Home | History | Annotate | Download | only in libaudioprocessing
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "AudioResamplerDyn"
     18 //#define LOG_NDEBUG 0
     19 
     20 #include <malloc.h>
     21 #include <string.h>
     22 #include <stdlib.h>
     23 #include <dlfcn.h>
     24 #include <math.h>
     25 
     26 #include <cutils/compiler.h>
     27 #include <cutils/properties.h>
     28 #include <utils/Debug.h>
     29 #include <utils/Log.h>
     30 #include <audio_utils/primitives.h>
     31 
     32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
     33 #include "AudioResamplerFirProcess.h"
     34 #include "AudioResamplerFirProcessNeon.h"
     35 #include "AudioResamplerFirProcessSSE.h"
     36 #include "AudioResamplerFirGen.h" // requires math.h
     37 #include "AudioResamplerDyn.h"
     38 
     39 //#define DEBUG_RESAMPLER
     40 
     41 namespace android {
     42 
     43 /*
     44  * InBuffer is a type agnostic input buffer.
     45  *
     46  * Layout of the state buffer for halfNumCoefs=8.
     47  *
     48  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
     49  *  S            I                                R
     50  *
     51  * S = mState
     52  * I = mImpulse
     53  * R = mRingFull
     54  * p = past samples, convoluted with the (p)ositive side of sinc()
     55  * n = future samples, convoluted with the (n)egative side of sinc()
     56  * r = extra space for implementing the ring buffer
     57  */
     58 
     59 template<typename TC, typename TI, typename TO>
     60 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
     61     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
     62 {
     63 }
     64 
     65 template<typename TC, typename TI, typename TO>
     66 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
     67 {
     68     init();
     69 }
     70 
     71 template<typename TC, typename TI, typename TO>
     72 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
     73 {
     74     free(mState);
     75     mState = NULL;
     76     mImpulse = NULL;
     77     mRingFull = NULL;
     78     mStateCount = 0;
     79 }
     80 
     81 // resizes the state buffer to accommodate the appropriate filter length
     82 template<typename TC, typename TI, typename TO>
     83 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
     84 {
     85     // calculate desired state size
     86     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
     87 
     88     // check if buffer needs resizing
     89     if (mState
     90             && stateCount == mStateCount
     91             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
     92         return;
     93     }
     94 
     95     // create new buffer
     96     TI* state = NULL;
     97     (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
     98     memset(state, 0, stateCount*sizeof(*state));
     99 
    100     // attempt to preserve state
    101     if (mState) {
    102         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
    103         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
    104         TI* dst = state;
    105 
    106         if (srcLo < mState) {
    107             dst += mState-srcLo;
    108             srcLo = mState;
    109         }
    110         if (srcHi > mState + mStateCount) {
    111             srcHi = mState + mStateCount;
    112         }
    113         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
    114         free(mState);
    115     }
    116 
    117     // set class member vars
    118     mState = state;
    119     mStateCount = stateCount;
    120     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
    121     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
    122 }
    123 
    124 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
    125 template<typename TC, typename TI, typename TO>
    126 template<int CHANNELS>
    127 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
    128         const TI* const in, const size_t inputIndex)
    129 {
    130     TI* head = impulse + halfNumCoefs*CHANNELS;
    131     for (size_t i=0 ; i<CHANNELS ; i++) {
    132         head[i] = in[inputIndex*CHANNELS + i];
    133     }
    134 }
    135 
    136 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
    137 template<typename TC, typename TI, typename TO>
    138 template<int CHANNELS>
    139 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
    140         const TI* const in, const size_t inputIndex)
    141 {
    142     impulse += CHANNELS;
    143 
    144     if (CC_UNLIKELY(impulse >= mRingFull)) {
    145         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
    146         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
    147         impulse -= shiftDown;
    148     }
    149     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    150 }
    151 
    152 template<typename TC, typename TI, typename TO>
    153 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
    154 {
    155     // clear resampler state
    156     if (mState != nullptr) {
    157         memset(mState, 0, mStateCount * sizeof(TI));
    158     }
    159 }
    160 
    161 template<typename TC, typename TI, typename TO>
    162 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
    163         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
    164 {
    165     int bits = 0;
    166     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
    167             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
    168     for (int i=lscale; i; ++bits, i>>=1)
    169         ;
    170     mL = L;
    171     mShift = kNumPhaseBits - bits;
    172     mHalfNumCoefs = halfNumCoefs;
    173 }
    174 
    175 template<typename TC, typename TI, typename TO>
    176 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
    177         int inChannelCount, int32_t sampleRate, src_quality quality)
    178     : AudioResampler(inChannelCount, sampleRate, quality),
    179       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
    180     mCoefBuffer(NULL)
    181 {
    182     mVolumeSimd[0] = mVolumeSimd[1] = 0;
    183     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
    184     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
    185     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
    186     mInSampleRate = 0;
    187     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
    188 }
    189 
    190 template<typename TC, typename TI, typename TO>
    191 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
    192 {
    193     free(mCoefBuffer);
    194 }
    195 
    196 template<typename TC, typename TI, typename TO>
    197 void AudioResamplerDyn<TC, TI, TO>::init()
    198 {
    199     mFilterSampleRate = 0; // always trigger new filter generation
    200     mInBuffer.init();
    201 }
    202 
    203 template<typename TC, typename TI, typename TO>
    204 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
    205 {
    206     AudioResampler::setVolume(left, right);
    207     if (is_same<TO, float>::value || is_same<TO, double>::value) {
    208         mVolumeSimd[0] = static_cast<TO>(left);
    209         mVolumeSimd[1] = static_cast<TO>(right);
    210     } else {  // integer requires scaling to U4_28 (rounding down)
    211         // integer volumes are clamped to 0 to UNITY_GAIN so there
    212         // are no issues with signed overflow.
