then the output will be "(Infinity)" if the {@code '('} flag is given 891 * otherwise the output will be "-Infinity". These values are not localized. 892 * 893 * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a> 894 * 895 * <p> The following conversions may be applied to {@code byte}, {@link Byte}, 896 * {@code short}, {@link Short}, {@code int} and {@link Integer}, 897 * {@code long}, and {@link Long}. 898 * 899 * <table cellpadding=5 summary="IntConv"> 900 * 901 * <tr><td valign="top"> {@code 'd'} 902 * <td valign="top"> <tt>'\u0064'</tt> 903 * <td> Formats the argument as a decimal integer. The <a 904 * href="#L10nAlgorithm">localization algorithm</a> is applied. 905 * 906 * <p> If the {@code '0'} flag is given and the value is negative, then 907 * the zero padding will occur after the sign. 908 * 909 * <p> If the {@code '#'} flag is given then a {@link 910 * FormatFlagsConversionMismatchException} will be thrown. 911 * 912 * <tr><td valign="top"> {@code 'o'} 913 * <td valign="top"> <tt>'\u006f'</tt> 914 * <td> Formats the argument as an integer in base eight. No localization 915 * is applied. 916 * 917 * <p> If <i>x</i> is negative then the result will be an unsigned value 918 * generated by adding 2<sup>n</sup> to the value where {@code n} is the 919 * number of bits in the type as returned by the static {@code SIZE} field 920 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, 921 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} 922 * classes as appropriate. 923 * 924 * <p> If the {@code '#'} flag is given then the output will always begin 925 * with the radix indicator {@code '0'}. 926 * 927 * <p> If the {@code '0'} flag is given then the output will be padded 928 * with leading zeros to the field width following any indication of sign. 929 * 930 * <p> If {@code '('}, {@code '+'}, ' ', or {@code ','} flags 931 * are given then a {@link FormatFlagsConversionMismatchException} will be 932 * thrown. 933 * 934 * <tr><td valign="top"> {@code 'x'} 935 * <td valign="top"> <tt>'\u0078'</tt> 936 * <td> Formats the argument as an integer in base sixteen. No 937 * localization is applied. 938 * 939 * <p> If <i>x</i> is negative then the result will be an unsigned value 940 * generated by adding 2<sup>n</sup> to the value where {@code n} is the 941 * number of bits in the type as returned by the static {@code SIZE} field 942 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, 943 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} 944 * classes as appropriate. 945 * 946 * <p> If the {@code '#'} flag is given then the output will always begin 947 * with the radix indicator {@code "0x"}. 948 * 949 * <p> If the {@code '0'} flag is given then the output will be padded to 950 * the field width with leading zeros after the radix indicator or sign (if 951 * present). 952 * 953 * <p> If {@code '('}, <tt>' '</tt>, {@code '+'}, or 954 * {@code ','} flags are given then a {@link 955 * FormatFlagsConversionMismatchException} will be thrown. 956 * 957 * <tr><td valign="top"> {@code 'X'} 958 * <td valign="top"> <tt>'\u0058'</tt> 959 * <td> The upper-case variant of {@code 'x'}. The entire string 960 * representing the number will be converted to {@linkplain 961 * String#toUpperCase upper case} including the {@code 'x'} (if any) and 962 * all hexadecimal digits {@code 'a'} - {@code 'f'} 963 * (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>). 964 * 965 * </table> 966 * 967 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and 968 * both the {@code '#'} and the {@code '0'} flags are given, then result will 969 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or 970 * {@code "0X"} for hexadecimal), some number of zeros (based on the width), 971 * and the value. 972 * 973 * <p> If the {@code '-'} flag is not given, then the space padding will occur 974 * before the sign. 975 * 976 * <p> The following <a name="intFlags">flags</a> apply to numeric integral 977 * conversions: 978 * 979 * <table cellpadding=5 summary="intFlags"> 980 * 981 * <tr><td valign="top"> {@code '+'} 982 * <td valign="top"> <tt>'\u002b'</tt> 983 * <td> Requires the output to include a positive sign for all positive 984 * numbers. If this flag is not given then only negative values will 985 * include a sign. 986 * 987 * <p> If both the {@code '+'} and <tt>' '</tt> flags are given 988 * then an {@link IllegalFormatFlagsException} will be thrown. 989 * 990 * <tr><td valign="top"> <tt>' '</tt> 991 * <td valign="top"> <tt>'\u0020'</tt> 992 * <td> Requires the output to include a single extra space 993 * (<tt>'\u0020'</tt>) for non-negative values. 994 * 995 * <p> If both the {@code '+'} and <tt>' '</tt> flags are given 996 * then an {@link IllegalFormatFlagsException} will be thrown. 997 * 998 * <tr><td valign="top"> {@code '0'} 999 * <td valign="top"> <tt>'\u0030'</tt> 1000 * <td> Requires the output to be padded with leading {@linkplain 1001 * java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field 1002 * width following any sign or radix indicator except when converting NaN 1003 * or infinity. If the width is not provided, then a {@link 1004 * MissingFormatWidthException} will be thrown. 1005 * 1006 * <p> If both the {@code '-'} and {@code '0'} flags are given then an 1007 * {@link IllegalFormatFlagsException} will be thrown. 1008 * 1009 * <tr><td valign="top"> {@code ','} 1010 * <td valign="top"> <tt>'\u002c'</tt> 1011 * <td> Requires the output to include the locale-specific {@linkplain 1012 * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as 1013 * described in the <a href="#L10nGroup">"group" section</a> of the 1014 * localization algorithm. 1015 * 1016 * <tr><td valign="top"> {@code '('} 1017 * <td valign="top"> <tt>'\u0028'</tt> 1018 * <td> Requires the output to prepend a {@code '('} 1019 * (<tt>'\u0028'</tt>) and append a {@code ')'} 1020 * (<tt>'\u0029'</tt>) to negative values. 1021 * 1022 * </table> 1023 * 1024 * <p> If no <a name="intdFlags">flags</a> are given the default formatting is 1025 * as follows: 1026 * 1027 * <ul> 1028 * 1029 * <li> The output is right-justified within the {@code width} 1030 * 1031 * <li> Negative numbers begin with a {@code '-'} (<tt>'\u002d'</tt>) 1032 * 1033 * <li> Positive numbers and zero do not include a sign or extra leading 1034 * space 1035 * 1036 * <li> No grouping separators are included 1037 * 1038 * </ul> 1039 * 1040 * <p> The <a name="intWidth">width</a> is the minimum number of characters to 1041 * be written to the output. This includes any signs, digits, grouping 1042 * separators, radix indicator, and parentheses. If the length of the 1043 * converted value is less than the width then the output will be padded by 1044 * spaces (<tt>'\u0020'</tt>) until the total number of characters equals 1045 * width. The padding is on the left by default. If {@code '-'} flag is 1046 * given then the padding will be on the right. If width is not specified then 1047 * there is no minimum. 1048 * 1049 * <p> The precision is not applicable. If precision is specified then an 1050 * {@link IllegalFormatPrecisionException} will be thrown. 1051 * 1052 * <p><a name="dnbint"><b> BigInteger </b></a> 1053 * 1054 * <p> The following conversions may be applied to {@link 1055 * java.math.BigInteger}. 1056 * 1057 * <table cellpadding=5 summary="BIntConv"> 1058 * 1059 * <tr><td valign="top"> {@code 'd'} 1060 * <td valign="top"> <tt>'\u0064'</tt> 1061 * <td> Requires the output to be formatted as a decimal integer. The <a 1062 * href="#L10nAlgorithm">localization algorithm</a> is applied. 1063 * 1064 * <p> If the {@code '#'} flag is given {@link 1065 * FormatFlagsConversionMismatchException} will be thrown. 1066 * 1067 * <tr><td valign="top"> {@code 'o'} 1068 * <td valign="top"> <tt>'\u006f'</tt> 1069 * <td> Requires the output to be formatted as an integer in base eight. 1070 * No localization is applied. 1071 * 1072 * <p> If <i>x</i> is negative then the result will be a signed value 1073 * beginning with {@code '-'} (<tt>'\u002d'</tt>). Signed output is 1074 * allowed for this type because unlike the primitive types it is not 1075 * possible to create an unsigned equivalent without assuming an explicit 1076 * data-type size. 1077 * 1078 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given 1079 * then the result will begin with {@code '+'} (<tt>'\u002b'</tt>). 1080 * 1081 * <p> If the {@code '#'} flag is given then the output will always begin 1082 * with {@code '0'} prefix. 1083 * 1084 * <p> If the {@code '0'} flag is given then the output will be padded 1085 * with leading zeros to the field width following any indication of sign. 1086 * 1087 * <p> If the {@code ','} flag is given then a {@link 1088 * FormatFlagsConversionMismatchException} will be thrown. 1089 * 1090 * <tr><td valign="top"> {@code 'x'} 1091 * <td valign="top"> <tt>'\u0078'</tt> 1092 * <td> Requires the output to be formatted as an integer in base 1093 * sixteen. No localization is applied. 1094 * 1095 * <p> If <i>x</i> is negative then the result will be a signed value 1096 * beginning with {@code '-'} (<tt>'\u002d'</tt>). Signed output is 1097 * allowed for this type because unlike the primitive types it is not 1098 * possible to create an unsigned equivalent without assuming an explicit 1099 * data-type size. 1100 * 1101 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given 1102 * then the result will begin with {@code '+'} (<tt>'\u002b'</tt>). 1103 * 1104 * <p> If the {@code '#'} flag is given then the output will always begin 1105 * with the radix indicator {@code "0x"}. 1106 * 1107 * <p> If the {@code '0'} flag is given then the output will be padded to 1108 * the field width with leading zeros after the radix indicator or sign (if 1109 * present). 1110 * 1111 * <p> If the {@code ','} flag is given then a {@link 1112 * FormatFlagsConversionMismatchException} will be thrown. 1113 * 1114 * <tr><td valign="top"> {@code 'X'} 1115 * <td valign="top"> <tt>'\u0058'</tt> 1116 * <td> The upper-case variant of {@code 'x'}. The entire string 1117 * representing the number will be converted to {@linkplain 1118 * String#toUpperCase upper case} including the {@code 'x'} (if any) and 1119 * all hexadecimal digits {@code 'a'} - {@code 'f'} 1120 * (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>). 1121 * 1122 * </table> 1123 * 1124 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and 1125 * both the {@code '#'} and the {@code '0'} flags are given, then result will 1126 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or 1127 * {@code "0X"} for hexadecimal), some number of zeros (based on the width), 1128 * and the value. 1129 * 1130 * <p> If the {@code '0'} flag is given and the value is negative, then the 1131 * zero padding will occur after the sign. 1132 * 1133 * <p> If the {@code '-'} flag is not given, then the space padding will occur 1134 * before the sign. 1135 * 1136 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and 1137 * Long apply. The <a href="#intdFlags">default behavior</a> when no flags are 1138 * given is the same as for Byte, Short, Integer, and Long. 1139 * 1140 * <p> The specification of <a href="#intWidth">width</a> is the same as 1141 * defined for Byte, Short, Integer, and Long. 1142 * 1143 * <p> The precision is not applicable. If precision is specified then an 1144 * {@link IllegalFormatPrecisionException} will be thrown. 1145 * 1146 * <p><a name="dndec"><b> Float and Double</b></a> 1147 * 1148 * <p> The following conversions may be applied to {@code float}, {@link 1149 * Float}, {@code double} and {@link Double}. 1150 * 1151 * <table cellpadding=5 summary="floatConv"> 1152 * 1153 * <tr><td valign="top"> {@code 'e'} 1154 * <td valign="top"> <tt>'\u0065'</tt> 1155 * <td> Requires the output to be formatted using <a 1156 * name="scientific">computerized scientific notation</a>. The <a 1157 * href="#L10nAlgorithm">localization algorithm</a> is applied. 1158 * 1159 * <p> The formatting of the magnitude <i>m</i> depends upon its value. 1160 * 1161 * <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or 1162 * "Infinity", respectively, will be output. These values are not 1163 * localized. 1164 * 1165 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent 1166 * will be {@code "+00"}. 1167 * 1168 * <p> Otherwise, the result is a string that represents the sign and 1169 * magnitude (absolute value) of the argument. The formatting of the sign 1170 * is described in the <a href="#L10nAlgorithm">localization 1171 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its 1172 * value. 1173 * 1174 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup> 1175 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the 1176 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so 1177 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the 1178 * integer part of <i>a</i>, as a single decimal digit, followed by the 1179 * decimal separator followed by decimal digits representing the fractional 1180 * part of <i>a</i>, followed by the lower-case locale-specific {@linkplain 1181 * java.text.DecimalFormatSymbols#getExponentSeparator exponent separator} 1182 * (e.g. {@code 'e'}), followed by the sign of the exponent, followed 1183 * by a representation of <i>n</i> as a decimal integer, as produced by the 1184 * method {@link Long#toString(long, int)}, and zero-padded to include at 1185 * least two digits. 1186 * 1187 * <p> The number of digits in the result for the fractional part of 1188 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not 1189 * specified then the default value is {@code 6}. If the precision is less 1190 * than the number of digits which would appear after the decimal point in 1191 * the string returned by {@link Float#toString(float)} or {@link 1192 * Double#toString(double)} respectively, then the value will be rounded 1193 * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up 1194 * algorithm}. Otherwise, zeros may be appended to reach the precision. 1195 * For a canonical representation of the value, use {@link 1196 * Float#toString(float)} or {@link Double#toString(double)} as 1197 * appropriate. 1198 * 1199 * <p>If the {@code ','} flag is given, then an {@link 1200 * FormatFlagsConversionMismatchException} will be thrown. 1201 * 1202 * <tr><td valign="top"> {@code 'E'} 1203 * <td valign="top"> <tt>'\u0045'</tt> 1204 * <td> The upper-case variant of {@code 'e'}. The exponent symbol 1205 * will be the upper-case locale-specific {@linkplain 1206 * java.text.DecimalFormatSymbols#getExponentSeparator exponent separator} 1207 * (e.g. {@code 'E'}). 1208 * 1209 * <tr><td valign="top"> {@code 'g'} 1210 * <td valign="top"> <tt>'\u0067'</tt> 1211 * <td> Requires the output to be formatted in general scientific notation 1212 * as described below. The <a href="#L10nAlgorithm">localization 1213 * algorithm</a> is applied. 1214 * 1215 * <p> After rounding for the precision, the formatting of the resulting 1216 * magnitude <i>m</i> depends on its value. 1217 * 1218 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less 1219 * than 10<sup>precision</sup> then it is represented in <i><a 1220 * href="#decimal">decimal format</a></i>. 1221 * 1222 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to 1223 * 10<sup>precision</sup>, then it is represented in <i><a 1224 * href="#scientific">computerized scientific notation</a></i>. 1225 * 1226 * <p> The total number of significant digits in <i>m</i> is equal to the 1227 * precision. If the precision is not specified, then the default value is 1228 * {@code 6}. If the precision is {@code 0}, then it is taken to be 1229 * {@code 1}. 1230 * 1231 * <p> If the {@code '#'} flag is given then an {@link 1232 * FormatFlagsConversionMismatchException} will be thrown. 1233 * 1234 * <tr><td valign="top"> {@code 'G'} 1235 * <td valign="top"> <tt>'\u0047'</tt> 1236 * <td> The upper-case variant of {@code 'g'}. 1237 * 1238 * <tr><td valign="top"> {@code 'f'} 1239 * <td valign="top"> <tt>'\u0066'</tt> 1240 * <td> Requires the output to be formatted using <a name="decimal">decimal 1241 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is 1242 * applied. 1243 * 1244 * <p> The result is a string that represents the sign and magnitude 1245 * (absolute value) of the argument. The formatting of the sign is 1246 * described in the <a href="#L10nAlgorithm">localization 1247 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its 1248 * value. 1249 * 1250 * <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or 1251 * "Infinity", respectively, will be output. These values are not 1252 * localized. 1253 * 1254 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no 1255 * leading zeroes, followed by the decimal separator followed by one or 1256 * more decimal digits representing the fractional part of <i>m</i>. 1257 * 1258 * <p> The number of digits in the result for the fractional part of 1259 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not 1260 * specified then the default value is {@code 6}. If the precision is less 1261 * than the number of digits which would appear after the decimal point in 1262 * the string returned by {@link Float#toString(float)} or {@link 1263 * Double#toString(double)} respectively, then the value will be rounded 1264 * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up 1265 * algorithm}. Otherwise, zeros may be appended to reach the precision. 