1 /*********************************************************************** 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. 3 Redistribution and use in source and binary forms, with or without 4 modification, are permitted provided that the following conditions 5 are met: 6 - Redistributions of source code must retain the above copyright notice, 7 this list of conditions and the following disclaimer. 8 - Redistributions in binary form must reproduce the above copyright 9 notice, this list of conditions and the following disclaimer in the 10 documentation and/or other materials provided with the distribution. 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 12 names of specific contributors, may be used to endorse or promote 13 products derived from this software without specific prior written 14 permission. 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 POSSIBILITY OF SUCH DAMAGE. 26 ***********************************************************************/ 27 28 #ifdef HAVE_CONFIG_H 29 #include "config.h" 30 #endif 31 32 #include "main.h" 33 34 /* Delayed-decision quantizer for NLSF residuals */ 35 opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */ 36 opus_int8 indices[], /* O Quantization indices [ order ] */ 37 const opus_int16 x_Q10[], /* I Input [ order ] */ 38 const opus_int16 w_Q5[], /* I Weights [ order ] */ 39 const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ 40 const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */ 41 const opus_uint8 ec_rates_Q5[], /* I Rates [] */ 42 const opus_int quant_step_size_Q16, /* I Quantization step size */ 43 const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */ 44 const opus_int32 mu_Q20, /* I R/D tradeoff */ 45 const opus_int16 order /* I Number of input values */ 46 ) 47 { 48 opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10; 49 opus_int pred_Q10, diff_Q10, rate0_Q5, rate1_Q5; 50 opus_int16 out0_Q10, out1_Q10; 51 opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25; 52 opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ]; 53 opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ]; 54 opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; 55 opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; 56 opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; 57 opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; 58 const opus_uint8 *rates_Q5; 59 60 opus_int out0_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; 61 opus_int out1_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; 62 63 for (i = -NLSF_QUANT_MAX_AMPLITUDE_EXT; i <= NLSF_QUANT_MAX_AMPLITUDE_EXT-1; i++) 64 { 65 out0_Q10 = silk_LSHIFT( i, 10 ); 66 out1_Q10 = silk_ADD16( out0_Q10, 1024 ); 67 if( i > 0 ) { 68 out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 69 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 70 } else if( i == 0 ) { 71 out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 72 } else if( i == -1 ) { 73 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 74 } else { 75 out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 76 out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); 77 } 78 out0_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out0_Q10, quant_step_size_Q16 ), 16 ); 79 out1_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out1_Q10, quant_step_size_Q16 ), 16 ); 80 } 81 82 silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */ 83 84 nStates = 1; 85 RD_Q25[ 0 ] = 0; 86 prev_out_Q10[ 0 ] = 0; 87 for( i = order - 1; ; i-- ) { 88 rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ]; 89 in_Q10 = x_Q10[ i ]; 90 for( j = 0; j < nStates; j++ ) { 91 pred_Q10 = silk_RSHIFT( silk_SMULBB( (opus_int16)pred_coef_Q8[ i ], prev_out_Q10[ j ] ), 8 ); 92 res_Q10 = silk_SUB16( in_Q10, pred_Q10 ); 93 ind_tmp = silk_RSHIFT( silk_SMULBB( inv_quant_step_size_Q6, res_Q10 ), 16 ); 94 ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 ); 95 ind[ j ][ i ] = (opus_int8)ind_tmp; 96 97 /* compute outputs for ind_tmp and ind_tmp + 1 */ 98 out0_Q10 = out0_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; 99 out1_Q10 = out1_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; 100 101 out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 ); 102 out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 ); 103 prev_out_Q10[ j ] = out0_Q10; 104 prev_out_Q10[ j + nStates ] = out1_Q10; 105 106 /* compute RD for ind_tmp and ind_tmp + 1 */ 107 if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) { 108 if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) { 109 rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; 110 rate1_Q5 = 280; 111 } else { 112 rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp ); 113 rate1_Q5 = silk_ADD16( rate0_Q5, 43 ); 114 } 115 } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) { 116 if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) { 117 rate0_Q5 = 280; 118 rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; 119 } else { 120 rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp ); 121 rate1_Q5 = silk_SUB16( rate0_Q5, 43 ); 122 } 123 } else { 124 rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; 125 rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; 126 } 127 RD_tmp_Q25 = RD_Q25[ j ]; 128 diff_Q10 = silk_SUB16( in_Q10, out0_Q10 ); 129 RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 ); 130 diff_Q10 = silk_SUB16( in_Q10, out1_Q10 ); 131 RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 ); 132 } 133 134 if( nStates <= ( NLSF_QUANT_DEL_DEC_STATES >> 1 ) ) { 135 /* double number of states and copy */ 136 for( j = 0; j < nStates; j++ ) { 137 ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1; 138 } 139 nStates = silk_LSHIFT( nStates, 1 ); 140 for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { 141 ind[ j ][ i ] = ind[ j - nStates ][ i ]; 142 } 143 } else if( i > 0 ) { 144 /* sort lower and upper half of RD_Q25, pairwise */ 145 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { 146 if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) { 147 RD_max_Q25[ j ] = RD_Q25[ j ]; 148 RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; 149 RD_Q25[ j ] = RD_min_Q25[ j ]; 150 RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ]; 151 /* swap prev_out values */ 152 out0_Q10 = prev_out_Q10[ j ]; 153 prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ]; 154 prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10; 155 ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES; 156 } else { 157 RD_min_Q25[ j ] = RD_Q25[ j ]; 158 RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; 159 ind_sort[ j ] = j; 160 } 161 } 162 /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */ 163 /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */ 164 while( 1 ) { 165 min_max_Q25 = silk_int32_MAX; 166 max_min_Q25 = 0; 167 ind_min_max = 0; 168 ind_max_min = 0; 169 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { 170 if( min_max_Q25 > RD_max_Q25[ j ] ) { 171 min_max_Q25 = RD_max_Q25[ j ]; 172 ind_min_max = j; 173 } 174 if( max_min_Q25 < RD_min_Q25[ j ] ) { 175 max_min_Q25 = RD_min_Q25[ j ]; 176 ind_max_min = j; 177 } 178 } 179 if( min_max_Q25 >= max_min_Q25 ) { 180 break; 181 } 182 /* copy ind_min_max to ind_max_min */ 183 ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES; 184 RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; 185 prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; 186 RD_min_Q25[ ind_max_min ] = 0; 187 RD_max_Q25[ ind_min_max ] = silk_int32_MAX; 188 silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) ); 189 } 190 /* increment index if it comes from the upper half */ 191 for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { 192 ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 ); 193 } 194 } else { /* i == 0 */ 195 break; 196 } 197 } 198 199 /* last sample: find winner, copy indices and return RD value */ 200 ind_tmp = 0; 201 min_Q25 = silk_int32_MAX; 202 for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) { 203 if( min_Q25 > RD_Q25[ j ] ) { 204 min_Q25 = RD_Q25[ j ]; 205 ind_tmp = j; 206 } 207 } 208 for( j = 0; j < order; j++ ) { 209 indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ]; 210 silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT ); 211 silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); 212 } 213 indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 ); 214 silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); 215 silk_assert( min_Q25 >= 0 ); 216 return min_Q25; 217 } 218