Home | History | Annotate | Download | only in blktrace
      1 /*
      2  * block queue tracing parse application
      3  *
      4  * Copyright (C) 2005 Jens Axboe <axboe (at) suse.de>
      5  * Copyright (C) 2006 Jens Axboe <axboe (at) kernel.dk>
      6  *
      7  *  This program is free software; you can redistribute it and/or modify
      8  *  it under the terms of the GNU General Public License as published by
      9  *  the Free Software Foundation; either version 2 of the License, or
     10  *  (at your option) any later version.
     11  *
     12  *  This program is distributed in the hope that it will be useful,
     13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15  *  GNU General Public License for more details.
     16  *
     17  *  You should have received a copy of the GNU General Public License
     18  *  along with this program; if not, write to the Free Software
     19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     20  *
     21  */
     22 #include <sys/types.h>
     23 #include <sys/stat.h>
     24 #include <unistd.h>
     25 #include <stdio.h>
     26 #include <fcntl.h>
     27 #include <stdlib.h>
     28 #include <string.h>
     29 #include <getopt.h>
     30 #include <errno.h>
     31 #include <signal.h>
     32 #include <locale.h>
     33 #include <libgen.h>
     34 
     35 #include "blktrace.h"
     36 #include "rbtree.h"
     37 #include "jhash.h"
     38 
     39 static char blkparse_version[] = "1.0.1";
     40 
     41 struct skip_info {
     42 	unsigned long start, end;
     43 	struct skip_info *prev, *next;
     44 };
     45 
     46 struct per_dev_info {
     47 	dev_t dev;
     48 	char *name;
     49 
     50 	int backwards;
     51 	unsigned long long events;
     52 	unsigned long long first_reported_time;
     53 	unsigned long long last_reported_time;
     54 	unsigned long long last_read_time;
     55 	struct io_stats io_stats;
     56 	unsigned long skips;
     57 	unsigned long long seq_skips;
     58 	unsigned int max_depth[2];
     59 	unsigned int cur_depth[2];
     60 
     61 	struct rb_root rb_track;
     62 
     63 	int nfiles;
     64 	int ncpus;
     65 
     66 	unsigned long *cpu_map;
     67 	unsigned int cpu_map_max;
     68 
     69 	struct per_cpu_info *cpus;
     70 };
     71 
     72 /*
     73  * some duplicated effort here, we can unify this hash and the ppi hash later
     74  */
     75 struct process_pid_map {
     76 	pid_t pid;
     77 	char comm[16];
     78 	struct process_pid_map *hash_next, *list_next;
     79 };
     80 
     81 #define PPM_HASH_SHIFT	(8)
     82 #define PPM_HASH_SIZE	(1 << PPM_HASH_SHIFT)
     83 #define PPM_HASH_MASK	(PPM_HASH_SIZE - 1)
     84 static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
     85 
     86 struct per_process_info {
     87 	struct process_pid_map *ppm;
     88 	struct io_stats io_stats;
     89 	struct per_process_info *hash_next, *list_next;
     90 	int more_than_one;
     91 
     92 	/*
     93 	 * individual io stats
     94 	 */
     95 	unsigned long long longest_allocation_wait[2];
     96 	unsigned long long longest_dispatch_wait[2];
     97 	unsigned long long longest_completion_wait[2];
     98 };
     99 
    100 #define PPI_HASH_SHIFT	(8)
    101 #define PPI_HASH_SIZE	(1 << PPI_HASH_SHIFT)
    102 #define PPI_HASH_MASK	(PPI_HASH_SIZE - 1)
    103 static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
    104 static struct per_process_info *ppi_list;
    105 static int ppi_list_entries;
    106 
    107 static struct option l_opts[] = {
    108  	{
    109 		.name = "act-mask",
    110 		.has_arg = required_argument,
    111 		.flag = NULL,
    112 		.val = 'a'
    113 	},
    114 	{
    115 		.name = "set-mask",
    116 		.has_arg = required_argument,
    117 		.flag = NULL,
    118 		.val = 'A'
    119 	},
    120 	{
    121 		.name = "batch",
    122 		.has_arg = required_argument,
    123 		.flag = NULL,
    124 		.val = 'b'
    125 	},
    126 	{
    127 		.name = "input-directory",
    128 		.has_arg = required_argument,
    129 		.flag = NULL,
    130 		.val = 'D'
    131 	},
    132 	{
    133 		.name = "dump-binary",
    134 		.has_arg = required_argument,
    135 		.flag = NULL,
    136 		.val = 'd'
    137 	},
    138 	{
    139 		.name = "format",
    140 		.has_arg = required_argument,
    141 		.flag = NULL,
    142 		.val = 'f'
    143 	},
    144 	{