1266 * For a canonical representation of the value, use {@link 1267 * Float#toString(float)} or {@link Double#toString(double)} as 1268 * appropriate. 1269 * 1270 * <tr><td valign="top"> {@code 'a'} 1271 * <td valign="top"> <tt>'\u0061'</tt> 1272 * <td> Requires the output to be formatted in hexadecimal exponential 1273 * form. No localization is applied. 1274 * 1275 * <p> The result is a string that represents the sign and magnitude 1276 * (absolute value) of the argument <i>x</i>. 1277 * 1278 * <p> If <i>x</i> is negative or a negative-zero value then the result 1279 * will begin with {@code '-'} (<tt>'\u002d'</tt>). 1280 * 1281 * <p> If <i>x</i> is positive or a positive-zero value and the 1282 * {@code '+'} flag is given then the result will begin with {@code '+'} 1283 * (<tt>'\u002b'</tt>). 1284 * 1285 * <p> The formatting of the magnitude <i>m</i> depends upon its value. 1286 * 1287 * <ul> 1288 * 1289 * <li> If the value is NaN or infinite, the literal strings "NaN" or 1290 * "Infinity", respectively, will be output. 1291 * 1292 * <li> If <i>m</i> is zero then it is represented by the string 1293 * {@code "0x0.0p0"}. 1294 * 1295 * <li> If <i>m</i> is a {@code double} value with a normalized 1296 * representation then substrings are used to represent the significand and 1297 * exponent fields. The significand is represented by the characters 1298 * {@code "0x1."} followed by the hexadecimal representation of the rest 1299 * of the significand as a fraction. The exponent is represented by 1300 * {@code 'p'} (<tt>'\u0070'</tt>) followed by a decimal string of the 1301 * unbiased exponent as if produced by invoking {@link 1302 * Integer#toString(int) Integer.toString} on the exponent value. If the 1303 * precision is specified, the value is rounded to the given number of 1304 * hexadecimal digits. 1305 * 1306 * <li> If <i>m</i> is a {@code double} value with a subnormal 1307 * representation then, unless the precision is specified to be in the range 1308 * 1 through 12, inclusive, the significand is represented by the characters 1309 * {@code '0x0.'} followed by the hexadecimal representation of the rest of 1310 * the significand as a fraction, and the exponent represented by 1311 * {@code 'p-1022'}. If the precision is in the interval 1312 * [1, 12], the subnormal value is normalized such that it 1313 * begins with the characters {@code '0x1.'}, rounded to the number of 1314 * hexadecimal digits of precision, and the exponent adjusted 1315 * accordingly. Note that there must be at least one nonzero digit in a 1316 * subnormal significand. 1317 * 1318 * </ul> 1319 * 1320 * <p> If the {@code '('} or {@code ','} flags are given, then a {@link 1321 * FormatFlagsConversionMismatchException} will be thrown. 1322 * 1323 * <tr><td valign="top"> {@code 'A'} 1324 * <td valign="top"> <tt>'\u0041'</tt> 1325 * <td> The upper-case variant of {@code 'a'}. The entire string 1326 * representing the number will be converted to upper case including the 1327 * {@code 'x'} (<tt>'\u0078'</tt>) and {@code 'p'} 1328 * (<tt>'\u0070'</tt> and all hexadecimal digits {@code 'a'} - 1329 * {@code 'f'} (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>). 1330 * 1331 * </table> 1332 * 1333 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and 1334 * Long apply. 1335 * 1336 * <p> If the {@code '#'} flag is given, then the decimal separator will 1337 * always be present. 1338 * 1339 * <p> If no <a name="floatdFlags">flags</a> are given the default formatting 1340 * is as follows: 1341 * 1342 * <ul> 1343 * 1344 * <li> The output is right-justified within the {@code width} 1345 * 1346 * <li> Negative numbers begin with a {@code '-'} 1347 * 1348 * <li> Positive numbers and positive zero do not include a sign or extra 1349 * leading space 1350 * 1351 * <li> No grouping separators are included 1352 * 1353 * <li> The decimal separator will only appear if a digit follows it 1354 * 1355 * </ul> 1356 * 1357 * <p> The <a name="floatDWidth">width</a> is the minimum number of characters 1358 * to be written to the output. This includes any signs, digits, grouping 1359 * separators, decimal separators, exponential symbol, radix indicator, 1360 * parentheses, and strings representing infinity and NaN as applicable. If 1361 * the length of the converted value is less than the width then the output 1362 * will be padded by spaces (<tt>'\u0020'</tt>) until the total number of 1363 * characters equals width. The padding is on the left by default. If the 1364 * {@code '-'} flag is given then the padding will be on the right. If width 1365 * is not specified then there is no minimum. 1366 * 1367 * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'}, 1368 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits 1369 * after the decimal separator. If the precision is not specified, then it is 1370 * assumed to be {@code 6}. 1371 * 1372 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is 1373 * the total number of significant digits in the resulting magnitude after 1374 * rounding. If the precision is not specified, then the default value is 1375 * {@code 6}. If the precision is {@code 0}, then it is taken to be 1376 * {@code 1}. 1377 * 1378 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision 1379 * is the number of hexadecimal digits after the radix point. If the 1380 * precision is not provided, then all of the digits as returned by {@link 1381 * Double#toHexString(double)} will be output. 1382 * 1383 * <p><a name="dnbdec"><b> BigDecimal </b></a> 1384 * 1385 * <p> The following conversions may be applied {@link java.math.BigDecimal 1386 * BigDecimal}. 1387 * 1388 * <table cellpadding=5 summary="floatConv"> 1389 * 1390 * <tr><td valign="top"> {@code 'e'} 1391 * <td valign="top"> <tt>'\u0065'</tt> 1392 * <td> Requires the output to be formatted using <a 1393 * name="bscientific">computerized scientific notation</a>. The <a 1394 * href="#L10nAlgorithm">localization algorithm</a> is applied. 1395 * 1396 * <p> The formatting of the magnitude <i>m</i> depends upon its value. 1397 * 1398 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent 1399 * will be {@code "+00"}. 1400 * 1401 * <p> Otherwise, the result is a string that represents the sign and 1402 * magnitude (absolute value) of the argument. The formatting of the sign 1403 * is described in the <a href="#L10nAlgorithm">localization 1404 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its 1405 * value. 1406 * 1407 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup> 1408 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the 1409 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so 1410 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the 1411 * integer part of <i>a</i>, as a single decimal digit, followed by the 1412 * decimal separator followed by decimal digits representing the fractional 1413 * part of <i>a</i>, followed by the exponent symbol {@code 'e'} 1414 * (<tt>'\u0065'</tt>), followed by the sign of the exponent, followed 1415 * by a representation of <i>n</i> as a decimal integer, as produced by the 1416 * method {@link Long#toString(long, int)}, and zero-padded to include at 1417 * least two digits. 1418 * 1419 * <p> The number of digits in the result for the fractional part of 1420 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not 1421 * specified then the default value is {@code 6}. If the precision is 1422 * less than the number of digits to the right of the decimal point then 1423 * the value will be rounded using the 1424 * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up 1425 * algorithm}. Otherwise, zeros may be appended to reach the precision. 1426 * For a canonical representation of the value, use {@link 1427 * BigDecimal#toString()}. 1428 * 1429 * <p> If the {@code ','} flag is given, then an {@link 1430 * FormatFlagsConversionMismatchException} will be thrown. 1431 * 1432 * <tr><td valign="top"> {@code 'E'} 1433 * <td valign="top"> <tt>'\u0045'</tt> 1434 * <td> The upper-case variant of {@code 'e'}. The exponent symbol 1435 * will be {@code 'E'} (<tt>'\u0045'</tt>). 1436 * 1437 * <tr><td valign="top"> {@code 'g'} 1438 * <td valign="top"> <tt>'\u0067'</tt> 1439 * <td> Requires the output to be formatted in general scientific notation 1440 * as described below. The <a href="#L10nAlgorithm">localization 1441 * algorithm</a> is applied. 1442 * 1443 * <p> After rounding for the precision, the formatting of the resulting 1444 * magnitude <i>m</i> depends on its value. 1445 * 1446 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less 1447 * than 10<sup>precision</sup> then it is represented in <i><a 1448 * href="#bdecimal">decimal format</a></i>. 1449 * 1450 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to 1451 * 10<sup>precision</sup>, then it is represented in <i><a 1452 * href="#bscientific">computerized scientific notation</a></i>. 1453 * 1454 * <p> The total number of significant digits in <i>m</i> is equal to the 1455 * precision. If the precision is not specified, then the default value is 1456 * {@code 6}. If the precision is {@code 0}, then it is taken to be 1457 * {@code 1}. 1458 * 1459 * <p> If the {@code '#'} flag is given then an {@link 1460 * FormatFlagsConversionMismatchException} will be thrown. 1461 * 1462 * <tr><td valign="top"> {@code 'G'} 1463 * <td valign="top"> <tt>'\u0047'</tt> 1464 * <td> The upper-case variant of {@code 'g'}. 1465 * 1466 * <tr><td valign="top"> {@code 'f'} 1467 * <td valign="top"> <tt>'\u0066'</tt> 1468 * <td> Requires the output to be formatted using <a name="bdecimal">decimal 1469 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is 1470 * applied. 1471 * 1472 * <p> The result is a string that represents the sign and magnitude 1473 * (absolute value) of the argument. The formatting of the sign is 1474 * described in the <a href="#L10nAlgorithm">localization 1475 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its 1476 * value. 1477 * 1478 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no 1479 * leading zeroes, followed by the decimal separator followed by one or 1480 * more decimal digits representing the fractional part of <i>m</i>. 1481 * 1482 * <p> The number of digits in the result for the fractional part of 1483 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not 1484 * specified then the default value is {@code 6}. If the precision is 1485 * less than the number of digits to the right of the decimal point 1486 * then the value will be rounded using the 1487 * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up 1488 * algorithm}. Otherwise, zeros may be appended to reach the precision. 1489 * For a canonical representation of the value, use {@link 1490 * BigDecimal#toString()}. 1491 * 1492 * </table> 1493 * 1494 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and 1495 * Long apply. 1496 * 1497 * <p> If the {@code '#'} flag is given, then the decimal separator will 1498 * always be present. 1499 * 1500 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are 1501 * given is the same as for Float and Double. 1502 * 1503 * <p> The specification of <a href="#floatDWidth">width</a> and <a 1504 * href="#floatDPrec">precision</a> is the same as defined for Float and 1505 * Double. 1506 * 1507 * <h4><a name="ddt">Date/Time</a></h4> 1508 * 1509 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link 1510 * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor} 1511 * 1512 * <table cellpadding=5 summary="DTConv"> 1513 * 1514 * <tr><td valign="top"> {@code 't'} 1515 * <td valign="top"> <tt>'\u0074'</tt> 1516 * <td> Prefix for date and time conversion characters. 1517 * <tr><td valign="top"> {@code 'T'} 1518 * <td valign="top"> <tt>'\u0054'</tt> 1519 * <td> The upper-case variant of {@code 't'}. 1520 * 1521 * </table> 1522 * 1523 * <p> The following date and time conversion character suffixes are defined 1524 * for the {@code 't'} and {@code 'T'} conversions. The types are similar to 1525 * but not completely identical to those defined by GNU {@code date} and 1526 * POSIX {@code strftime(3c)}. Additional conversion types are provided to 1527 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds 1528 * within the second). 1529 * 1530 * <p> The following conversion characters are used for formatting times: 1531 * 1532 * <table cellpadding=5 summary="time"> 1533 * 1534 * <tr><td valign="top"> {@code 'H'} 1535 * <td valign="top"> <tt>'\u0048'</tt> 1536 * <td> Hour of the day for the 24-hour clock, formatted as two digits with 1537 * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00} 1538 * corresponds to midnight. 1539 * 1540 * <tr><td valign="top">{@code 'I'} 1541 * <td valign="top"> <tt>'\u0049'</tt> 1542 * <td> Hour for the 12-hour clock, formatted as two digits with a leading 1543 * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to 1544 * one o'clock (either morning or afternoon). 1545 * 1546 * <tr><td valign="top">{@code 'k'} 1547 * <td valign="top"> <tt>'\u006b'</tt> 1548 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. 1549 * {@code 0} corresponds to midnight. 1550 * 1551 * <tr><td valign="top">{@code 'l'} 1552 * <td valign="top"> <tt>'\u006c'</tt> 1553 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1} 1554 * corresponds to one o'clock (either morning or afternoon). 1555 * 1556 * <tr><td valign="top">{@code 'M'} 1557 * <td valign="top"> <tt>'\u004d'</tt> 1558 * <td> Minute within the hour formatted as two digits with a leading zero 1559 * as necessary, i.e. {@code 00 - 59}. 1560 * 1561 * <tr><td valign="top">{@code 'S'} 1562 * <td valign="top"> <tt>'\u0053'</tt> 1563 * <td> Seconds within the minute, formatted as two digits with a leading 1564 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special 1565 * value required to support leap seconds). 1566 * 1567 * <tr><td valign="top">{@code 'L'} 1568 * <td valign="top"> <tt>'\u004c'</tt> 1569 * <td> Millisecond within the second formatted as three digits with 1570 * leading zeros as necessary, i.e. {@code 000 - 999}. 1571 * 1572 * <tr><td valign="top">{@code 'N'} 1573 * <td valign="top"> <tt>'\u004e'</tt> 1574 * <td> Nanosecond within the second, formatted as nine digits with leading 1575 * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision 1576 * of this value is limited by the resolution of the underlying operating 1577 * system or hardware. 1578 * 1579 * <tr><td valign="top">{@code 'p'} 1580 * <td valign="top"> <tt>'\u0070'</tt> 1581 * <td> Locale-specific {@linkplain 1582 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker 1583 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the 1584 * conversion prefix {@code 'T'} forces this output to upper case. (Note 1585 * that {@code 'p'} produces lower-case output. This is different from 1586 * GNU {@code date} and POSIX {@code strftime(3c)} which produce 1587 * upper-case output.) 1588 * 1589 * <tr><td valign="top">{@code 'z'} 1590 * <td valign="top"> <tt>'\u007a'</tt> 1591 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a> 1592 * style numeric time zone offset from GMT, e.g. {@code -0800}. This 1593 * value will be adjusted as necessary for Daylight Saving Time. For 1594 * {@code long}, {@link Long}, and {@link Date} the time zone used is 1595 * the {@linkplain TimeZone#getDefault() default time zone} for this 1596 * instance of the Java virtual machine. 1597 * 1598 * <tr><td valign="top">{@code 'Z'} 1599 * <td valign="top"> <tt>'\u005a'</tt> 1600 * <td> A string representing the abbreviation for the time zone. This 1601 * value will be adjusted as necessary for Daylight Saving Time. For 1602 * {@code long}, {@link Long}, and {@link Date} the time zone used is 1603 * the {@linkplain TimeZone#getDefault() default time zone} for this 1604 * instance of the Java virtual machine. The Formatter's locale will 1605 * supersede the locale of the argument (if any). 1606 * 1607 * <tr><td valign="top">{@code 's'} 1608 * <td valign="top"> <tt>'\u0073'</tt> 1609 * <td> Seconds since the beginning of the epoch starting at 1 January 1970 1610 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to 1611 * {@code Long.MAX_VALUE/1000}. 1612 * 1613 * <tr><td valign="top">{@code 'Q'} 1614 * <td valign="top"> <tt>'\u004f'</tt> 1615 * <td> Milliseconds since the beginning of the epoch starting at 1 January 1616 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to 1617 * {@code Long.MAX_VALUE}. The precision of this value is limited by 1618 * the resolution of the underlying operating system or hardware. 1619 * 1620 * </table> 1621 * 1622 * <p> The following conversion characters are used for formatting dates: 1623 * 1624 * <table cellpadding=5 summary="date"> 1625 * 1626 * <tr><td valign="top">{@code 'B'} 1627 * <td valign="top"> <tt>'\u0042'</tt> 1628 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths 1629 * full month name}, e.g. {@code "January"}, {@code "February"}. 