    213         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
    214         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
    215     }
    216 }
    217 
    218 template<typename T> T max(T a, T b) {return a > b ? a : b;}
    219 
    220 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
    221 
    222 template<typename TC, typename TI, typename TO>
    223 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
    224         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
    225 {
    226     TC* buf = NULL;
    227     static const double atten = 0.9998;   // to avoid ripple overflow
    228     double fcr;
    229     double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
    230 
    231     (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
    232     if (inSampleRate < outSampleRate) { // upsample
    233         fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
    234     } else { // downsample
    235         fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
    236     }
    237     // create and set filter
    238     firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
    239     c.mFirCoefs = buf;
    240     if (mCoefBuffer) {
    241         free(mCoefBuffer);
    242     }
    243     mCoefBuffer = buf;
    244 #ifdef DEBUG_RESAMPLER
    245     // print basic filter stats
    246     printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
    247             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
    248     // test the filter and report results
    249     double fp = (fcr - tbw/2)/c.mL;
    250     double fs = (fcr + tbw/2)/c.mL;
    251     double passMin, passMax, passRipple;
    252     double stopMax, stopRipple;
    253     testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
    254             passMin, passMax, passRipple, stopMax, stopRipple);
    255     printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
    256     printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
    257 #endif
    258 }
    259 
    260 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
    261 static int gcd(int n, int m)
    262 {
    263     if (m == 0) {
    264         return n;
    265     }
    266     return gcd(m, n % m);
    267 }
    268 
    269 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
    270         int32_t filterSampleRate, int32_t outSampleRate)
    271 {
    272 
    273     // different upsampling ratios do not need a filter change.
    274     if (filterSampleRate != 0
    275             && filterSampleRate < outSampleRate
    276             && newSampleRate < outSampleRate)
    277         return true;
    278 
    279     // check design criteria again if downsampling is detected.
    280     int pdiff = absdiff(newSampleRate, prevSampleRate);
    281     int adiff = absdiff(newSampleRate, filterSampleRate);
    282 
    283     // allow up to 6% relative change increments.
    284     // allow up to 12% absolute change increments (from filter design)
    285     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
    286 }
    287 
    288 template<typename TC, typename TI, typename TO>
    289 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
    290 {
    291     if (mInSampleRate == inSampleRate) {
    292         return;
    293     }
    294     int32_t oldSampleRate = mInSampleRate;
    295     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
    296     bool useS32 = false;
    297 
    298     mInSampleRate = inSampleRate;
    299 
    300     // TODO: Add precalculated Equiripple filters
    301 
    302     if (mFilterQuality != getQuality() ||
    303             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
    304         mFilterSampleRate = inSampleRate;
    305         mFilterQuality = getQuality();
    306 
    307         // Begin Kaiser Filter computation
    308         //
    309         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
    310         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
    311         //
    312         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
    313         // 96-98dB
    314         //
    315 
    316         double stopBandAtten;
    317         double tbwCheat = 1.; // how much we "cheat" into aliasing
    318         int halfLength;
    319         if (mFilterQuality == DYN_HIGH_QUALITY) {
    320             // 32b coefficients, 64 length
    321             useS32 = true;
    322             stopBandAtten = 98.;
    323             if (inSampleRate >= mSampleRate * 4) {
    324                 halfLength = 48;
    325             } else if (inSampleRate >= mSampleRate * 2) {
    326                 halfLength = 40;
    327             } else {
    328                 halfLength = 32;
    329             }
    330         } else if (mFilterQuality == DYN_LOW_QUALITY) {
    331             // 16b coefficients, 16-32 length
    332             useS32 = false;
    333             stopBandAtten = 80.;
    334             if (inSampleRate >= mSampleRate * 4) {
    335                 halfLength = 24;
    336             } else if (inSampleRate >= mSampleRate * 2) {
    337                 halfLength = 16;
    338             } else {
    339                 halfLength = 8;
    340             }
    341             if (inSampleRate <= mSampleRate) {
    342                 tbwCheat = 1.05;
    343             } else {
    344                 tbwCheat = 1.03;
    345             }
    346         } else { // DYN_MED_QUALITY
    347             // 16b coefficients, 32-64 length
    348             // note: > 64 length filters with 16b coefs can have quantization noise problems
    349             useS32 = false;
    350             stopBandAtten = 84.;
    351             if (inSampleRate >= mSampleRate * 4) {
    352                 halfLength = 32;
    353             } else if (inSampleRate >= mSampleRate * 2) {
    354                 halfLength = 24;
    355             } else {
    356                 halfLength = 16;
    357             }
    358             if (inSampleRate <= mSampleRate) {
    359                 tbwCheat = 1.03;
    360             } else {
    361                 tbwCheat = 1.01;
    362             }
    363         }
    364 
    365         // determine the number of polyphases in the filterbank.