    145 		.name = "format-spec",
    146 		.has_arg = required_argument,
    147 		.flag = NULL,
    148 		.val = 'F'
    149 	},
    150 	{
    151 		.name = "hash-by-name",
    152 		.has_arg = no_argument,
    153 		.flag = NULL,
    154 		.val = 'h'
    155 	},
    156 	{
    157 		.name = "input",
    158 		.has_arg = required_argument,
    159 		.flag = NULL,
    160 		.val = 'i'
    161 	},
    162 	{
    163 		.name = "no-msgs",
    164 		.has_arg = no_argument,
    165 		.flag = NULL,
    166 		.val = 'M'
    167 	},
    168 	{
    169 		.name = "output",
    170 		.has_arg = required_argument,
    171 		.flag = NULL,
    172 		.val = 'o'
    173 	},
    174 	{
    175 		.name = "no-text-output",
    176 		.has_arg = no_argument,
    177 		.flag = NULL,
    178 		.val = 'O'
    179 	},
    180 	{
    181 		.name = "quiet",
    182 		.has_arg = no_argument,
    183 		.flag = NULL,
    184 		.val = 'q'
    185 	},
    186 	{
    187 		.name = "per-program-stats",
    188 		.has_arg = no_argument,
    189 		.flag = NULL,
    190 		.val = 's'
    191 	},
    192 	{
    193 		.name = "track-ios",
    194 		.has_arg = no_argument,
    195 		.flag = NULL,
    196 		.val = 't'
    197 	},
    198 	{
    199 		.name = "stopwatch",
    200 		.has_arg = required_argument,
    201 		.flag = NULL,
    202 		.val = 'w'
    203 	},
    204 	{
    205 		.name = "verbose",
    206 		.has_arg = no_argument,
    207 		.flag = NULL,
    208 		.val = 'v'
    209 	},
    210 	{
    211 		.name = "version",
    212 		.has_arg = no_argument,
    213 		.flag = NULL,
    214 		.val = 'V'
    215 	},
    216 	{
    217 		.name = NULL,
    218 	}
    219 };
    220 
    221 /*
    222  * for sorting the displayed output
    223  */
    224 struct trace {
    225 	struct blk_io_trace *bit;
    226 	struct rb_node rb_node;
    227 	struct trace *next;
    228 	unsigned long read_sequence;
    229 };
    230 
    231 static struct rb_root rb_sort_root;
    232 static unsigned long rb_sort_entries;
    233 
    234 static struct trace *trace_list;
    235 
    236 /*
    237  * allocation cache
    238  */
    239 static struct blk_io_trace *bit_alloc_list;
    240 static struct trace *t_alloc_list;
    241 
    242 /*
    243  * for tracking individual ios
    244  */
    245 struct io_track {
    246 	struct rb_node rb_node;
    247 
    248 	struct process_pid_map *ppm;
    249 	__u64 sector;
    250 	unsigned long long allocation_time;
    251 	unsigned long long queue_time;
    252 	unsigned long long dispatch_time;
    253 	unsigned long long completion_time;
    254 };
    255 
    256 static int ndevices;
    257 static struct per_dev_info *devices;
    258 static char *get_dev_name(struct per_dev_info *, char *, int);
    259 static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
    260 
    261 FILE *ofp = NULL;
    262 static char *output_name;
    263 static char *input_dir;
    264 
    265 static unsigned long long genesis_time;
    266 static unsigned long long last_allowed_time;
    267 static unsigned long long stopwatch_start;	/* start from zero by default */
    268 static unsigned long long stopwatch_end = -1ULL;	/* "infinity" */
    269 static unsigned long read_sequence;
    270 
    271 static int per_process_stats;
    272 static int per_device_and_cpu_stats = 1;
    273 static int track_ios;
    274 static int ppi_hash_by_pid = 1;
    275 static int verbose;
    276 static unsigned int act_mask = -1U;
    277 static int stats_printed;
    278 static int bin_output_msgs = 1;
    279 int data_is_native = -1;
    280 
    281 static FILE *dump_fp;
    282 static char *dump_binary;
    283 
    284 static unsigned int t_alloc_cache;
    285 static unsigned int bit_alloc_cache;
    286 
    287 #define RB_BATCH_DEFAULT	(512)
    288 static unsigned int rb_batch = RB_BATCH_DEFAULT;
    289 
    290 static int pipeline;
    291 static char *pipename;
    292 
    293 static int text_output = 1;
    294 
    295 #define is_done()	(*(volatile int *)(&done))
    296 static volatile int done;
    297 
    298 struct timespec		abs_start_time;
    299 static unsigned long long start_timestamp;
    300 
    301 static int have_drv_data = 0;
    302 
    303 #define JHASH_RANDOM	(0x3af5f2ee)
    304 
    305 #define CPUS_PER_LONG	(8 * sizeof(unsigned long))
    306 #define CPU_IDX(cpu)	((cpu) / CPUS_PER_LONG)
    307 #define CPU_BIT(cpu)	((cpu) & (CPUS_PER_LONG - 1))