1630 * 1631 * <tr><td valign="top">{@code 'b'} 1632 * <td valign="top"> <tt>'\u0062'</tt> 1633 * <td> Locale-specific {@linkplain 1634 * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, 1635 * e.g. {@code "Jan"}, {@code "Feb"}. 1636 * 1637 * <tr><td valign="top">{@code 'h'} 1638 * <td valign="top"> <tt>'\u0068'</tt> 1639 * <td> Same as {@code 'b'}. 1640 * 1641 * <tr><td valign="top">{@code 'A'} 1642 * <td valign="top"> <tt>'\u0041'</tt> 1643 * <td> Locale-specific full name of the {@linkplain 1644 * java.text.DateFormatSymbols#getWeekdays day of the week}, 1645 * e.g. {@code "Sunday"}, {@code "Monday"} 1646 * 1647 * <tr><td valign="top">{@code 'a'} 1648 * <td valign="top"> <tt>'\u0061'</tt> 1649 * <td> Locale-specific short name of the {@linkplain 1650 * java.text.DateFormatSymbols#getShortWeekdays day of the week}, 1651 * e.g. {@code "Sun"}, {@code "Mon"} 1652 * 1653 * <tr><td valign="top">{@code 'C'} 1654 * <td valign="top"> <tt>'\u0043'</tt> 1655 * <td> Four-digit year divided by {@code 100}, formatted as two digits 1656 * with leading zero as necessary, i.e. {@code 00 - 99} 1657 * 1658 * <tr><td valign="top">{@code 'Y'} 1659 * <td valign="top"> <tt>'\u0059'</tt> <td> Year, formatted to at least 1660 * four digits with leading zeros as necessary, e.g. {@code 0092} equals 1661 * {@code 92} CE for the Gregorian calendar. 1662 * 1663 * <tr><td valign="top">{@code 'y'} 1664 * <td valign="top"> <tt>'\u0079'</tt> 1665 * <td> Last two digits of the year, formatted with leading zeros as 1666 * necessary, i.e. {@code 00 - 99}. 1667 * 1668 * <tr><td valign="top">{@code 'j'} 1669 * <td valign="top"> <tt>'\u006a'</tt> 1670 * <td> Day of year, formatted as three digits with leading zeros as 1671 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. 1672 * {@code 001} corresponds to the first day of the year. 1673 * 1674 * <tr><td valign="top">{@code 'm'} 1675 * <td valign="top"> <tt>'\u006d'</tt> 1676 * <td> Month, formatted as two digits with leading zeros as necessary, 1677 * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the 1678 * year and ("{@code 13}" is a special value required to support lunar 1679 * calendars). 1680 * 1681 * <tr><td valign="top">{@code 'd'} 1682 * <td valign="top"> <tt>'\u0064'</tt> 1683 * <td> Day of month, formatted as two digits with leading zeros as 1684 * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day 1685 * of the month. 1686 * 1687 * <tr><td valign="top">{@code 'e'} 1688 * <td valign="top"> <tt>'\u0065'</tt> 1689 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where 1690 * "{@code 1}" is the first day of the month. 1691 * 1692 * </table> 1693 * 1694 * <p> The following conversion characters are used for formatting common 1695 * date/time compositions. 1696 * 1697 * <table cellpadding=5 summary="composites"> 1698 * 1699 * <tr><td valign="top">{@code 'R'} 1700 * <td valign="top"> <tt>'\u0052'</tt> 1701 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"} 1702 * 1703 * <tr><td valign="top">{@code 'T'} 1704 * <td valign="top"> <tt>'\u0054'</tt> 1705 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. 1706 * 1707 * <tr><td valign="top">{@code 'r'} 1708 * <td valign="top"> <tt>'\u0072'</tt> 1709 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS 1710 * %Tp"}. The location of the morning or afternoon marker 1711 * ({@code '%Tp'}) may be locale-dependent. 1712 * 1713 * <tr><td valign="top">{@code 'D'} 1714 * <td valign="top"> <tt>'\u0044'</tt> 1715 * <td> Date formatted as {@code "%tm/%td/%ty"}. 1716 * 1717 * <tr><td valign="top">{@code 'F'} 1718 * <td valign="top"> <tt>'\u0046'</tt> 1719 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a> 1720 * complete date formatted as {@code "%tY-%tm-%td"}. 1721 * 1722 * <tr><td valign="top">{@code 'c'} 1723 * <td valign="top"> <tt>'\u0063'</tt> 1724 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, 1725 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. 1726 * 1727 * </table> 1728 * 1729 * <p> The {@code '-'} flag defined for <a href="#dFlags">General 1730 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link 1731 * FormatFlagsConversionMismatchException} will be thrown. 1732 * 1733 * <p> The width is the minimum number of characters to 1734 * be written to the output. If the length of the converted value is less than 1735 * the {@code width} then the output will be padded by spaces 1736 * (<tt>'\u0020'</tt>) until the total number of characters equals width. 1737 * The padding is on the left by default. If the {@code '-'} flag is given 1738 * then the padding will be on the right. If width is not specified then there 1739 * is no minimum. 1740 * 1741 * <p> The precision is not applicable. If the precision is specified then an 1742 * {@link IllegalFormatPrecisionException} will be thrown. 1743 * 1744 * <h4><a name="dper">Percent</a></h4> 1745 * 1746 * <p> The conversion does not correspond to any argument. 1747 * 1748 * <table cellpadding=5 summary="DTConv"> 1749 * 1750 * <tr><td valign="top">{@code '%'} 1751 * <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>) 1752 * 1753 * <p> The width is the minimum number of characters to 1754 * be written to the output including the {@code '%'}. If the length of the 1755 * converted value is less than the {@code width} then the output will be 1756 * padded by spaces (<tt>'\u0020'</tt>) until the total number of 1757 * characters equals width. The padding is on the left. If width is not 1758 * specified then just the {@code '%'} is output. 1759 * 1760 * <p> The {@code '-'} flag defined for <a href="#dFlags">General 1761 * conversions</a> applies. If any other flags are provided, then a 1762 * {@link FormatFlagsConversionMismatchException} will be thrown. 1763 * 1764 * <p> The precision is not applicable. If the precision is specified an 1765 * {@link IllegalFormatPrecisionException} will be thrown. 1766 * 1767 * </table> 1768 * 1769 * <h4><a name="dls">Line Separator</a></h4> 1770 * 1771 * <p> The conversion does not correspond to any argument. 1772 * 1773 * <table cellpadding=5 summary="DTConv"> 1774 * 1775 * <tr><td valign="top">{@code 'n'} 1776 * <td> the platform-specific line separator as returned by {@link 1777 * System#getProperty System.getProperty("line.separator")}. 1778 * 1779 * </table> 1780 * 1781 * <p> Flags, width, and precision are not applicable. If any are provided an 1782 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException}, 1783 * and {@link IllegalFormatPrecisionException}, respectively will be thrown. 1784 * 1785 * <h4><a name="dpos">Argument Index</a></h4> 1786 * 1787 * <p> Format specifiers can reference arguments in three ways: 1788 * 1789 * <ul> 1790 * 1791 * <li> <i>Explicit indexing</i> is used when the format specifier contains an 1792 * argument index. The argument index is a decimal integer indicating the 1793 * position of the argument in the argument list. The first argument is 1794 * referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument 1795 * may be referenced more than once. 1796 * 1797 * <p> For example: 1798 * 1799 * <blockquote><pre> 1800 * formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s", 1801 * "a", "b", "c", "d") 1802 * // -> "d c b a d c b a" 1803 * </pre></blockquote> 1804 * 1805 * <li> <i>Relative indexing</i> is used when the format specifier contains a 1806 * {@code '<'} (<tt>'\u003c'</tt>) flag which causes the argument for 1807 * the previous format specifier to be re-used. If there is no previous 1808 * argument, then a {@link MissingFormatArgumentException} is thrown. 1809 * 1810 * <blockquote><pre> 1811 * formatter.format("%s %s %<s %<s", "a", "b", "c", "d") 1812 * // -> "a b b b" 1813 * // "c" and "d" are ignored because they are not referenced 1814 * </pre></blockquote> 1815 * 1816 * <li> <i>Ordinary indexing</i> is used when the format specifier contains 1817 * neither an argument index nor a {@code '<'} flag. Each format specifier 1818 * which uses ordinary indexing is assigned a sequential implicit index into 1819 * argument list which is independent of the indices used by explicit or 1820 * relative indexing. 1821 * 1822 * <blockquote><pre> 1823 * formatter.format("%s %s %s %s", "a", "b", "c", "d") 1824 * // -> "a b c d" 1825 * </pre></blockquote> 1826 * 1827 * </ul> 1828 * 1829 * <p> It is possible to have a format string which uses all forms of indexing, 1830 * for example: 1831 * 1832 * <blockquote><pre> 1833 * formatter.format("%2$s %s %<s %s", "a", "b", "c", "d") 1834 * // -> "b a a b" 1835 * // "c" and "d" are ignored because they are not referenced 1836 * </pre></blockquote> 1837 * 1838 * <p> The maximum number of arguments is limited by the maximum dimension of a 1839 * Java array as defined by 1840 * <cite>The Java™ Virtual Machine Specification</cite>. 1841 * If the argument index is does not correspond to an 1842 * available argument, then a {@link MissingFormatArgumentException} is thrown. 1843 * 1844 * <p> If there are more arguments than format specifiers, the extra arguments 1845 * are ignored. 1846 * 1847 * <p> Unless otherwise specified, passing a {@code null} argument to any 1848 * method or constructor in this class will cause a {@link 1849 * NullPointerException} to be thrown. 1850 * 1851 * @author Iris Clark 1852 * @since 1.5 1853 */ 1854 public final class Formatter implements Closeable, Flushable { 1855 private Appendable a; 1856 private final Locale l; 1857 1858 private IOException lastException; 1859 1860 private final char zero; 1861 private static double scaleUp; 1862 1863 // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign) 1864 // + 3 (max # exp digits) + 4 (error) = 30 1865 private static final int MAX_FD_CHARS = 30; 1866 1867 /** 1868 * Returns a charset object for the given charset name. 1869 * @throws NullPointerException is csn is null 1870 * @throws UnsupportedEncodingException if the charset is not supported 1871 */ 1872 private static Charset toCharset(String csn) 1873 throws UnsupportedEncodingException 1874 { 1875 Objects.requireNonNull(csn, "charsetName"); 1876 try { 1877 return Charset.forName(csn); 1878 } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) { 1879 // UnsupportedEncodingException should be thrown 1880 throw new UnsupportedEncodingException(csn); 1881 } 1882 } 1883 1884 private static final Appendable nonNullAppendable(Appendable a) { 1885 if (a == null) 1886 return new StringBuilder(); 1887 1888 return a; 1889 } 1890 1891 /* Private constructors */ 1892 private Formatter(Locale l, Appendable a) { 1893 this.a = a; 1894 this.l = l; 1895 this.zero = getZero(l); 1896 } 1897 1898 private Formatter(Charset charset, Locale l, File file) 1899 throws FileNotFoundException 1900 { 1901 this(l, 1902 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset))); 1903 } 1904 1905 /** 1906 * Constructs a new formatter. 1907 * 1908 * <p> The destination of the formatted output is a {@link StringBuilder} 1909 * which may be retrieved by invoking {@link #out out()} and whose 1910 * current content may be converted into a string by invoking {@link 1911 * #toString toString()}. The locale used is the {@linkplain 1912 * Locale#getDefault(Locale.Category) default locale} for 1913 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 1914 * virtual machine. 1915 */ 1916 public Formatter() { 1917 this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder()); 1918 } 1919 1920 /** 1921 * Constructs a new formatter with the specified destination. 1922 * 1923 * <p> The locale used is the {@linkplain 1924 * Locale#getDefault(Locale.Category) default locale} for 1925 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 1926 * virtual machine. 1927 * 1928 * @param a 1929 * Destination for the formatted output. If {@code a} is 1930 * {@code null} then a {@link StringBuilder} will be created. 1931 */ 1932 public Formatter(Appendable a) { 1933 this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a)); 1934 } 1935 1936 /** 1937 * Constructs a new formatter with the specified locale. 1938 * 1939 * <p> The destination of the formatted output is a {@link StringBuilder} 1940 * which may be retrieved by invoking {@link #out out()} and whose current 1941 * content may be converted into a string by invoking {@link #toString 1942 * toString()}. 1943 * 1944 * @param l 1945 * The {@linkplain java.util.Locale locale} to apply during 1946 * formatting. If {@code l} is {@code null} then no localization 1947 * is applied. 1948 */ 1949 public Formatter(Locale l) { 1950 this(l, new StringBuilder()); 1951 } 1952 1953 /** 1954 * Constructs a new formatter with the specified destination and locale. 1955 * 1956 * @param a 1957 * Destination for the formatted output. If {@code a} is 1958 * {@code null} then a {@link StringBuilder} will be created. 1959 * 1960 * @param l 1961 * The {@linkplain java.util.Locale locale} to apply during 1962 * formatting. If {@code l} is {@code null} then no localization 1963 * is applied. 1964 */ 1965 public Formatter(Appendable a, Locale l) { 1966 this(l, nonNullAppendable(a)); 1967 } 1968 1969 /** 1970 * Constructs a new formatter with the specified file name. 1971 * 1972 * <p> The charset used is the {@linkplain 1973 * java.nio.charset.Charset#defaultCharset() default charset} for this 1974 * instance of the Java virtual machine. 1975 * 1976 * <p> The locale used is the {@linkplain 1977 * Locale#getDefault(Locale.Category) default locale} for 1978 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 1979 * virtual machine. 1980 * 1981 * @param fileName 1982 * The name of the file to use as the destination of this 1983 * formatter. If the file exists then it will be truncated to 1984 * zero size; otherwise, a new file will be created. The output 1985 * will be written to the file and is buffered. 1986 * 1987 * @throws SecurityException 1988 * If a security manager is present and {@link 1989 * SecurityManager#checkWrite checkWrite(fileName)} denies write 1990 * access to the file 1991 * 1992 * @throws FileNotFoundException 1993 * If the given file name does not denote an existing, writable 1994 * regular file and a new regular file of that name cannot be 1995 * created, or if some other error occurs while opening or 1996 * creating the file 1997 */ 1998 public Formatter(String fileName) throws FileNotFoundException { 1999 this(Locale.getDefault(Locale.Category.FORMAT), 2000 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName)))); 2001 } 2002 2003 /** 2004 * Constructs a new formatter with the specified file name and charset. 2005 * 2006 * <p> The locale used is the {@linkplain 2007 * Locale#getDefault(Locale.Category) default locale} for 2008 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2009 * virtual machine. 2010 * 2011 * @param fileName 2012 * The name of the file to use as the destination of this 2013 * formatter. If the file exists then it will be truncated to 2014 * zero size; otherwise, a new file will be created. The output 2015 * will be written to the file and is buffered. 2016 * 2017 * @param csn 2018 * The name of a supported {@linkplain java.nio.charset.Charset 2019 * charset} 2020 * 2021 * @throws FileNotFoundException 2022 * If the given file name does not denote an existing, writable 2023 * regular file and a new regular file of that name cannot be 2024 * created, or if some other error occurs while opening or 2025 * creating the file 2026 * 2027 * @throws SecurityException 2028 * If a security manager is present and {@link 2029 * SecurityManager#checkWrite checkWrite(fileName)} denies write 2030 * access to the file 2031 * 2032 * @throws UnsupportedEncodingException 2033 * If the named charset is not supported 2034 */ 2035 public Formatter(String fileName, String csn) 2036 throws FileNotFoundException, UnsupportedEncodingException 2037 { 2038 this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT)); 2039 } 2040 2041 /** 2042 * Constructs a new formatter with the specified file name, charset, and 2043 * locale. 2044 * 2045 * @param fileName 2046 * The name of the file to use as the destination of this 2047 * formatter. If the file exists then it will be truncated to 2048 * zero size; otherwise, a new file will be created. The output 2049 * will be written to the file and is buffered. 2050 * 2051 * @param csn 2052 * The name of a supported {@linkplain java.nio.charset.Charset 2053 * charset} 2054 * 2055 * @param l 2056 * The {@linkplain java.util.Locale locale} to apply during 2057 * formatting. If {@code l} is {@code null} then no localization 2058 * is applied. 2059 * 2060 * @throws FileNotFoundException 2061 * If the given file name does not denote an existing, writable 2062 * regular file and a new regular file of that name cannot be 2063 * created, or if some other error occurs while opening or 2064 * creating the file 2065 * 2066 * @throws SecurityException 2067 * If a security manager is present and {@link 2068 * SecurityManager#checkWrite checkWrite(fileName)} denies write 2069 * access to the file 2070 * 2071 * @throws UnsupportedEncodingException 2072 * If the named charset is not supported 2073 */ 2074 public Formatter(String fileName, String csn, Locale l) 2075 throws FileNotFoundException, UnsupportedEncodingException 2076 { 2077 this(toCharset(csn), l, new File(fileName)); 2078 } 2079 2080 /** 2081 * Constructs a new formatter with the specified file. 2082 * 2083 * <p> The charset used is the {@linkplain 2084 * java.nio.charset.Charset#defaultCharset() default charset} for this 2085 * instance of the Java virtual machine. 