    366         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
    367         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
    368         //
    369         // We are a bit more lax on this.
    370 
    371         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
    372 
    373         // TODO: Once dynamic sample rate change is an option, the code below
    374         // should be modified to execute only when dynamic sample rate change is enabled.
    375         //
    376         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
    377         // we increase the phases to compensate, but more phases means more memory per
    378         // filter and more time to compute the filter.
    379         //
    380         // if we know that the filter will be used for dynamic sample rate changes,
    381         // that would allow us skip this part for fixed sample rate resamplers.
    382         //
    383         while (phases<63) {
    384             phases *= 2; // this code only needed to support dynamic rate changes
    385         }
    386 
    387         if (phases>=256) {  // too many phases, always interpolate
    388             phases = 127;
    389         }
    390 
    391         // create the filter
    392         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
    393         createKaiserFir(mConstants, stopBandAtten,
    394                 inSampleRate, mSampleRate, tbwCheat);
    395     } // End Kaiser filter
    396 
    397     // update phase and state based on the new filter.
    398     const Constants& c(mConstants);
    399     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
    400     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    401     // try to preserve as much of the phase fraction as possible for on-the-fly changes
    402     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
    403             * phaseWrapLimit / oldPhaseWrapLimit;
    404     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
    405     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
    406             * inSampleRate / mSampleRate);
    407 
    408     // determine which resampler to use
    409     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
    410     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
    411     if (locked) {
    412         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
    413     }
    414 
    415     // stride is the minimum number of filter coefficients processed per loop iteration.
    416     // We currently only allow a stride of 16 to match with SIMD processing.
    417     // This means that the filter length must be a multiple of 16,
    418     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
    419     //
    420     // Note: A stride of 2 is achieved with non-SIMD processing.
    421     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
    422     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
    423     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
    424             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
    425     // stride 16 (falls back to stride 2 for machines that do not support NEON)
    426     if (locked) {
    427         switch (mChannelCount) {
    428         case 1:
    429             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
    430             break;
    431         case 2:
    432             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
    433             break;
    434         case 3:
    435             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
    436             break;
    437         case 4:
    438             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
    439             break;
    440         case 5:
    441             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
    442             break;
    443         case 6:
    444             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
    445             break;
    446         case 7:
    447             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
    448             break;
    449         case 8:
    450             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
    451             break;
    452         }
    453     } else {
    454         switch (mChannelCount) {
    455         case 1:
    456             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
    457             break;
    458         case 2:
    459             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
    460             break;
    461         case 3:
    462             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
    463             break;
    464         case 4:
    465             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
    466             break;
    467         case 5:
    468             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
    469             break;
    470         case 6:
    471             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
    472             break;
    473         case 7:
    474             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
    475             break;
    476         case 8:
    477             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
    478             break;
    479         }
    480     }
    481 #ifdef DEBUG_RESAMPLER
    482     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
    483             mChannelCount, locked ? "locked" : "interpolated",
    484             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
    485 #endif
    486 }
    487 
    488 template<typename TC, typename TI, typename TO>
    489 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
    490             AudioBufferProvider* provider)
    491 {
    492     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
    493 }
    494 
    495 template<typename TC, typename TI, typename TO>
    496 template<int CHANNELS, bool LOCKED, int STRIDE>
    497 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
    498         AudioBufferProvider* provider)
    499 {
    500     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
    501     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
    502     const Constants& c(mConstants);
    503     const TC* const coefs = mConstants.mFirCoefs;
    504     TI* impulse = mInBuffer.getImpulse();
    505     size_t inputIndex = 0;
    506     uint32_t phaseFraction = mPhaseFraction;
    507     const uint32_t phaseIncrement = mPhaseIncrement;
    508     size_t outputIndex = 0;
    509     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
    510     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    511     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
    512             / phaseWrapLimit;
    513     // sanity check that inFrameCount is in signed 32 bit integer range.