2086 * 2087 * <p> The locale used is the {@linkplain 2088 * Locale#getDefault(Locale.Category) default locale} for 2089 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2090 * virtual machine. 2091 * 2092 * @param file 2093 * The file to use as the destination of this formatter. If the 2094 * file exists then it will be truncated to zero size; otherwise, 2095 * a new file will be created. The output will be written to the 2096 * file and is buffered. 2097 * 2098 * @throws SecurityException 2099 * If a security manager is present and {@link 2100 * SecurityManager#checkWrite checkWrite(file.getPath())} denies 2101 * write access to the file 2102 * 2103 * @throws FileNotFoundException 2104 * If the given file object does not denote an existing, writable 2105 * regular file and a new regular file of that name cannot be 2106 * created, or if some other error occurs while opening or 2107 * creating the file 2108 */ 2109 public Formatter(File file) throws FileNotFoundException { 2110 this(Locale.getDefault(Locale.Category.FORMAT), 2111 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)))); 2112 } 2113 2114 /** 2115 * Constructs a new formatter with the specified file and charset. 2116 * 2117 * <p> The locale used is the {@linkplain 2118 * Locale#getDefault(Locale.Category) default locale} for 2119 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2120 * virtual machine. 2121 * 2122 * @param file 2123 * The file to use as the destination of this formatter. If the 2124 * file exists then it will be truncated to zero size; otherwise, 2125 * a new file will be created. The output will be written to the 2126 * file and is buffered. 2127 * 2128 * @param csn 2129 * The name of a supported {@linkplain java.nio.charset.Charset 2130 * charset} 2131 * 2132 * @throws FileNotFoundException 2133 * If the given file object does not denote an existing, writable 2134 * regular file and a new regular file of that name cannot be 2135 * created, or if some other error occurs while opening or 2136 * creating the file 2137 * 2138 * @throws SecurityException 2139 * If a security manager is present and {@link 2140 * SecurityManager#checkWrite checkWrite(file.getPath())} denies 2141 * write access to the file 2142 * 2143 * @throws UnsupportedEncodingException 2144 * If the named charset is not supported 2145 */ 2146 public Formatter(File file, String csn) 2147 throws FileNotFoundException, UnsupportedEncodingException 2148 { 2149 this(file, csn, Locale.getDefault(Locale.Category.FORMAT)); 2150 } 2151 2152 /** 2153 * Constructs a new formatter with the specified file, charset, and 2154 * locale. 2155 * 2156 * @param file 2157 * The file to use as the destination of this formatter. If the 2158 * file exists then it will be truncated to zero size; otherwise, 2159 * a new file will be created. The output will be written to the 2160 * file and is buffered. 2161 * 2162 * @param csn 2163 * The name of a supported {@linkplain java.nio.charset.Charset 2164 * charset} 2165 * 2166 * @param l 2167 * The {@linkplain java.util.Locale locale} to apply during 2168 * formatting. If {@code l} is {@code null} then no localization 2169 * is applied. 2170 * 2171 * @throws FileNotFoundException 2172 * If the given file object does not denote an existing, writable 2173 * regular file and a new regular file of that name cannot be 2174 * created, or if some other error occurs while opening or 2175 * creating the file 2176 * 2177 * @throws SecurityException 2178 * If a security manager is present and {@link 2179 * SecurityManager#checkWrite checkWrite(file.getPath())} denies 2180 * write access to the file 2181 * 2182 * @throws UnsupportedEncodingException 2183 * If the named charset is not supported 2184 */ 2185 public Formatter(File file, String csn, Locale l) 2186 throws FileNotFoundException, UnsupportedEncodingException 2187 { 2188 this(toCharset(csn), l, file); 2189 } 2190 2191 /** 2192 * Constructs a new formatter with the specified print stream. 2193 * 2194 * <p> The locale used is the {@linkplain 2195 * Locale#getDefault(Locale.Category) default locale} for 2196 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2197 * virtual machine. 2198 * 2199 * <p> Characters are written to the given {@link java.io.PrintStream 2200 * PrintStream} object and are therefore encoded using that object's 2201 * charset. 2202 * 2203 * @param ps 2204 * The stream to use as the destination of this formatter. 2205 */ 2206 public Formatter(PrintStream ps) { 2207 this(Locale.getDefault(Locale.Category.FORMAT), 2208 (Appendable)Objects.requireNonNull(ps)); 2209 } 2210 2211 /** 2212 * Constructs a new formatter with the specified output stream. 2213 * 2214 * <p> The charset used is the {@linkplain 2215 * java.nio.charset.Charset#defaultCharset() default charset} for this 2216 * instance of the Java virtual machine. 2217 * 2218 * <p> The locale used is the {@linkplain 2219 * Locale#getDefault(Locale.Category) default locale} for 2220 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2221 * virtual machine. 2222 * 2223 * @param os 2224 * The output stream to use as the destination of this formatter. 2225 * The output will be buffered. 2226 */ 2227 public Formatter(OutputStream os) { 2228 this(Locale.getDefault(Locale.Category.FORMAT), 2229 new BufferedWriter(new OutputStreamWriter(os))); 2230 } 2231 2232 /** 2233 * Constructs a new formatter with the specified output stream and 2234 * charset. 2235 * 2236 * <p> The locale used is the {@linkplain 2237 * Locale#getDefault(Locale.Category) default locale} for 2238 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java 2239 * virtual machine. 2240 * 2241 * @param os 2242 * The output stream to use as the destination of this formatter. 2243 * The output will be buffered. 2244 * 2245 * @param csn 2246 * The name of a supported {@linkplain java.nio.charset.Charset 2247 * charset} 2248 * 2249 * @throws UnsupportedEncodingException 2250 * If the named charset is not supported 2251 */ 2252 public Formatter(OutputStream os, String csn) 2253 throws UnsupportedEncodingException 2254 { 2255 this(os, csn, Locale.getDefault(Locale.Category.FORMAT)); 2256 } 2257 2258 /** 2259 * Constructs a new formatter with the specified output stream, charset, 2260 * and locale. 2261 * 2262 * @param os 2263 * The output stream to use as the destination of this formatter. 2264 * The output will be buffered. 2265 * 2266 * @param csn 2267 * The name of a supported {@linkplain java.nio.charset.Charset 2268 * charset} 2269 * 2270 * @param l 2271 * The {@linkplain java.util.Locale locale} to apply during 2272 * formatting. If {@code l} is {@code null} then no localization 2273 * is applied. 2274 * 2275 * @throws UnsupportedEncodingException 2276 * If the named charset is not supported 2277 */ 2278 public Formatter(OutputStream os, String csn, Locale l) 2279 throws UnsupportedEncodingException 2280 { 2281 this(l, new BufferedWriter(new OutputStreamWriter(os, csn))); 2282 } 2283 2284 private static char getZero(Locale l) { 2285 if ((l != null) && !l.equals(Locale.US)) { 2286 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); 2287 return dfs.getZeroDigit(); 2288 } else { 2289 return '0'; 2290 } 2291 } 2292 2293 /** 2294 * Returns the locale set by the construction of this formatter. 2295 * 2296 * <p> The {@link #format(java.util.Locale,String,Object...) format} method 2297 * for this object which has a locale argument does not change this value. 2298 * 2299 * @return {@code null} if no localization is applied, otherwise a 2300 * locale 2301 * 2302 * @throws FormatterClosedException 2303 * If this formatter has been closed by invoking its {@link 2304 * #close()} method 2305 */ 2306 public Locale locale() { 2307 ensureOpen(); 2308 return l; 2309 } 2310 2311 /** 2312 * Returns the destination for the output. 2313 * 2314 * @return The destination for the output 2315 * 2316 * @throws FormatterClosedException 2317 * If this formatter has been closed by invoking its {@link 2318 * #close()} method 2319 */ 2320 public Appendable out() { 2321 ensureOpen(); 2322 return a; 2323 } 2324 2325 /** 2326 * Returns the result of invoking {@code toString()} on the destination 2327 * for the output. For example, the following code formats text into a 2328 * {@link StringBuilder} then retrieves the resultant string: 2329 * 2330 * <blockquote><pre> 2331 * Formatter f = new Formatter(); 2332 * f.format("Last reboot at %tc", lastRebootDate); 2333 * String s = f.toString(); 2334 * // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000" 2335 * </pre></blockquote> 2336 * 2337 * <p> An invocation of this method behaves in exactly the same way as the 2338 * invocation 2339 * 2340 * <pre> 2341 * out().toString() </pre> 2342 * 2343 * <p> Depending on the specification of {@code toString} for the {@link 2344 * Appendable}, the returned string may or may not contain the characters 2345 * written to the destination. For instance, buffers typically return 2346 * their contents in {@code toString()}, but streams cannot since the 2347 * data is discarded. 2348 * 2349 * @return The result of invoking {@code toString()} on the destination 2350 * for the output 2351 * 2352 * @throws FormatterClosedException 2353 * If this formatter has been closed by invoking its {@link 2354 * #close()} method 2355 */ 2356 public String toString() { 2357 ensureOpen(); 2358 return a.toString(); 2359 } 2360 2361 /** 2362 * Flushes this formatter. If the destination implements the {@link 2363 * java.io.Flushable} interface, its {@code flush} method will be invoked. 2364 * 2365 * <p> Flushing a formatter writes any buffered output in the destination 2366 * to the underlying stream. 2367 * 2368 * @throws FormatterClosedException 2369 * If this formatter has been closed by invoking its {@link 2370 * #close()} method 2371 */ 2372 public void flush() { 2373 ensureOpen(); 2374 if (a instanceof Flushable) { 2375 try { 2376 ((Flushable)a).flush(); 2377 } catch (IOException ioe) { 2378 lastException = ioe; 2379 } 2380 } 2381 } 2382 2383 /** 2384 * Closes this formatter. If the destination implements the {@link 2385 * java.io.Closeable} interface, its {@code close} method will be invoked. 2386 * 2387 * <p> Closing a formatter allows it to release resources it may be holding 2388 * (such as open files). If the formatter is already closed, then invoking 2389 * this method has no effect. 2390 * 2391 * <p> Attempting to invoke any methods except {@link #ioException()} in 2392 * this formatter after it has been closed will result in a {@link 2393 * FormatterClosedException}. 2394 */ 2395 public void close() { 2396 if (a == null) 2397 return; 2398 try { 2399 if (a instanceof Closeable) 2400 ((Closeable)a).close(); 2401 } catch (IOException ioe) { 2402 lastException = ioe; 2403 } finally { 2404 a = null; 2405 } 2406 } 2407 2408 private void ensureOpen() { 2409 if (a == null) 2410 throw new FormatterClosedException(); 2411 } 2412 2413 /** 2414 * Returns the {@code IOException} last thrown by this formatter's {@link 2415 * Appendable}. 2416 * 2417 * <p> If the destination's {@code append()} method never throws 2418 * {@code IOException}, then this method will always return {@code null}. 2419 * 2420 * @return The last exception thrown by the Appendable or {@code null} if 2421 * no such exception exists. 2422 */ 2423 public IOException ioException() { 2424 return lastException; 2425 } 2426 2427 /** 2428 * Writes a formatted string to this object's destination using the 2429 * specified format string and arguments. The locale used is the one 2430 * defined during the construction of this formatter. 2431 * 2432 * @param format 2433 * A format string as described in <a href="#syntax">Format string 2434 * syntax</a>. 2435 * 2436 * @param args 2437 * Arguments referenced by the format specifiers in the format 2438 * string. If there are more arguments than format specifiers, the 2439 * extra arguments are ignored. The maximum number of arguments is 2440 * limited by the maximum dimension of a Java array as defined by 2441 * <cite>The Java™ Virtual Machine Specification</cite>. 2442 * 2443 * @throws IllegalFormatException 2444 * If a format string contains an illegal syntax, a format 2445 * specifier that is incompatible with the given arguments, 2446 * insufficient arguments given the format string, or other 2447 * illegal conditions. For specification of all possible 2448 * formatting errors, see the <a href="#detail">Details</a> 2449 * section of the formatter class specification. 2450 * 2451 * @throws FormatterClosedException 2452 * If this formatter has been closed by invoking its {@link 2453 * #close()} method 2454 * 2455 * @return This formatter 2456 */ 2457 public Formatter format(String format, Object ... args) { 2458 return format(l, format, args); 2459 } 2460 2461 /** 2462 * Writes a formatted string to this object's destination using the 2463 * specified locale, format string, and arguments. 2464 * 2465 * @param l 2466 * The {@linkplain java.util.Locale locale} to apply during 2467 * formatting. If {@code l} is {@code null} then no localization 2468 * is applied. This does not change this object's locale that was 2469 * set during construction. 2470 * 2471 * @param format 2472 * A format string as described in <a href="#syntax">Format string 2473 * syntax</a> 2474 * 2475 * @param args 2476 * Arguments referenced by the format specifiers in the format 2477 * string. If there are more arguments than format specifiers, the 2478 * extra arguments are ignored. The maximum number of arguments is 2479 * limited by the maximum dimension of a Java array as defined by 2480 * <cite>The Java™ Virtual Machine Specification</cite>. 2481 * 2482 * @throws IllegalFormatException 2483 * If a format string contains an illegal syntax, a format 2484 * specifier that is incompatible with the given arguments, 2485 * insufficient arguments given the format string, or other 2486 * illegal conditions. For specification of all possible 2487 * formatting errors, see the <a href="#detail">Details</a> 2488 * section of the formatter class specification. 2489 * 2490 * @throws FormatterClosedException 2491 * If this formatter has been closed by invoking its {@link 2492 * #close()} method 2493 * 2494 * @return This formatter 2495 */ 2496 public Formatter format(Locale l, String format, Object ... args) { 2497 ensureOpen(); 2498 2499 // index of last argument referenced 2500 int last = -1; 2501 // last ordinary index 2502 int lasto = -1; 2503 2504 FormatString[] fsa = parse(format); 2505 for (int i = 0; i < fsa.length; i++) { 2506 FormatString fs = fsa[i]; 2507 int index = fs.index(); 2508 try { 2509 switch (index) { 2510 case -2: // fixed string, "%n", or "%%" 2511 fs.print(null, l); 2512 break; 2513 case -1: // relative index 2514 if (last < 0 || (args != null && last > args.length - 1)) 2515 throw new MissingFormatArgumentException(fs.toString()); 2516 fs.print((args == null ? null : args[last]), l); 2517 break; 2518 case 0: // ordinary index 2519 lasto++; 2520 last = lasto; 2521 if (args != null && lasto > args.length - 1) 2522 throw new MissingFormatArgumentException(fs.toString()); 2523 fs.print((args == null ? null : args[lasto]), l); 2524 break; 2525 default: // explicit index 2526 last = index - 1; 2527 if (args != null && last > args.length - 1) 2528 throw new MissingFormatArgumentException(fs.toString()); 2529 fs.print((args == null ? null : args[last]), l); 2530 break; 2531 } 2532 } catch (IOException x) { 2533 lastException = x; 2534 } 2535 } 2536 return this; 2537 } 2538 2539 // BEGIN Android-changed: changed parse() to manual parsing instead of regex. 2540 /** 2541 * Finds format specifiers in the format string. 2542 */ 2543 private FormatString[] parse(String s) { 2544 ArrayList<FormatString> al = new ArrayList<>(); 2545 for (int i = 0, len = s.length(); i < len; ) { 2546 int nextPercent = s.indexOf('%', i); 2547 if (s.charAt(i) != '%') { 2548 // This is plain-text part, find the maximal plain-text 2549 // sequence and store it. 2550 int plainTextStart = i; 2551 int plainTextEnd = (nextPercent == -1) ? len: nextPercent; 2552 al.add(new FixedString(s.substring(plainTextStart, 2553 plainTextEnd))); 2554 i = plainTextEnd; 2555 } else { 2556 // We have a format specifier 2557 FormatSpecifierParser fsp = new FormatSpecifierParser(s, i + 1); 2558 al.add(fsp.getFormatSpecifier()); 2559 i = fsp.getEndIdx(); 2560 } 2561 } 2562 return al.toArray(new FormatString[al.size()]); 2563 } 2564 2565 /** 2566 * Parses the format specifier. 2567 * %[argument_index$][flags][width][.precision][t]conversion 2568 */ 2569 private class FormatSpecifierParser { 2570 private final String format; 2571 private int cursor; 2572 private FormatSpecifier fs; 2573 2574 private String index; 2575 private String flags; 2576 private String width; 2577 private String precision; 2578 private String tT; 2579 private String conv; 2580 2581 private static final String FLAGS = ",-(+# 0<"; 2582 2583 public FormatSpecifierParser(String format, int startIdx) { 2584 this.format = format; 2585 cursor = startIdx; 2586 // Index 2587 if (nextIsInt()) { 2588 String nint = nextInt(); 2589 if (peek() == '$') { 2590 index = nint; 2591 advance(); 2592 } else if (nint.charAt(0) == '0') { 2593 // This is a flag, skip to parsing flags. 2594 back(nint.length()); 2595 } else { 2596 // This is the width, skip to parsing precision. 2597 width = nint; 2598 } 2599 } 2600 // Flags 2601 flags = ""; 2602 while (width == null && FLAGS.indexOf(peek()) >= 0) { 2603 flags += advance(); 2604 } 2605 // Width 2606 if (width == null && nextIsInt()) { 2607 width = nextInt(); 2608 } 2609 // Precision 2610 if (peek() == '.') { 2611 advance(); 2612 if (!nextIsInt()) { 2613 throw new IllegalFormatPrecisionException(peek()); 2614 } 2615 precision = nextInt(); 2616 } 2617 // tT 2618 if (peek() == 't' || peek() == 'T') { 2619 tT = String.valueOf(advance()); 2620 } 2621 // Conversion 2622 conv = String.valueOf(advance()); 2623 2624 fs = new FormatSpecifier(index, flags, width, precision, tT, conv); 2625 } 2626 2627 private String nextInt() { 2628 int strBegin = cursor; 2629 while (nextIsInt()) { 2630 advance(); 2631 } 2632 return format.substring(strBegin, cursor); 2633 } 2634 2635 private boolean nextIsInt() { 2636 return !isEnd() && Character.isDigit(peek()); 2637 } 2638 2639 private char peek() { 2640 if (isEnd()) { 2641 throw new UnknownFormatConversionException("End of String"); 2642 } 2643 return format.charAt(cursor); 2644 } 2645 2646 private char advance() { 2647 if (isEnd()) { 2648 throw new UnknownFormatConversionException("End of String"); 2649 } 2650 return format.charAt(cursor++); 2651 } 2652 2653 private void back(int len) { 2654 cursor -= len; 2655 } 2656 2657 private boolean isEnd() { 2658 return cursor == format.length(); 2659 } 2660 2661 public FormatSpecifier getFormatSpecifier() { 2662 return fs; 2663 } 2664 2665 public int getEndIdx() { 2666 return cursor; 2667 } 2668 } 2669 // END Android-changed: changed parse() to manual parsing instead of regex. 2670 2671 private interface FormatString { 2672 int index(); 2673 void print(Object arg, Locale l) throws IOException; 2674 String toString(); 2675 } 2676 2677 private class FixedString implements FormatString { 2678 private String s; 2679 FixedString(String s) { this.s = s; } 2680 public int index() { return -2; } 2681 public void print(Object arg, Locale l) 2682 throws IOException { a.append(s); } 2683 public String toString() { return s; } 2684 } 2685 2686 /** 2687 * Enum for {@code BigDecimal} formatting. 2688 */ 2689 public enum BigDecimalLayoutForm { 2690 /** 2691 * Format the {@code BigDecimal} in computerized scientific notation. 2692 */ 2693 SCIENTIFIC, 2694 2695 /** 2696 * Format the {@code BigDecimal} as a decimal number. 2697 */ 2698 DECIMAL_FLOAT 2699 }; 2700 2701 private class FormatSpecifier implements FormatString { 2702 private int index = -1; 2703 private Flags f = Flags.NONE; 2704 private int width; 2705 private int precision; 2706 private boolean dt = false; 2707 private char c; 2708 2709 private int index(String s) { 2710 if (s != null) { 2711 try { 2712 // Android-changed: FormatSpecifierParser passes in correct String. 2713 // index = Integer.parseInt(s.substring(0, s.length() - 1)); 2714 index = Integer.parseInt(s); 2715 } catch (NumberFormatException x) { 2716 assert(false); 2717 } 2718 } else { 2719 index = 0; 2720 } 2721 return index; 2722 } 2723 2724 public int index() { 2725 return index; 2726 } 2727 2728 private Flags flags(String s) { 2729 f = Flags.parse(s); 2730 if (f.contains(Flags.PREVIOUS)) 2731 index = -1; 2732 return f; 2733 } 2734 2735 Flags flags() { 2736 return f; 2737 } 2738 2739 private int width(String s) { 2740 width = -1; 2741 if (s != null) { 2742 try { 2743 width = Integer.parseInt(s); 2744 if (width < 0) 2745 throw new IllegalFormatWidthException(width); 2746 } catch (NumberFormatException x) { 2747 assert(false); 2748 } 2749 } 2750 return width; 2751 } 2752 2753 int width() { 2754 return width; 2755 } 2756 2757 private int precision(String s) { 2758 precision = -1; 2759 if (s != null) { 2760 try { 2761 // Android-changed: FormatSpecifierParser passes in correct String. 2762 // precision = Integer.parseInt(s.substring(1)); 2763 precision = Integer.parseInt(s); 2764 if (precision < 0) 2765 throw new IllegalFormatPrecisionException(precision); 2766 } catch (NumberFormatException x) { 2767 assert(false); 2768 } 2769 } 2770 return precision; 2771 } 2772 2773 int precision() { 2774 return precision; 2775 } 2776 2777 private char conversion(String s) { 2778 c = s.charAt(0); 2779 if (!dt) { 2780 if (!Conversion.isValid(c)) 2781 throw new UnknownFormatConversionException(String.valueOf(c)); 2782 if (Character.isUpperCase(c)) 2783 f.add(Flags.UPPERCASE); 2784 c = Character.toLowerCase(c); 2785 if (Conversion.isText(c)) 2786 index = -2; 2787 } 2788 return c; 2789 } 2790 2791 private char conversion() { 2792 return c; 2793 } 2794 2795 // BEGIN Android-changed: FormatSpecifierParser passes in the values instead of a Matcher. 2796 FormatSpecifier(String indexStr, String flagsStr, String widthStr, 2797 String precisionStr, String tTStr, String convStr) { 2798 int idx = 1; 2799 2800 index(indexStr); 2801 flags(flagsStr); 2802 width(widthStr); 2803 precision(precisionStr); 2804 2805 if (tTStr != null) { 2806 dt = true; 2807 if (tTStr.equals("T")) 2808 f.add(Flags.UPPERCASE); 2809 } 2810 2811 conversion(convStr); 2812 // END Android-changed: FormatSpecifierParser passes in the values instead of a Matcher. 2813 if (dt) 2814 checkDateTime(); 2815 else if (Conversion.isGeneral(c)) 2816 checkGeneral(); 2817 else if (Conversion.isCharacter(c)) 2818 checkCharacter(); 2819 else if (Conversion.isInteger(c)) 2820 checkInteger(); 2821 else if (Conversion.isFloat(c)) 2822 checkFloat(); 2823 else if (Conversion.isText(c)) 2824 checkText(); 2825 else 2826 throw new UnknownFormatConversionException(String.valueOf(c)); 2827 } 2828 2829 public void print(Object arg, Locale l) throws IOException { 2830 if (dt) { 2831 printDateTime(arg, l); 2832 return; 2833 } 2834 switch(c) { 2835 case Conversion.DECIMAL_INTEGER: 2836 case Conversion.OCTAL_INTEGER: 2837 case Conversion.HEXADECIMAL_INTEGER: 2838 printInteger(arg, l); 2839 break; 2840 case Conversion.SCIENTIFIC: 2841 case Conversion.GENERAL: 2842 case Conversion.DECIMAL_FLOAT: 2843 case Conversion.HEXADECIMAL_FLOAT: 2844 printFloat(arg, l); 2845 break; 2846 case Conversion.CHARACTER: 2847 case Conversion.CHARACTER_UPPER: 2848 printCharacter(arg); 2849 break; 2850 case Conversion.BOOLEAN: 2851 printBoolean(arg); 2852 break; 2853 case Conversion.STRING: 2854 printString(arg, l); 2855 break; 2856 case Conversion.HASHCODE: 2857 printHashCode(arg); 2858 break; 2859 case Conversion.LINE_SEPARATOR: 2860 a.append(System.lineSeparator()); 2861 break; 2862 case Conversion.PERCENT_SIGN: 2863 a.append('%'); 2864 break; 2865 default: 2866 assert false; 2867 } 2868 } 2869 2870 private void printInteger(Object arg, Locale l) throws IOException { 2871 if (arg == null) 2872 print("null"); 2873 else if (arg instanceof Byte) 2874 print(((Byte)arg).byteValue(), l); 2875 else if (arg instanceof Short) 2876 print(((Short)arg).shortValue(), l); 2877 else if (arg instanceof Integer) 2878 print(((Integer)arg).intValue(), l); 2879 else if (arg instanceof Long) 2880 print(((Long)arg).longValue(), l); 2881 else if (arg instanceof BigInteger) 2882 print(((BigInteger)arg), l); 2883 else 2884 failConversion(c, arg); 2885 } 2886 2887 private void printFloat(Object arg, Locale l) throws IOException { 2888 if (arg == null) 2889 print("null"); 2890 else if (arg instanceof Float) 2891 print(((Float)arg).floatValue(), l); 2892 else if (arg instanceof Double) 2893 print(((Double)arg).doubleValue(), l); 2894 else if (arg instanceof BigDecimal) 2895 print(((BigDecimal)arg), l); 2896 else 2897 failConversion(c, arg); 2898 } 2899 2900 private void printDateTime(Object arg, Locale l) throws IOException { 2901 if (arg == null) { 2902 print("null"); 2903 return; 2904 } 2905 Calendar cal = null; 2906 2907 // Instead of Calendar.setLenient(true), perhaps we should 2908 // wrap the IllegalArgumentException that might be thrown? 2909 if (arg instanceof Long) { 2910 // Note that the following method uses an instance of the 2911 // default time zone (TimeZone.getDefaultRef(). 2912 cal = Calendar.getInstance(l == null ? Locale.US : l); 2913 cal.setTimeInMillis((Long)arg); 2914 } else if (arg instanceof Date) { 2915 // Note that the following method uses an instance of the 2916 // default time zone (TimeZone.getDefaultRef(). 2917 cal = Calendar.getInstance(l == null ? Locale.US : l); 2918 cal.setTime((Date)arg); 2919 } else if (arg instanceof Calendar) { 2920 cal = (Calendar) ((Calendar) arg).clone(); 2921 cal.setLenient(true); 2922 } else if (arg instanceof TemporalAccessor) { 2923 print((TemporalAccessor) arg, c, l); 2924 return; 2925 } else { 2926 failConversion(c, arg); 2927 } 2928 // Use the provided locale so that invocations of 2929 // localizedMagnitude() use optimizations for null. 2930 print(cal, c, l); 2931 } 2932 2933 private void printCharacter(Object arg) throws IOException { 2934 if (arg == null) { 2935 print("null"); 2936 return; 2937 } 2938 String s = null; 2939 if (arg instanceof Character) { 2940 s = ((Character)arg).toString(); 2941 } else if (arg instanceof Byte) { 2942 byte i = ((Byte)arg).byteValue(); 2943 if (Character.isValidCodePoint(i)) 2944 s = new String(Character.toChars(i)); 2945 else 2946 throw new IllegalFormatCodePointException(i); 2947 } else if (arg instanceof Short) { 2948 short i = ((Short)arg).shortValue(); 2949 if (Character.isValidCodePoint(i)) 2950 s = new String(Character.toChars(i)); 2951 else 2952 throw new IllegalFormatCodePointException(i); 2953 } else if (arg instanceof Integer) { 2954 int i = ((Integer)arg).intValue(); 2955 if (Character.isValidCodePoint(i)) 2956 s = new String(Character.toChars(i)); 2957 else 2958 throw new IllegalFormatCodePointException(i); 2959 } else { 2960 failConversion(c, arg); 2961 } 2962 print(s); 2963 } 2964 2965 private void printString(Object arg, Locale l) throws IOException { 2966 if (arg instanceof Formattable) { 2967 Formatter fmt = Formatter.this; 2968 if (fmt.locale() != l) 2969 fmt = new Formatter(fmt.out(), l); 2970 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision); 2971 } else { 2972 if (f.contains(Flags.ALTERNATE)) 2973 failMismatch(Flags.ALTERNATE, 's'); 2974 if (arg == null) 2975 print("null"); 2976 else 2977 print(arg.toString()); 2978 } 2979 } 2980 2981 private void printBoolean(Object arg) throws IOException { 2982 String s; 2983 if (arg != null) 2984 s = ((arg instanceof Boolean) 2985 ? ((Boolean)arg).toString() 2986 : Boolean.toString(true)); 2987 else 2988 s = Boolean.toString(false); 2989 print(s); 2990 } 2991 2992 private void printHashCode(Object arg) throws IOException { 2993 String s = (arg == null 2994 ? "null" 2995 : Integer.toHexString(arg.hashCode())); 2996 print(s); 2997 } 2998 2999 private void print(String s) throws IOException { 3000 if (precision != -1 && precision < s.length()) 3001 s = s.substring(0, precision); 3002 if (f.contains(Flags.UPPERCASE)) { 3003 // Android-changed: Use provided locale instead of default, if it is non-null. 3004 // s = s.toUpperCase(); 3005 s = s.toUpperCase(l != null ? l : Locale.getDefault()); 3006 } 3007 a.append(justify(s)); 3008 } 3009 3010 private String justify(String s) { 3011 if (width == -1) 3012 return s; 3013 StringBuilder sb = new StringBuilder(); 3014 boolean pad = f.contains(Flags.LEFT_JUSTIFY); 3015 int sp = width - s.length(); 3016 if (!pad) 3017 for (int i = 0; i < sp; i++) sb.append(' '); 3018 sb.append(s); 3019 if (pad) 3020 for (int i = 0; i < sp; i++) sb.append(' '); 3021 return sb.toString(); 3022 } 3023 3024 public String toString() { 3025 StringBuilder sb = new StringBuilder("%"); 3026 // Flags.UPPERCASE is set internally for legal conversions. 3027 Flags dupf = f.dup().remove(Flags.UPPERCASE); 3028 sb.append(dupf.toString()); 3029 if (index > 0) 3030 sb.append(index).append('$'); 3031 if (width != -1) 3032 sb.append(width); 3033 if (precision != -1) 3034 sb.append('.').append(precision); 3035 if (dt) 3036 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't'); 3037 sb.append(f.contains(Flags.UPPERCASE) 3038 ? Character.toUpperCase(c) : c); 3039 return sb.toString(); 3040 } 3041 3042 private void checkGeneral() { 3043 if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE) 3044 && f.contains(Flags.ALTERNATE)) 3045 failMismatch(Flags.ALTERNATE, c); 3046 // '-' requires a width 3047 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) 3048 throw new MissingFormatWidthException(toString()); 3049 checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, 3050 Flags.GROUP, Flags.PARENTHESES); 3051 } 3052 3053 private void checkDateTime() { 3054 if (precision != -1) 3055 throw new IllegalFormatPrecisionException(precision); 3056 if (!DateTime.isValid(c)) 3057 throw new UnknownFormatConversionException("t" + c); 3058 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, 3059 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); 3060 // '-' requires a width 3061 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) 3062 throw new MissingFormatWidthException(toString()); 3063 } 3064 3065 private void checkCharacter() { 3066 if (precision != -1) 3067 throw new IllegalFormatPrecisionException(precision); 3068 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, 3069 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); 3070 // '-' requires a width 3071 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) 3072 throw new MissingFormatWidthException(toString()); 3073 } 3074 3075 private void checkInteger() { 3076 checkNumeric(); 3077 if (precision != -1) 3078 throw new IllegalFormatPrecisionException(precision); 3079 3080 if (c == Conversion.DECIMAL_INTEGER) 3081 checkBadFlags(Flags.ALTERNATE); 3082 else if (c == Conversion.OCTAL_INTEGER) 3083 checkBadFlags(Flags.GROUP); 3084 else 3085 checkBadFlags(Flags.GROUP); 3086 } 3087 3088 private void checkBadFlags(Flags ... badFlags) { 3089 for (int i = 0; i < badFlags.length; i++) 3090 if (f.contains(badFlags[i])) 3091 failMismatch(badFlags[i], c); 3092 } 3093 3094 private void checkFloat() { 3095 checkNumeric(); 3096 if (c == Conversion.DECIMAL_FLOAT) { 3097 } else if (c == Conversion.HEXADECIMAL_FLOAT) { 3098 checkBadFlags(Flags.PARENTHESES, Flags.GROUP); 3099 } else if (c == Conversion.SCIENTIFIC) { 3100 checkBadFlags(Flags.GROUP); 3101 } else if (c == Conversion.GENERAL) { 3102 checkBadFlags(Flags.ALTERNATE); 3103 } 3104 } 3105 3106 private void checkNumeric() { 3107 if (width != -1 && width < 0) 3108 throw new IllegalFormatWidthException(width); 3109 3110 if (precision != -1 && precision < 0) 3111 throw new IllegalFormatPrecisionException(precision); 3112 3113 // '-' and '0' require a width 3114 if (width == -1 3115 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD))) 3116 throw new MissingFormatWidthException(toString()); 3117 3118 // bad combination 3119 if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE)) 3120 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD))) 3121 throw new IllegalFormatFlagsException(f.toString()); 3122 } 3123 3124 private void checkText() { 3125 if (precision != -1) 3126 throw new IllegalFormatPrecisionException(precision); 3127 switch (c) { 3128 case Conversion.PERCENT_SIGN: 3129 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf() 3130 && f.valueOf() != Flags.NONE.valueOf()) 3131 throw new IllegalFormatFlagsException(f.toString()); 3132 // '-' requires a width 3133 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) 3134 throw new MissingFormatWidthException(toString()); 3135 break; 3136 case Conversion.LINE_SEPARATOR: 3137 if (width != -1) 3138 throw new IllegalFormatWidthException(width); 3139 if (f.valueOf() != Flags.NONE.valueOf()) 3140 throw new IllegalFormatFlagsException(f.toString()); 3141 break; 3142 default: 3143 assert false; 3144 } 3145 } 3146 3147 private void print(byte value, Locale l) throws IOException { 3148 long v = value; 3149 if (value < 0 3150 && (c == Conversion.OCTAL_INTEGER 3151 || c == Conversion.HEXADECIMAL_INTEGER)) { 3152 v += (1L << 8); 3153 assert v >= 0 : v; 3154 } 3155 print(v, l); 3156 } 3157 3158 private void print(short value, Locale l) throws IOException { 3159 long v = value; 3160 if (value < 0 3161 && (c == Conversion.OCTAL_INTEGER 3162 || c == Conversion.HEXADECIMAL_INTEGER)) { 3163 v += (1L << 16); 3164 assert v >= 0 : v; 3165 } 3166 print(v, l); 3167 } 3168 3169 private void print(int value, Locale l) throws IOException { 3170 long v = value; 3171 if (value < 0 3172 && (c == Conversion.OCTAL_INTEGER 