    514     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
    515 
    516     //ALOGV("inFrameCount:%d  outFrameCount:%d"
    517     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
    518     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
    519 
    520     // NOTE: be very careful when modifying the code here. register
    521     // pressure is very high and a small change might cause the compiler
    522     // to generate far less efficient code.
    523     // Always sanity check the result with objdump or test-resample.
    524 
    525     // the following logic is a bit convoluted to keep the main processing loop
    526     // as tight as possible with register allocation.
    527     while (outputIndex < outputSampleCount) {
    528         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    529         //        "  phaseFraction:%u  phaseWrapLimit:%u",
    530         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    531 
    532         // check inputIndex overflow
    533         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
    534                 inputIndex, mBuffer.frameCount);
    535         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
    536         // We may not fetch a new buffer if the existing data is sufficient.
    537         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
    538             mBuffer.frameCount = inFrameCount;
    539             provider->getNextBuffer(&mBuffer);
    540             if (mBuffer.raw == NULL) {
    541                 // We are either at the end of playback or in an underrun situation.
    542                 // Reset buffer to prevent pop noise at the next buffer.
    543                 mInBuffer.reset();
    544                 goto resample_exit;
    545             }
    546             inFrameCount -= mBuffer.frameCount;
    547             if (phaseFraction >= phaseWrapLimit) { // read in data
    548                 mInBuffer.template readAdvance<CHANNELS>(
    549                         impulse, c.mHalfNumCoefs,
    550                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    551                 inputIndex++;
    552                 phaseFraction -= phaseWrapLimit;
    553                 while (phaseFraction >= phaseWrapLimit) {
    554                     if (inputIndex >= mBuffer.frameCount) {
    555                         inputIndex = 0;
    556                         provider->releaseBuffer(&mBuffer);
    557                         break;
    558                     }
    559                     mInBuffer.template readAdvance<CHANNELS>(
    560                             impulse, c.mHalfNumCoefs,
    561                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    562                     inputIndex++;
    563                     phaseFraction -= phaseWrapLimit;
    564                 }
    565             }
    566         }
    567         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
    568         const size_t frameCount = mBuffer.frameCount;
    569         const int coefShift = c.mShift;
    570         const int halfNumCoefs = c.mHalfNumCoefs;
    571         const TO* const volumeSimd = mVolumeSimd;
    572 
    573         // main processing loop
    574         while (CC_LIKELY(outputIndex < outputSampleCount)) {
    575             // caution: fir() is inlined and may be large.
    576             // output will be loaded with the appropriate values
    577             //
    578             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
    579             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
    580             //
    581             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    582             //        "  phaseFraction:%u  phaseWrapLimit:%u",
    583             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    584             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
    585             fir<CHANNELS, LOCKED, STRIDE>(
    586                     &out[outputIndex],
    587                     phaseFraction, phaseWrapLimit,
    588                     coefShift, halfNumCoefs, coefs,
    589                     impulse, volumeSimd);
    590 
    591             outputIndex += OUTPUT_CHANNELS;
    592 
    593             phaseFraction += phaseIncrement;
    594             while (phaseFraction >= phaseWrapLimit) {
    595                 if (inputIndex >= frameCount) {
    596                     goto done;  // need a new buffer
    597                 }
    598                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    599                 inputIndex++;
    600                 phaseFraction -= phaseWrapLimit;
    601             }
    602         }
    603 done:
    604         // We arrive here when we're finished or when the input buffer runs out.
    605         // Regardless we need to release the input buffer if we've acquired it.
    606         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
    607             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
    608                     inputIndex, frameCount);  // must have been fully read.
    609             inputIndex = 0;
    610             provider->releaseBuffer(&mBuffer);
    611             ALOG_ASSERT(mBuffer.frameCount == 0);
    612         }
    613     }
    614 
    615 resample_exit:
    616     // inputIndex must be zero in all three cases:
    617     // (1) the buffer never was been acquired; (2) the buffer was
    618     // released at "done:"; or (3) getNextBuffer() failed.
    619     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu  phaseFraction:%u",
    620             inputIndex, mBuffer.frameCount, phaseFraction);
    621     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
    622     mInBuffer.setImpulse(impulse);
    623     mPhaseFraction = phaseFraction;
    624     return outputIndex / OUTPUT_CHANNELS;
    625 }
    626 
    627 /* instantiate templates used by AudioResampler::create */
    628 template class AudioResamplerDyn<float, float, float>;
    629 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
    630 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
    631 
    632 // ----------------------------------------------------------------------------
    633 } // namespace android
    634