3173 || c == Conversion.HEXADECIMAL_INTEGER)) { 3174 v += (1L << 32); 3175 assert v >= 0 : v; 3176 } 3177 print(v, l); 3178 } 3179 3180 private void print(long value, Locale l) throws IOException { 3181 3182 StringBuilder sb = new StringBuilder(); 3183 3184 if (c == Conversion.DECIMAL_INTEGER) { 3185 boolean neg = value < 0; 3186 char[] va; 3187 if (value < 0) 3188 va = Long.toString(value, 10).substring(1).toCharArray(); 3189 else 3190 va = Long.toString(value, 10).toCharArray(); 3191 3192 // leading sign indicator 3193 leadingSign(sb, neg); 3194 3195 // the value 3196 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); 3197 3198 // trailing sign indicator 3199 trailingSign(sb, neg); 3200 } else if (c == Conversion.OCTAL_INTEGER) { 3201 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, 3202 Flags.PLUS); 3203 String s = Long.toOctalString(value); 3204 int len = (f.contains(Flags.ALTERNATE) 3205 ? s.length() + 1 3206 : s.length()); 3207 3208 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD 3209 if (f.contains(Flags.ALTERNATE)) 3210 sb.append('0'); 3211 if (f.contains(Flags.ZERO_PAD)) 3212 for (int i = 0; i < width - len; i++) sb.append('0'); 3213 sb.append(s); 3214 } else if (c == Conversion.HEXADECIMAL_INTEGER) { 3215 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, 3216 Flags.PLUS); 3217 String s = Long.toHexString(value); 3218 int len = (f.contains(Flags.ALTERNATE) 3219 ? s.length() + 2 3220 : s.length()); 3221 3222 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD 3223 if (f.contains(Flags.ALTERNATE)) 3224 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); 3225 if (f.contains(Flags.ZERO_PAD)) 3226 for (int i = 0; i < width - len; i++) sb.append('0'); 3227 if (f.contains(Flags.UPPERCASE)) 3228 s = s.toUpperCase(); 3229 sb.append(s); 3230 } 3231 3232 // justify based on width 3233 a.append(justify(sb.toString())); 3234 } 3235 3236 // neg := val < 0 3237 private StringBuilder leadingSign(StringBuilder sb, boolean neg) { 3238 if (!neg) { 3239 if (f.contains(Flags.PLUS)) { 3240 sb.append('+'); 3241 } else if (f.contains(Flags.LEADING_SPACE)) { 3242 sb.append(' '); 3243 } 3244 } else { 3245 if (f.contains(Flags.PARENTHESES)) 3246 sb.append('('); 3247 else 3248 sb.append('-'); 3249 } 3250 return sb; 3251 } 3252 3253 // neg := val < 0 3254 private StringBuilder trailingSign(StringBuilder sb, boolean neg) { 3255 if (neg && f.contains(Flags.PARENTHESES)) 3256 sb.append(')'); 3257 return sb; 3258 } 3259 3260 private void print(BigInteger value, Locale l) throws IOException { 3261 StringBuilder sb = new StringBuilder(); 3262 boolean neg = value.signum() == -1; 3263 BigInteger v = value.abs(); 3264 3265 // leading sign indicator 3266 leadingSign(sb, neg); 3267 3268 // the value 3269 if (c == Conversion.DECIMAL_INTEGER) { 3270 char[] va = v.toString().toCharArray(); 3271 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); 3272 } else if (c == Conversion.OCTAL_INTEGER) { 3273 String s = v.toString(8); 3274 3275 int len = s.length() + sb.length(); 3276 if (neg && f.contains(Flags.PARENTHESES)) 3277 len++; 3278 3279 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD 3280 if (f.contains(Flags.ALTERNATE)) { 3281 len++; 3282 sb.append('0'); 3283 } 3284 if (f.contains(Flags.ZERO_PAD)) { 3285 for (int i = 0; i < width - len; i++) 3286 sb.append('0'); 3287 } 3288 sb.append(s); 3289 } else if (c == Conversion.HEXADECIMAL_INTEGER) { 3290 String s = v.toString(16); 3291 3292 int len = s.length() + sb.length(); 3293 if (neg && f.contains(Flags.PARENTHESES)) 3294 len++; 3295 3296 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD 3297 if (f.contains(Flags.ALTERNATE)) { 3298 len += 2; 3299 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); 3300 } 3301 if (f.contains(Flags.ZERO_PAD)) 3302 for (int i = 0; i < width - len; i++) 3303 sb.append('0'); 3304 if (f.contains(Flags.UPPERCASE)) 3305 s = s.toUpperCase(); 3306 sb.append(s); 3307 } 3308 3309 // trailing sign indicator 3310 trailingSign(sb, (value.signum() == -1)); 3311 3312 // justify based on width 3313 a.append(justify(sb.toString())); 3314 } 3315 3316 private void print(float value, Locale l) throws IOException { 3317 print((double) value, l); 3318 } 3319 3320 private void print(double value, Locale l) throws IOException { 3321 StringBuilder sb = new StringBuilder(); 3322 boolean neg = Double.compare(value, 0.0) == -1; 3323 3324 if (!Double.isNaN(value)) { 3325 double v = Math.abs(value); 3326 3327 // leading sign indicator 3328 leadingSign(sb, neg); 3329 3330 // the value 3331 if (!Double.isInfinite(v)) 3332 print(sb, v, l, f, c, precision, neg); 3333 else 3334 sb.append(f.contains(Flags.UPPERCASE) 3335 ? "INFINITY" : "Infinity"); 3336 3337 // trailing sign indicator 3338 trailingSign(sb, neg); 3339 } else { 3340 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN"); 3341 } 3342 3343 // justify based on width 3344 a.append(justify(sb.toString())); 3345 } 3346 3347 // !Double.isInfinite(value) && !Double.isNaN(value) 3348 private void print(StringBuilder sb, double value, Locale l, 3349 Flags f, char c, int precision, boolean neg) 3350 throws IOException 3351 { 3352 if (c == Conversion.SCIENTIFIC) { 3353 // Create a new FormattedFloatingDecimal with the desired 3354 // precision. 3355 int prec = (precision == -1 ? 6 : precision); 3356 3357 FormattedFloatingDecimal fd 3358 = FormattedFloatingDecimal.valueOf(value, prec, 3359 FormattedFloatingDecimal.Form.SCIENTIFIC); 3360 3361 char[] mant = addZeros(fd.getMantissa(), prec); 3362 3363 // If the precision is zero and the '#' flag is set, add the 3364 // requested decimal point. 3365 if (f.contains(Flags.ALTERNATE) && (prec == 0)) 3366 mant = addDot(mant); 3367 3368 char[] exp = (value == 0.0) 3369 ? new char[] {'+','0','0'} : fd.getExponent(); 3370 3371 int newW = width; 3372 if (width != -1) 3373 newW = adjustWidth(width - exp.length - 1, f, neg); 3374 localizedMagnitude(sb, mant, f, newW, l); 3375 3376 // BEGIN Android-changed: Use localized exponent separator for %e. 3377 Locale separatorLocale = (l != null) ? l : Locale.getDefault(); 3378 LocaleData localeData = LocaleData.get(separatorLocale); 3379 sb.append(f.contains(Flags.UPPERCASE) ? 3380 localeData.exponentSeparator.toUpperCase(separatorLocale) : 3381 localeData.exponentSeparator.toLowerCase(separatorLocale)); 3382 // END Android-changed: Use localized exponent separator for %e. 3383 3384 Flags flags = f.dup().remove(Flags.GROUP); 3385 char sign = exp[0]; 3386 assert(sign == '+' || sign == '-'); 3387 sb.append(sign); 3388 3389 char[] tmp = new char[exp.length - 1]; 3390 System.arraycopy(exp, 1, tmp, 0, exp.length - 1); 3391 sb.append(localizedMagnitude(null, tmp, flags, -1, l)); 3392 } else if (c == Conversion.DECIMAL_FLOAT) { 3393 // Create a new FormattedFloatingDecimal with the desired 3394 // precision. 3395 int prec = (precision == -1 ? 6 : precision); 3396 3397 FormattedFloatingDecimal fd 3398 = FormattedFloatingDecimal.valueOf(value, prec, 3399 FormattedFloatingDecimal.Form.DECIMAL_FLOAT); 3400 3401 char[] mant = addZeros(fd.getMantissa(), prec); 3402 3403 // If the precision is zero and the '#' flag is set, add the 3404 // requested decimal point. 3405 if (f.contains(Flags.ALTERNATE) && (prec == 0)) 3406 mant = addDot(mant); 3407 3408 int newW = width; 3409 if (width != -1) 3410 newW = adjustWidth(width, f, neg); 3411 localizedMagnitude(sb, mant, f, newW, l); 3412 } else if (c == Conversion.GENERAL) { 3413 int prec = precision; 3414 if (precision == -1) 3415 prec = 6; 3416 else if (precision == 0) 3417 prec = 1; 3418 3419 char[] exp; 3420 char[] mant; 3421 int expRounded; 3422 if (value == 0.0) { 3423 exp = null; 3424 mant = new char[] {'0'}; 3425 expRounded = 0; 3426 } else { 3427 FormattedFloatingDecimal fd 3428 = FormattedFloatingDecimal.valueOf(value, prec, 3429 FormattedFloatingDecimal.Form.GENERAL); 3430 exp = fd.getExponent(); 3431 mant = fd.getMantissa(); 3432 expRounded = fd.getExponentRounded(); 3433 } 3434 3435 if (exp != null) { 3436 prec -= 1; 3437 } else { 3438 prec -= expRounded + 1; 3439 } 3440 3441 mant = addZeros(mant, prec); 3442 // If the precision is zero and the '#' flag is set, add the 3443 // requested decimal point. 3444 if (f.contains(Flags.ALTERNATE) && (prec == 0)) 3445 mant = addDot(mant); 3446 3447 int newW = width; 3448 if (width != -1) { 3449 if (exp != null) 3450 newW = adjustWidth(width - exp.length - 1, f, neg); 3451 else 3452 newW = adjustWidth(width, f, neg); 3453 } 3454 localizedMagnitude(sb, mant, f, newW, l); 3455 3456 if (exp != null) { 3457 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); 3458 3459 Flags flags = f.dup().remove(Flags.GROUP); 3460 char sign = exp[0]; 3461 assert(sign == '+' || sign == '-'); 3462 sb.append(sign); 3463 3464 char[] tmp = new char[exp.length - 1]; 3465 System.arraycopy(exp, 1, tmp, 0, exp.length - 1); 3466 sb.append(localizedMagnitude(null, tmp, flags, -1, l)); 3467 } 3468 } else if (c == Conversion.HEXADECIMAL_FLOAT) { 3469 int prec = precision; 3470 if (precision == -1) 3471 // assume that we want all of the digits 3472 prec = 0; 3473 else if (precision == 0) 3474 prec = 1; 3475 3476 String s = hexDouble(value, prec); 3477 3478 char[] va; 3479 boolean upper = f.contains(Flags.UPPERCASE); 3480 sb.append(upper ? "0X" : "0x"); 3481 3482 if (f.contains(Flags.ZERO_PAD)) 3483 for (int i = 0; i < width - s.length() - 2; i++) 3484 sb.append('0'); 3485 3486 int idx = s.indexOf('p'); 3487 va = s.substring(0, idx).toCharArray(); 3488 if (upper) { 3489 String tmp = new String(va); 3490 // don't localize hex 3491 tmp = tmp.toUpperCase(Locale.US); 3492 va = tmp.toCharArray(); 3493 } 3494 sb.append(prec != 0 ? addZeros(va, prec) : va); 3495 sb.append(upper ? 'P' : 'p'); 3496 sb.append(s.substring(idx+1)); 3497 } 3498 } 3499 3500 // Add zeros to the requested precision. 3501 private char[] addZeros(char[] v, int prec) { 3502 // Look for the dot. If we don't find one, the we'll need to add 3503 // it before we add the zeros. 3504 int i; 3505 for (i = 0; i < v.length; i++) { 3506 if (v[i] == '.') 3507 break; 3508 } 3509 boolean needDot = false; 3510 if (i == v.length) { 3511 needDot = true; 3512 } 3513 3514 // Determine existing precision. 3515 int outPrec = v.length - i - (needDot ? 0 : 1); 3516 assert (outPrec <= prec); 3517 if (outPrec == prec) 3518 return v; 3519 3520 // Create new array with existing contents. 3521 char[] tmp 3522 = new char[v.length + prec - outPrec + (needDot ? 1 : 0)]; 3523 System.arraycopy(v, 0, tmp, 0, v.length); 3524 3525 // Add dot if previously determined to be necessary. 3526 int start = v.length; 3527 if (needDot) { 3528 tmp[v.length] = '.'; 3529 start++; 3530 } 3531 3532 // Add zeros. 3533 for (int j = start; j < tmp.length; j++) 3534 tmp[j] = '0'; 3535 3536 return tmp; 3537 } 3538 3539 // Method assumes that d > 0. 3540 private String hexDouble(double d, int prec) { 3541 // Let Double.toHexString handle simple cases 3542 if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) 3543 // remove "0x" 3544 return Double.toHexString(d).substring(2); 3545 else { 3546 assert(prec >= 1 && prec <= 12); 3547 3548 int exponent = Math.getExponent(d); 3549 boolean subnormal 3550 = (exponent == DoubleConsts.MIN_EXPONENT - 1); 3551 3552 // If this is subnormal input so normalize (could be faster to 3553 // do as integer operation). 3554 if (subnormal) { 3555 scaleUp = Math.scalb(1.0, 54); 3556 d *= scaleUp; 3557 // Calculate the exponent. This is not just exponent + 54 3558 // since the former is not the normalized exponent. 3559 exponent = Math.getExponent(d); 3560 assert exponent >= DoubleConsts.MIN_EXPONENT && 3561 exponent <= DoubleConsts.MAX_EXPONENT: exponent; 3562 } 3563 3564 int precision = 1 + prec*4; 3565 int shiftDistance 3566 = DoubleConsts.SIGNIFICAND_WIDTH - precision; 3567 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH); 3568 3569 long doppel = Double.doubleToLongBits(d); 3570 // Deterime the number of bits to keep. 3571 long newSignif 3572 = (doppel & (DoubleConsts.EXP_BIT_MASK 3573 | DoubleConsts.SIGNIF_BIT_MASK)) 3574 >> shiftDistance; 3575 // Bits to round away. 3576 long roundingBits = doppel & ~(~0L << shiftDistance); 3577 3578 // To decide how to round, look at the low-order bit of the 3579 // working significand, the highest order discarded bit (the 3580 // round bit) and whether any of the lower order discarded bits 3581 // are nonzero (the sticky bit). 3582 3583 boolean leastZero = (newSignif & 0x1L) == 0L; 3584 boolean round 3585 = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L; 3586 boolean sticky = shiftDistance > 1 && 3587 (~(1L<< (shiftDistance - 1)) & roundingBits) != 0; 3588 if((leastZero && round && sticky) || (!leastZero && round)) { 3589 newSignif++; 3590 } 3591 3592 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK; 3593 newSignif = signBit | (newSignif << shiftDistance); 3594 double result = Double.longBitsToDouble(newSignif); 3595 3596 if (Double.isInfinite(result) ) { 3597 // Infinite result generated by rounding 3598 return "1.0p1024"; 3599 } else { 3600 String res = Double.toHexString(result).substring(2); 3601 if (!subnormal) 3602 return res; 3603 else { 3604 // Create a normalized subnormal string. 3605 int idx = res.indexOf('p'); 3606 if (idx == -1) { 3607 // No 'p' character in hex string. 3608 assert false; 3609 return null; 3610 } else { 3611 // Get exponent and append at the end. 3612 String exp = res.substring(idx + 1); 3613 int iexp = Integer.parseInt(exp) -54; 3614 return res.substring(0, idx) + "p" 3615 + Integer.toString(iexp); 3616 } 3617 } 3618 } 3619 } 3620 } 3621 3622 private void print(BigDecimal value, Locale l) throws IOException { 3623 if (c == Conversion.HEXADECIMAL_FLOAT) 3624 failConversion(c, value); 3625 StringBuilder sb = new StringBuilder(); 3626 boolean neg = value.signum() == -1; 3627 BigDecimal v = value.abs(); 3628 // leading sign indicator 3629 leadingSign(sb, neg); 3630 3631 // the value 3632 print(sb, v, l, f, c, precision, neg); 3633 3634 // trailing sign indicator 3635 trailingSign(sb, neg); 3636 3637 // justify based on width 3638 a.append(justify(sb.toString())); 3639 } 3640 3641 // value > 0 3642 private void print(StringBuilder sb, BigDecimal value, Locale l, 3643 Flags f, char c, int precision, boolean neg) 3644 throws IOException 3645 { 3646 if (c == Conversion.SCIENTIFIC) { 3647 // Create a new BigDecimal with the desired precision. 3648 int prec = (precision == -1 ? 6 : precision); 3649 int scale = value.scale(); 3650 int origPrec = value.precision(); 3651 int nzeros = 0; 3652 int compPrec; 3653 3654 if (prec > origPrec - 1) { 3655 compPrec = origPrec; 3656 nzeros = prec - (origPrec - 1); 3657 } else { 3658 compPrec = prec + 1; 3659 } 3660 3661 MathContext mc = new MathContext(compPrec); 3662 BigDecimal v 3663 = new BigDecimal(value.unscaledValue(), scale, mc); 3664 3665 BigDecimalLayout bdl 3666 = new BigDecimalLayout(v.unscaledValue(), v.scale(), 3667 BigDecimalLayoutForm.SCIENTIFIC); 3668 3669 char[] mant = bdl.mantissa(); 3670 3671 // Add a decimal point if necessary. The mantissa may not 3672 // contain a decimal point if the scale is zero (the internal 3673 // representation has no fractional part) or the original 3674 // precision is one. Append a decimal point if '#' is set or if 3675 // we require zero padding to get to the requested precision. 3676 if ((origPrec == 1 || !bdl.hasDot()) 3677 && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) 3678 mant = addDot(mant); 3679 3680 // Add trailing zeros in the case precision is greater than 3681 // the number of available digits after the decimal separator. 3682 mant = trailingZeros(mant, nzeros); 3683 3684 char[] exp = bdl.exponent(); 3685 int newW = width; 3686 if (width != -1) 3687 newW = adjustWidth(width - exp.length - 1, f, neg); 3688 localizedMagnitude(sb, mant, f, newW, l); 3689 3690 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); 3691 3692 Flags flags = f.dup().remove(Flags.GROUP); 3693 char sign = exp[0]; 3694 assert(sign == '+' || sign == '-'); 3695 sb.append(exp[0]); 3696 3697 char[] tmp = new char[exp.length - 1]; 3698 System.arraycopy(exp, 1, tmp, 0, exp.length - 1); 3699 sb.append(localizedMagnitude(null, tmp, flags, -1, l)); 3700 } else if (c == Conversion.DECIMAL_FLOAT) { 3701 // Create a new BigDecimal with the desired precision. 3702 int prec = (precision == -1 ? 6 : precision); 3703 int scale = value.scale(); 3704 3705 if (scale > prec) { 3706 // more "scale" digits than the requested "precision" 3707 int compPrec = value.precision(); 3708 if (compPrec <= scale) { 3709 // case of 0.xxxxxx 3710 value = value.setScale(prec, RoundingMode.HALF_UP); 3711 } else { 3712 compPrec -= (scale - prec); 3713 value = new BigDecimal(value.unscaledValue(), 3714 scale, 3715 new MathContext(compPrec)); 3716 } 3717 } 3718 BigDecimalLayout bdl = new BigDecimalLayout( 3719 value.unscaledValue(), 3720 value.scale(), 3721 BigDecimalLayoutForm.DECIMAL_FLOAT); 3722 3723 char mant[] = bdl.mantissa(); 3724 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0); 3725 3726 // Add a decimal point if necessary. The mantissa may not 3727 // contain a decimal point if the scale is zero (the internal 3728 // representation has no fractional part). Append a decimal 3729 // point if '#' is set or we require zero padding to get to the 3730 // requested precision. 3731 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0)) 3732 mant = addDot(bdl.mantissa()); 3733 3734 // Add trailing zeros if the precision is greater than the 3735 // number of available digits after the decimal separator. 3736 mant = trailingZeros(mant, nzeros); 3737 3738 localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l); 3739 } else if (c == Conversion.GENERAL) { 3740 int prec = precision; 3741 if (precision == -1) 3742 prec = 6; 3743 else if (precision == 0) 3744 prec = 1; 3745 3746 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4); 3747 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec); 3748 if ((value.equals(BigDecimal.ZERO)) 3749 || ((value.compareTo(tenToTheNegFour) != -1) 3750 && (value.compareTo(tenToThePrec) == -1))) { 3751 3752 int e = - value.scale() 3753 + (value.unscaledValue().toString().length() - 1); 3754 3755 // xxx.yyy 3756 // g precision (# sig digits) = #x + #y 3757 // f precision = #y 3758 // exponent = #x - 1 3759 // => f precision = g precision - exponent - 1 3760 // 0.000zzz 3761 // g precision (# sig digits) = #z 3762 // f precision = #0 (after '.') + #z 3763 // exponent = - #0 (after '.') - 1 3764 // => f precision = g precision - exponent - 1 3765 prec = prec - e - 1; 3766 3767 print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec, 3768 neg); 3769 } else { 3770 print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg); 3771 } 3772 } else if (c == Conversion.HEXADECIMAL_FLOAT) { 3773 // This conversion isn't supported. The error should be 3774 // reported earlier. 3775 assert false; 3776 } 3777 } 3778 3779 private class BigDecimalLayout { 3780 private StringBuilder mant; 3781 private StringBuilder exp; 3782 private boolean dot = false; 3783 private int scale; 3784 3785 public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { 3786 layout(intVal, scale, form); 3787 } 3788 3789 public boolean hasDot() { 3790 return dot; 3791 } 3792 3793 public int scale() { 3794 return scale; 3795 } 3796 3797 // char[] with canonical string representation 3798 public char[] layoutChars() { 3799 StringBuilder sb = new StringBuilder(mant); 3800 if (exp != null) { 3801 sb.append('E'); 3802 sb.append(exp); 3803 } 3804 return toCharArray(sb); 3805 } 3806 3807 public char[] mantissa() { 3808 return toCharArray(mant); 3809 } 3810 3811 // The exponent will be formatted as a sign ('+' or '-') followed 3812 // by the exponent zero-padded to include at least two digits. 3813 public char[] exponent() { 3814 return toCharArray(exp); 3815 } 3816 3817 private char[] toCharArray(StringBuilder sb) { 3818 if (sb == null) 3819 return null; 3820 char[] result = new char[sb.length()]; 3821 sb.getChars(0, result.length, result, 0); 3822 return result; 3823 } 3824 3825 private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { 3826 char coeff[] = intVal.toString().toCharArray(); 3827 this.scale = scale; 3828 3829 // Construct a buffer, with sufficient capacity for all cases. 3830 // If E-notation is needed, length will be: +1 if negative, +1 3831 // if '.' needed, +2 for "E+", + up to 10 for adjusted 3832 // exponent. Otherwise it could have +1 if negative, plus 3833 // leading "0.00000" 3834 mant = new StringBuilder(coeff.length + 14); 3835 3836 if (scale == 0) { 3837 int len = coeff.length; 3838 if (len > 1) { 3839 mant.append(coeff[0]); 3840 if (form == BigDecimalLayoutForm.SCIENTIFIC) { 3841 mant.append('.'); 3842 dot = true; 3843 mant.append(coeff, 1, len - 1); 3844 exp = new StringBuilder("+"); 3845 if (len < 10) 3846 exp.append("0").append(len - 1); 3847 else 3848 exp.append(len - 1); 3849 } else { 3850 mant.append(coeff, 1, len - 1); 3851 } 3852 } else { 3853 mant.append(coeff); 3854 if (form == BigDecimalLayoutForm.SCIENTIFIC) 3855 exp = new StringBuilder("+00"); 3856 } 3857 return; 3858 } 3859 long adjusted = -(long) scale + (coeff.length - 1); 3860 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) { 3861 // count of padding zeros 3862 int pad = scale - coeff.length; 3863 if (pad >= 0) { 3864 // 0.xxx form 3865 mant.append("0."); 3866 dot = true; 3867 for (; pad > 0 ; pad--) mant.append('0'); 3868 mant.append(coeff); 3869 } else { 3870 if (-pad < coeff.length) { 3871 // xx.xx form 3872 mant.append(coeff, 0, -pad); 3873 mant.append('.'); 3874 dot = true; 3875 mant.append(coeff, -pad, scale); 3876 } else { 3877 // xx form 3878 mant.append(coeff, 0, coeff.length); 3879 for (int i = 0; i < -scale; i++) 3880 mant.append('0'); 3881 this.scale = 0; 3882 } 3883 } 3884 } else { 3885 // x.xxx form 3886 mant.append(coeff[0]); 3887 if (coeff.length > 1) { 3888 mant.append('.'); 3889 dot = true; 3890 mant.append(coeff, 1, coeff.length-1); 3891 } 3892 exp = new StringBuilder(); 3893 if (adjusted != 0) { 3894 long abs = Math.abs(adjusted); 3895 // require sign 3896 exp.append(adjusted < 0 ? '-' : '+'); 3897 if (abs < 10) 3898 exp.append('0'); 3899 exp.append(abs); 3900 } else { 3901 exp.append("+00"); 3902 } 3903 } 3904 } 3905 } 3906 3907 private int adjustWidth(int width, Flags f, boolean neg) { 3908 int newW = width; 3909 if (newW != -1 && neg && f.contains(Flags.PARENTHESES)) 3910 newW--; 3911 return newW; 3912 } 3913 3914 // Add a '.' to th mantissa if required 3915 private char[] addDot(char[] mant) { 3916 char[] tmp = mant; 3917 tmp = new char[mant.length + 1]; 3918 System.arraycopy(mant, 0, tmp, 0, mant.length); 3919 tmp[tmp.length - 1] = '.'; 3920 return tmp; 3921 } 3922 3923 // Add trailing zeros in the case precision is greater than the number 3924 // of available digits after the decimal separator. 3925 private char[] trailingZeros(char[] mant, int nzeros) { 3926 char[] tmp = mant; 3927 if (nzeros > 0) { 3928 tmp = new char[mant.length + nzeros]; 3929 System.arraycopy(mant, 0, tmp, 0, mant.length); 3930 for (int i = mant.length; i < tmp.length; i++) 3931 tmp[i] = '0'; 3932 } 3933 return tmp; 3934 } 3935 3936 private void print(Calendar t, char c, Locale l) throws IOException 3937 { 3938 StringBuilder sb = new StringBuilder(); 3939 print(sb, t, c, l); 3940 3941 // justify based on width 3942 String s = justify(sb.toString()); 3943 if (f.contains(Flags.UPPERCASE)) 3944 s = s.toUpperCase(); 3945 3946 a.append(s); 3947 } 3948 3949 private Appendable print(StringBuilder sb, Calendar t, char c, 3950 Locale l) 3951 throws IOException 3952 { 3953 if (sb == null) 3954 sb = new StringBuilder(); 3955 switch (c) { 3956 case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23) 3957 case DateTime.HOUR_0: // 'I' (01 - 12) 3958 case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H 3959 case DateTime.HOUR: { // 'l' (1 - 12) -- like I 3960 int i = t.get(Calendar.HOUR_OF_DAY); 3961 if (c == DateTime.HOUR_0 || c == DateTime.HOUR) 3962 i = (i == 0 || i == 12 ? 12 : i % 12); 3963 Flags flags = (c == DateTime.HOUR_OF_DAY_0 3964 || c == DateTime.HOUR_0 3965 ? Flags.ZERO_PAD 3966 : Flags.NONE); 3967 sb.append(localizedMagnitude(null, i, flags, 2, l)); 3968 break; 3969 } 3970 case DateTime.MINUTE: { // 'M' (00 - 59) 3971 int i = t.get(Calendar.MINUTE); 3972 Flags flags = Flags.ZERO_PAD; 3973 sb.append(localizedMagnitude(null, i, flags, 2, l)); 3974 break; 3975 } 3976 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) 3977 int i = t.get(Calendar.MILLISECOND) * 1000000; 3978 Flags flags = Flags.ZERO_PAD; 3979 sb.append(localizedMagnitude(null, i, flags, 9, l)); 3980 break; 3981 } 3982 case DateTime.MILLISECOND: { // 'L' (000 - 999) 3983 int i = t.get(Calendar.MILLISECOND); 3984 Flags flags = Flags.ZERO_PAD; 3985 sb.append(localizedMagnitude(null, i, flags, 3, l)); 3986 break; 3987 } 3988 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) 3989 long i = t.getTimeInMillis(); 3990 Flags flags = Flags.NONE; 3991 sb.append(localizedMagnitude(null, i, flags, width, l)); 3992 break; 3993 } 3994 case DateTime.AM_PM: { // 'p' (am or pm) 3995 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper 3996 String[] ampm = { "AM", "PM" }; 3997 if (l != null && l != Locale.US) { 3998 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); 3999 ampm = dfs.getAmPmStrings(); 4000 } 4001 String s = ampm[t.get(Calendar.AM_PM)]; 4002 sb.append(s.toLowerCase(l != null ? l : Locale.US)); 4003 break; 4004 } 4005 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) 4006 long i = t.getTimeInMillis() / 1000; 4007 Flags flags = Flags.NONE; 4008 sb.append(localizedMagnitude(null, i, flags, width, l)); 4009 break; 4010 } 4011 case DateTime.SECOND: { // 'S' (00 - 60 - leap second) 4012 int i = t.get(Calendar.SECOND); 4013 Flags flags = Flags.ZERO_PAD; 4014 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4015 break; 4016 } 4017 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? 4018 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET); 4019 boolean neg = i < 0; 4020 sb.append(neg ? '-' : '+'); 4021 if (neg) 4022 i = -i; 4023 int min = i / 60000; 4024 // combine minute and hour into a single integer 4025 int offset = (min / 60) * 100 + (min % 60); 4026 Flags flags = Flags.ZERO_PAD; 4027 4028 sb.append(localizedMagnitude(null, offset, flags, 4, l)); 4029 break; 4030 } 4031 case DateTime.ZONE: { // 'Z' (symbol) 4032 TimeZone tz = t.getTimeZone(); 4033 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0), 4034 TimeZone.SHORT, 4035 (l == null) ? Locale.US : l)); 4036 break; 4037 } 4038 4039 // Date 4040 case DateTime.NAME_OF_DAY_ABBREV: // 'a' 4041 case DateTime.NAME_OF_DAY: { // 'A' 4042 int i = t.get(Calendar.DAY_OF_WEEK); 4043 Locale lt = ((l == null) ? Locale.US : l); 4044 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); 4045 if (c == DateTime.NAME_OF_DAY) 4046 sb.append(dfs.getWeekdays()[i]); 4047 else 4048 sb.append(dfs.getShortWeekdays()[i]); 4049 break; 4050 } 4051 case DateTime.NAME_OF_MONTH_ABBREV: // 'b' 4052 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b 4053 case DateTime.NAME_OF_MONTH: { // 'B' 4054 int i = t.get(Calendar.MONTH); 4055 Locale lt = ((l == null) ? Locale.US : l); 4056 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); 4057 if (c == DateTime.NAME_OF_MONTH) 4058 sb.append(dfs.getMonths()[i]); 4059 else 4060 sb.append(dfs.getShortMonths()[i]); 4061 break; 4062 } 4063 case DateTime.CENTURY: // 'C' (00 - 99) 4064 case DateTime.YEAR_2: // 'y' (00 - 99) 4065 case DateTime.YEAR_4: { // 'Y' (0000 - 9999) 4066 int i = t.get(Calendar.YEAR); 4067 int size = 2; 4068 switch (c) { 4069 case DateTime.CENTURY: 4070 i /= 100; 4071 break; 4072 case DateTime.YEAR_2: 4073 i %= 100; 4074 break; 4075 case DateTime.YEAR_4: 4076 size = 4; 4077 break; 4078 } 4079 Flags flags = Flags.ZERO_PAD; 4080 sb.append(localizedMagnitude(null, i, flags, size, l)); 4081 break; 4082 } 4083 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) 4084 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d 4085 int i = t.get(Calendar.DATE); 4086 Flags flags = (c == DateTime.DAY_OF_MONTH_0 4087 ? Flags.ZERO_PAD 4088 : Flags.NONE); 4089 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4090 break; 4091 } 4092 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) 4093 int i = t.get(Calendar.DAY_OF_YEAR); 4094 Flags flags = Flags.ZERO_PAD; 4095 sb.append(localizedMagnitude(null, i, flags, 3, l)); 4096 break; 4097 } 4098 case DateTime.MONTH: { // 'm' (01 - 12) 4099 int i = t.get(Calendar.MONTH) + 1; 4100 Flags flags = Flags.ZERO_PAD; 4101 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4102 break; 4103 } 4104 4105 // Composites 4106 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) 4107 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) 4108 char sep = ':'; 4109 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); 4110 print(sb, t, DateTime.MINUTE, l); 4111 if (c == DateTime.TIME) { 4112 sb.append(sep); 4113 print(sb, t, DateTime.SECOND, l); 4114 } 4115 break; 4116 } 4117 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) 4118 char sep = ':'; 4119 print(sb, t, DateTime.HOUR_0, l).append(sep); 4120 print(sb, t, DateTime.MINUTE, l).append(sep); 4121 print(sb, t, DateTime.SECOND, l).append(' '); 4122 // this may be in wrong place for some locales 4123 StringBuilder tsb = new StringBuilder(); 4124 print(tsb, t, DateTime.AM_PM, l); 4125 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); 4126 break; 4127 } 4128 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) 4129 char sep = ' '; 4130 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); 4131 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); 4132 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); 4133 print(sb, t, DateTime.TIME, l).append(sep); 4134 print(sb, t, DateTime.ZONE, l).append(sep); 4135 print(sb, t, DateTime.YEAR_4, l); 4136 break; 4137 } 4138 case DateTime.DATE: { // 'D' (mm/dd/yy) 4139 char sep = '/'; 4140 print(sb, t, DateTime.MONTH, l).append(sep); 4141 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); 4142 print(sb, t, DateTime.YEAR_2, l); 4143 break; 4144 } 4145 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) 4146 char sep = '-'; 4147 print(sb, t, DateTime.YEAR_4, l).append(sep); 4148 print(sb, t, DateTime.MONTH, l).append(sep); 4149 print(sb, t, DateTime.DAY_OF_MONTH_0, l); 4150 break; 4151 } 4152 default: 4153 assert false; 4154 } 4155 return sb; 4156 } 4157 4158 private void print(TemporalAccessor t, char c, Locale l) throws IOException { 4159 StringBuilder sb = new StringBuilder(); 4160 print(sb, t, c, l); 4161 // justify based on width 4162 String s = justify(sb.toString()); 4163 if (f.contains(Flags.UPPERCASE)) 4164 s = s.toUpperCase(); 4165 a.append(s); 4166 } 4167 4168 private Appendable print(StringBuilder sb, TemporalAccessor t, char c, 4169 Locale l) throws IOException { 4170 if (sb == null) 4171 sb = new StringBuilder(); 4172 try { 4173 switch (c) { 4174 case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23) 4175 int i = t.get(ChronoField.HOUR_OF_DAY); 4176 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); 4177 break; 4178 } 4179 case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H 4180 int i = t.get(ChronoField.HOUR_OF_DAY); 4181 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); 4182 break; 4183 } 4184 case DateTime.HOUR_0: { // 'I' (01 - 12) 4185 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); 4186 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); 4187 break; 4188 } 4189 case DateTime.HOUR: { // 'l' (1 - 12) -- like I 4190 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); 4191 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); 4192 break; 4193 } 4194 case DateTime.MINUTE: { // 'M' (00 - 59) 4195 int i = t.get(ChronoField.MINUTE_OF_HOUR); 4196 Flags flags = Flags.ZERO_PAD; 4197 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4198 break; 4199 } 4200 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) 4201 int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000; 4202 Flags flags = Flags.ZERO_PAD; 4203 sb.append(localizedMagnitude(null, i, flags, 9, l)); 4204 break; 4205 } 4206 case DateTime.MILLISECOND: { // 'L' (000 - 999) 4207 int i = t.get(ChronoField.MILLI_OF_SECOND); 4208 Flags flags = Flags.ZERO_PAD; 4209 sb.append(localizedMagnitude(null, i, flags, 3, l)); 4210 break; 4211 } 4212 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) 4213 long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L + 4214 t.getLong(ChronoField.MILLI_OF_SECOND); 4215 Flags flags = Flags.NONE; 4216 sb.append(localizedMagnitude(null, i, flags, width, l)); 4217 break; 4218 } 4219 case DateTime.AM_PM: { // 'p' (am or pm) 4220 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper 4221 String[] ampm = { "AM", "PM" }; 4222 if (l != null && l != Locale.US) { 4223 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); 4224 ampm = dfs.getAmPmStrings(); 4225 } 4226 String s = ampm[t.get(ChronoField.AMPM_OF_DAY)]; 4227 sb.append(s.toLowerCase(l != null ? l : Locale.US)); 4228 break; 4229 } 4230 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) 4231 long i = t.getLong(ChronoField.INSTANT_SECONDS); 4232 Flags flags = Flags.NONE; 4233 sb.append(localizedMagnitude(null, i, flags, width, l)); 4234 break; 4235 } 4236 case DateTime.SECOND: { // 'S' (00 - 60 - leap second) 4237 int i = t.get(ChronoField.SECOND_OF_MINUTE); 4238 Flags flags = Flags.ZERO_PAD; 4239 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4240 break; 4241 } 4242 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? 4243 int i = t.get(ChronoField.OFFSET_SECONDS); 4244 boolean neg = i < 0; 4245 sb.append(neg ? '-' : '+'); 4246 if (neg) 4247 i = -i; 4248 int min = i / 60; 4249 // combine minute and hour into a single integer 4250 int offset = (min / 60) * 100 + (min % 60); 4251 Flags flags = Flags.ZERO_PAD; 4252 sb.append(localizedMagnitude(null, offset, flags, 4, l)); 4253 break; 4254 } 4255 case DateTime.ZONE: { // 'Z' (symbol) 4256 ZoneId zid = t.query(TemporalQueries.zone()); 4257 if (zid == null) { 4258 throw new IllegalFormatConversionException(c, t.getClass()); 4259 } 4260 if (!(zid instanceof ZoneOffset) && 4261 t.isSupported(ChronoField.INSTANT_SECONDS)) { 4262 Instant instant = Instant.from(t); 4263 sb.append(TimeZone.getTimeZone(zid.getId()) 4264 .getDisplayName(zid.getRules().isDaylightSavings(instant), 4265 TimeZone.SHORT, 4266 (l == null) ? Locale.US : l)); 4267 break; 4268 } 4269 sb.append(zid.getId()); 4270 break; 4271 } 4272 // Date 4273 case DateTime.NAME_OF_DAY_ABBREV: // 'a' 4274 case DateTime.NAME_OF_DAY: { // 'A' 4275 int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1; 4276 Locale lt = ((l == null) ? Locale.US : l); 4277 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); 4278 if (c == DateTime.NAME_OF_DAY) 4279 sb.append(dfs.getWeekdays()[i]); 4280 else 4281 sb.append(dfs.getShortWeekdays()[i]); 4282 break; 4283 } 4284 case DateTime.NAME_OF_MONTH_ABBREV: // 'b' 4285 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b 4286 case DateTime.NAME_OF_MONTH: { // 'B' 4287 int i = t.get(ChronoField.MONTH_OF_YEAR) - 1; 4288 Locale lt = ((l == null) ? Locale.US : l); 4289 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); 4290 if (c == DateTime.NAME_OF_MONTH) 4291 sb.append(dfs.getMonths()[i]); 4292 else 4293 sb.append(dfs.getShortMonths()[i]); 4294 break; 4295 } 4296 case DateTime.CENTURY: // 'C' (00 - 99) 4297 case DateTime.YEAR_2: // 'y' (00 - 99) 4298 case DateTime.YEAR_4: { // 'Y' (0000 - 9999) 4299 int i = t.get(ChronoField.YEAR_OF_ERA); 4300 int size = 2; 4301 switch (c) { 4302 case DateTime.CENTURY: 4303 i /= 100; 4304 break; 4305 case DateTime.YEAR_2: 4306 i %= 100; 4307 break; 4308 case DateTime.YEAR_4: 4309 size = 4; 4310 break; 4311 } 4312 Flags flags = Flags.ZERO_PAD; 4313 sb.append(localizedMagnitude(null, i, flags, size, l)); 4314 break; 4315 } 4316 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) 4317 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d 4318 int i = t.get(ChronoField.DAY_OF_MONTH); 4319 Flags flags = (c == DateTime.DAY_OF_MONTH_0 4320 ? Flags.ZERO_PAD 4321 : Flags.NONE); 4322 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4323 break; 4324 } 4325 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) 4326 int i = t.get(ChronoField.DAY_OF_YEAR); 4327 Flags flags = Flags.ZERO_PAD; 4328 sb.append(localizedMagnitude(null, i, flags, 3, l)); 4329 break; 4330 } 4331 case DateTime.MONTH: { // 'm' (01 - 12) 4332 int i = t.get(ChronoField.MONTH_OF_YEAR); 4333 Flags flags = Flags.ZERO_PAD; 4334 sb.append(localizedMagnitude(null, i, flags, 2, l)); 4335 break; 4336 } 4337 4338 // Composites 4339 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) 4340 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) 4341 char sep = ':'; 4342 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); 4343 print(sb, t, DateTime.MINUTE, l); 4344 if (c == DateTime.TIME) { 4345 sb.append(sep); 4346 print(sb, t, DateTime.SECOND, l); 4347 } 4348 break; 4349 } 4350 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) 4351 char sep = ':'; 4352 print(sb, t, DateTime.HOUR_0, l).append(sep); 4353 print(sb, t, DateTime.MINUTE, l).append(sep); 4354 print(sb, t, DateTime.SECOND, l).append(' '); 4355 // this may be in wrong place for some locales 4356 StringBuilder tsb = new StringBuilder(); 4357 print(tsb, t, DateTime.AM_PM, l); 4358 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); 4359 break; 4360 } 4361 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) 4362 char sep = ' '; 4363 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); 4364 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); 4365 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); 4366 print(sb, t, DateTime.TIME, l).append(sep); 4367 print(sb, t, DateTime.ZONE, l).append(sep); 4368 print(sb, t, DateTime.YEAR_4, l); 4369 break; 4370 } 4371 case DateTime.DATE: { // 'D' (mm/dd/yy) 4372 char sep = '/'; 4373 print(sb, t, DateTime.MONTH, l).append(sep); 4374 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); 4375 print(sb, t, DateTime.YEAR_2, l); 4376 break; 4377 } 4378 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) 4379 char sep = '-'; 4380 print(sb, t, DateTime.YEAR_4, l).append(sep); 4381 print(sb, t, DateTime.MONTH, l).append(sep); 4382 print(sb, t, DateTime.DAY_OF_MONTH_0, l); 4383 break; 4384 } 4385 default: 4386 assert false; 4387 } 4388 } catch (DateTimeException x) { 4389 throw new IllegalFormatConversionException(c, t.getClass()); 4390 } 4391 return sb; 4392 } 4393 4394 // -- Methods to support throwing exceptions -- 4395 4396 private void failMismatch(Flags f, char c) { 4397 String fs = f.toString(); 4398 throw new FormatFlagsConversionMismatchException(fs, c); 4399 } 4400 4401 private void failConversion(char c, Object arg) { 4402 throw new IllegalFormatConversionException(c, arg.getClass()); 4403 } 4404 4405 private char getZero(Locale l) { 4406 if ((l != null) && !l.equals(locale())) { 4407 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); 4408 return dfs.getZeroDigit(); 4409 } 4410 return zero; 4411 } 4412 4413 private StringBuilder 4414 localizedMagnitude(StringBuilder sb, long value, Flags f, 4415 int width, Locale l) 4416 { 4417 char[] va = Long.toString(value, 10).toCharArray(); 4418 return localizedMagnitude(sb, va, f, width, l); 4419 } 4420 4421 private StringBuilder 4422 localizedMagnitude(StringBuilder sb, char[] value, Flags f, 4423 int width, Locale l) 4424 { 4425 if (sb == null) 4426 sb = new StringBuilder(); 4427 int begin = sb.length(); 4428 4429 char zero = getZero(l); 4430 4431 // determine localized grouping separator and size 4432 char grpSep = '\0'; 4433 int grpSize = -1; 4434 char decSep = '\0'; 4435 4436 int len = value.length; 4437 int dot = len; 4438 for (int j = 0; j < len; j++) { 4439 if (value[j] == '.') { 4440 dot = j; 4441 break; 4442 } 4443 } 4444 4445 if (dot < len) { 4446 if (l == null || l.equals(Locale.US)) { 4447 decSep = '.'; 4448 } else { 4449 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); 4450 decSep = dfs.getDecimalSeparator(); 4451 } 4452 } 4453 4454 if (f.contains(Flags.GROUP)) { 4455 if (l == null || l.equals(Locale.US)) { 4456 grpSep = ','; 4457 grpSize = 3; 4458 } else { 4459 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); 4460 grpSep = dfs.getGroupingSeparator(); 4461 DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l); 4462 grpSize = df.getGroupingSize(); 4463 // BEGIN Android-changed: http://b/33245708 4464 // Some locales have a group separator but also patterns without groups. 4465 // If we do not clear the group separator in these cases a divide by zero 4466 // is thrown when determining where to place the separators. 4467 if (!df.isGroupingUsed() || df.getGroupingSize() == 0) { 4468 grpSep = '\0'; 4469 } 4470 // END Android-changed: http://b/33245708. 4471 } 4472 } 4473 4474 // localize the digits inserting group separators as necessary 4475 for (int j = 0; j < len; j++) { 4476 if (j == dot) { 4477 sb.append(decSep); 4478 // no more group separators after the decimal separator 4479 grpSep = '\0'; 4480 continue; 4481 } 4482 4483 char c = value[j]; 4484 sb.append((char) ((c - '0') + zero)); 4485 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) 4486 sb.append(grpSep); 4487 } 4488 4489 // apply zero padding 4490 len = sb.length(); 4491 if (width != -1 && f.contains(Flags.ZERO_PAD)) 4492 for (int k = 0; k < width - len; k++) 4493 sb.insert(begin, zero); 4494 4495 return sb; 4496 } 4497 } 4498 4499 private static class Flags { 4500 private int flags; 4501 4502 static final Flags NONE = new Flags(0); // '' 4503 4504 // duplicate declarations from Formattable.java 4505 static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-' 4506 static final Flags UPPERCASE = new Flags(1<<1); // '^' 4507 static final Flags ALTERNATE = new Flags(1<<2); // '#' 4508 4509 // numerics 4510 static final Flags PLUS = new Flags(1<<3); // '+' 4511 static final Flags LEADING_SPACE = new Flags(1<<4); // ' ' 4512 static final Flags ZERO_PAD = new Flags(1<<5); // '0' 4513 static final Flags GROUP = new Flags(1<<6); // ',' 4514 static final Flags PARENTHESES = new Flags(1<<7); // '(' 4515 4516 // indexing 4517 static final Flags PREVIOUS = new Flags(1<<8); // '<' 4518 4519 private Flags(int f) { 4520 flags = f; 4521 } 4522 4523 public int valueOf() { 4524 return flags; 4525 } 4526 4527 public boolean contains(Flags f) { 4528 return (flags & f.valueOf()) == f.valueOf(); 4529 } 4530 4531 public Flags dup() { 4532 return new Flags(flags); 4533 } 4534 4535 private Flags add(Flags f) { 4536 flags |= f.valueOf(); 4537 return this; 4538 } 4539 4540 public Flags remove(Flags f) { 4541 flags &= ~f.valueOf(); 4542 return this; 4543 } 4544 4545 public static Flags parse(String s) { 4546 char[] ca = s.toCharArray(); 4547 Flags f = new Flags(0); 4548 for (int i = 0; i < ca.length; i++) { 4549 Flags v = parse(ca[i]); 4550 if (f.contains(v)) 4551 throw new DuplicateFormatFlagsException(v.toString()); 4552 f.add(v); 4553 } 4554 return f; 4555 } 4556 4557 // parse those flags which may be provided by users 4558 private static Flags parse(char c) { 4559 switch (c) { 4560 case '-': return LEFT_JUSTIFY; 4561 case '#': return ALTERNATE; 4562 case '+': return PLUS; 4563 case ' ': return LEADING_SPACE; 4564 case '0': return ZERO_PAD; 4565 case ',': return GROUP; 4566 case '(': return PARENTHESES; 4567 case '<': return PREVIOUS; 4568 default: 4569 throw new UnknownFormatFlagsException(String.valueOf(c)); 4570 } 4571 } 4572 4573 // Returns a string representation of the current {@code Flags}. 4574 public static String toString(Flags f) { 4575 return f.toString(); 4576 } 4577 4578 public String toString() { 4579 StringBuilder sb = new StringBuilder(); 4580 if (contains(LEFT_JUSTIFY)) sb.append('-'); 4581 if (contains(UPPERCASE)) sb.append('^'); 4582 if (contains(ALTERNATE)) sb.append('#'); 4583 if (contains(PLUS)) sb.append('+'); 4584 if (contains(LEADING_SPACE)) sb.append(' '); 4585 if (contains(ZERO_PAD)) sb.append('0'); 4586 if (contains(GROUP)) sb.append(','); 4587 if (contains(PARENTHESES)) sb.append('('); 4588 if (contains(PREVIOUS)) sb.append('<'); 4589 return sb.toString(); 4590 } 4591 } 4592 4593 private static class Conversion { 4594 // Byte, Short, Integer, Long, BigInteger 4595 // (and associated primitives due to autoboxing) 4596 static final char DECIMAL_INTEGER = 'd'; 4597 static final char OCTAL_INTEGER = 'o'; 4598 static final char HEXADECIMAL_INTEGER = 'x'; 4599 static final char HEXADECIMAL_INTEGER_UPPER = 'X'; 4600 4601 // Float, Double, BigDecimal 4602 // (and associated primitives due to autoboxing) 4603 static final char SCIENTIFIC = 'e'; 4604 static final char SCIENTIFIC_UPPER = 'E'; 4605 static final char GENERAL = 'g'; 4606 static final char GENERAL_UPPER = 'G'; 4607 static final char DECIMAL_FLOAT = 'f'; 4608 static final char HEXADECIMAL_FLOAT = 'a'; 4609 static final char HEXADECIMAL_FLOAT_UPPER = 'A'; 4610 4611 // Character, Byte, Short, Integer 4612 // (and associated primitives due to autoboxing) 4613 static final char CHARACTER = 'c'; 4614 static final char CHARACTER_UPPER = 'C'; 4615 4616 // java.util.Date, java.util.Calendar, long 4617 static final char DATE_TIME = 't'; 4618 static final char DATE_TIME_UPPER = 'T'; 4619 4620 // if (arg.TYPE != boolean) return boolean 4621 // if (arg != null) return true; else return false; 4622 static final char BOOLEAN = 'b'; 4623 static final char BOOLEAN_UPPER = 'B'; 4624 // if (arg instanceof Formattable) arg.formatTo() 4625 // else arg.toString(); 4626 static final char STRING = 's'; 4627 static final char STRING_UPPER = 'S'; 4628 // arg.hashCode() 4629 static final char HASHCODE = 'h'; 4630 static final char HASHCODE_UPPER = 'H'; 4631 4632 static final char LINE_SEPARATOR = 'n'; 4633 static final char PERCENT_SIGN = '%'; 4634 4635 static boolean isValid(char c) { 4636 return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c) 4637 || c == 't' || isCharacter(c)); 4638 } 4639 4640 // Returns true iff the Conversion is applicable to all objects. 4641 static boolean isGeneral(char c) { 4642 switch (c) { 4643 case BOOLEAN: 4644 case BOOLEAN_UPPER: 4645 case STRING: 4646 case STRING_UPPER: 4647 case HASHCODE: 4648 case HASHCODE_UPPER: 4649 return true; 4650 default: 4651 return false; 4652 } 4653 } 4654 4655 // Returns true iff the Conversion is applicable to character. 4656 static boolean isCharacter(char c) { 4657 switch (c) { 4658 case CHARACTER: 4659 case CHARACTER_UPPER: 4660 return true; 4661 default: 4662 return false; 4663 } 4664 } 4665 4666 // Returns true iff the Conversion is an integer type. 4667 static boolean isInteger(char c) { 4668 switch (c) { 4669 case DECIMAL_INTEGER: 4670 case OCTAL_INTEGER: 4671 case HEXADECIMAL_INTEGER: 4672 case HEXADECIMAL_INTEGER_UPPER: 4673 return true; 4674 default: 4675 return false; 4676 } 4677 } 4678 4679 // Returns true iff the Conversion is a floating-point type. 4680 static boolean isFloat(char c) { 4681 switch (c) { 4682 case SCIENTIFIC: 4683 case SCIENTIFIC_UPPER: 4684 case GENERAL: 4685 case GENERAL_UPPER: 4686 case DECIMAL_FLOAT: 4687 case HEXADECIMAL_FLOAT: 4688 case HEXADECIMAL_FLOAT_UPPER: 4689 return true; 4690 default: 4691 return false; 4692 } 4693 } 4694 4695 // Returns true iff the Conversion does not require an argument 4696 static boolean isText(char c) { 4697 switch (c) { 4698 case LINE_SEPARATOR: 4699 case PERCENT_SIGN: 4700 return true; 4701 default: 4702 return false; 4703 } 4704 } 4705 } 4706 4707 private static class DateTime { 4708 static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23) 4709 static final char HOUR_0 = 'I'; // (01 - 12) 4710 static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H 4711 static final char HOUR = 'l'; // (1 - 12) -- like I 4712 static final char MINUTE = 'M'; // (00 - 59) 4713 static final char NANOSECOND = 'N'; // (000000000 - 999999999) 4714 static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999) 4715 static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?) 4716 static final char AM_PM = 'p'; // (am or pm) 4717 static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?) 4718 static final char SECOND = 'S'; // (00 - 60 - leap second) 4719 static final char TIME = 'T'; // (24 hour hh:mm:ss) 4720 static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus? 4721 static final char ZONE = 'Z'; // (symbol) 4722 4723 // Date 4724 static final char NAME_OF_DAY_ABBREV = 'a'; // 'a' 4725 static final char NAME_OF_DAY = 'A'; // 'A' 4726 static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b' 4727 static final char NAME_OF_MONTH = 'B'; // 'B' 4728 static final char CENTURY = 'C'; // (00 - 99) 4729 static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31) 4730 static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d 4731 // * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V 4732 // * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V 4733 static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b 4734 static final char DAY_OF_YEAR = 'j'; // (001 - 366) 4735 static final char MONTH = 'm'; // (01 - 12) 4736 // * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday 4737 // * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+ 4738 // * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+ 4739 // * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday 4740 // * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday 4741 static final char YEAR_2 = 'y'; // (00 - 99) 4742 static final char YEAR_4 = 'Y'; // (0000 - 9999) 4743 4744 // Composites 4745 static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M) 4746 static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M) 4747 // * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format? 4748 static final char DATE_TIME = 'c'; 4749 // (Sat Nov 04 12:02:33 EST 1999) 4750 static final char DATE = 'D'; // (mm/dd/yy) 4751 static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d) 4752 // * static final char LOCALE_DATE = 'x'; // (mm/dd/yy) 4753 4754 static boolean isValid(char c) { 4755 switch (c) { 4756 case HOUR_OF_DAY_0: 4757 case HOUR_0: 4758 case HOUR_OF_DAY: 4759 case HOUR: 4760 case MINUTE: 4761 case NANOSECOND: 4762 case MILLISECOND: 4763 case MILLISECOND_SINCE_EPOCH: 4764 case AM_PM: 4765 case SECONDS_SINCE_EPOCH: 4766 case SECOND: 4767 case TIME: 4768 case ZONE_NUMERIC: 4769 case ZONE: 4770 4771 // Date 4772 case NAME_OF_DAY_ABBREV: 4773 case NAME_OF_DAY: 4774 case NAME_OF_MONTH_ABBREV: 4775 case NAME_OF_MONTH: 4776 case CENTURY: 4777 case DAY_OF_MONTH_0: 4778 case DAY_OF_MONTH: 4779 // * case ISO_WEEK_OF_YEAR_2: 4780 // * case ISO_WEEK_OF_YEAR_4: 4781 case NAME_OF_MONTH_ABBREV_X: 4782 case DAY_OF_YEAR: 4783 case MONTH: 4784 // * case DAY_OF_WEEK_1: 4785 // * case WEEK_OF_YEAR_SUNDAY: 4786 // * case WEEK_OF_YEAR_MONDAY_01: 4787 // * case DAY_OF_WEEK_0: 4788 // * case WEEK_OF_YEAR_MONDAY: 4789 case YEAR_2: 4790 case YEAR_4: 4791 4792 // Composites 4793 case TIME_12_HOUR: 4794 case TIME_24_HOUR: 4795 // * case LOCALE_TIME: 4796 case DATE_TIME: 4797 case DATE: 4798 case ISO_STANDARD_DATE: 4799 // * case LOCALE_DATE: 4800 return true; 4801 default: 4802 return false; 4803 } 4804 } 4805 } 4806 } 4807