    308 
    309 static void output_binary(void *buf, int len)
    310 {
    311 	if (dump_binary) {
    312 		size_t n = fwrite(buf, len, 1, dump_fp);
    313 		if (n != 1) {
    314 			perror(dump_binary);
    315 			fclose(dump_fp);
    316 			dump_binary = NULL;
    317 		}
    318 	}
    319 }
    320 
    321 static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
    322 {
    323 	struct per_cpu_info *cpus = pdi->cpus;
    324 	int ncpus = pdi->ncpus;
    325 	int new_count = cpu + 1;
    326 	int new_space, size;
    327 	char *new_start;
    328 
    329 	size = new_count * sizeof(struct per_cpu_info);
    330 	cpus = realloc(cpus, size);
    331 	if (!cpus) {
    332 		char name[20];
    333 		fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
    334 			get_dev_name(pdi, name, sizeof(name)), size);
    335 		exit(1);
    336 	}
    337 
    338 	new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
    339 	new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
    340 	memset(new_start, 0, new_space);
    341 
    342 	pdi->ncpus = new_count;
    343 	pdi->cpus = cpus;
    344 
    345 	for (new_count = 0; new_count < pdi->ncpus; new_count++) {
    346 		struct per_cpu_info *pci = &pdi->cpus[new_count];
    347 
    348 		if (!pci->fd) {
    349 			pci->fd = -1;
    350 			memset(&pci->rb_last, 0, sizeof(pci->rb_last));
    351 			pci->rb_last_entries = 0;
    352 			pci->last_sequence = -1;
    353 		}
    354 	}
    355 }
    356 
    357 static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
    358 {
    359 	struct per_cpu_info *pci;
    360 
    361 	if (cpu >= pdi->ncpus)
    362 		resize_cpu_info(pdi, cpu);
    363 
    364 	pci = &pdi->cpus[cpu];
    365 	pci->cpu = cpu;
    366 	return pci;
    367 }
    368 
    369 
    370 static int resize_devices(char *name)
    371 {
    372 	int size = (ndevices + 1) * sizeof(struct per_dev_info);
    373 
    374 	devices = realloc(devices, size);
    375 	if (!devices) {
    376 		fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
    377 		return 1;
    378 	}
    379 	memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
    380 	devices[ndevices].name = name;
    381 	ndevices++;
    382 	return 0;
    383 }
    384 
    385 static struct per_dev_info *get_dev_info(dev_t dev)
    386 {
    387 	struct per_dev_info *pdi;
    388 	int i;
    389 
    390 	for (i = 0; i < ndevices; i++) {
    391 		if (!devices[i].dev)
    392 			devices[i].dev = dev;
    393 		if (devices[i].dev == dev)
    394 			return &devices[i];
    395 	}
    396 
    397 	if (resize_devices(NULL))
    398 		return NULL;
    399 
    400 	pdi = &devices[ndevices - 1];
    401 	pdi->dev = dev;
    402 	pdi->first_reported_time = 0;
    403 	pdi->last_read_time = 0;
    404 
    405 	return pdi;
    406 }
    407 
    408 static void insert_skip(struct per_cpu_info *pci, unsigned long start,
    409 			unsigned long end)
    410 {
    411 	struct skip_info *sip;
    412 
    413 	for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
    414 		if (end == (sip->start - 1)) {
    415 			sip->start = start;
    416 			return;
    417 		} else if (start == (sip->end + 1)) {
    418 			sip->end = end;
    419 			return;
    420 		}
    421 	}
    422 
    423 	sip = malloc(sizeof(struct skip_info));
    424 	sip->start = start;
    425 	sip->end = end;
    426 	sip->prev = sip->next = NULL;
    427 	if (pci->skips_tail == NULL)
    428 		pci->skips_head = pci->skips_tail = sip;
    429 	else {
    430 		sip->prev = pci->skips_tail;
    431 		pci->skips_tail->next = sip;
    432 		pci->skips_tail = sip;
    433 	}
    434 }
    435 
    436 static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
    437 {
    438 	if (sip->prev == NULL) {
    439 		if (sip->next == NULL)
    440 			pci->skips_head = pci->skips_tail = NULL;
    441 		else {
    442 			pci->skips_head = sip->next;
    443 			sip->next->prev = NULL;
    444 		}
    445 	} else if (sip->next == NULL) {
    446 		pci->skips_tail = sip->prev;
    447 		sip->prev->next = NULL;
    448 	} else {
    449 		sip->prev->next = sip->next;
    450 		sip->next->prev = sip->prev;
    451 	}
    452 
    453 	sip->prev = sip->next = NULL;
    454 	free(sip);
    455 }
    456 
    457 #define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
    458 static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
    459 {
    460 	struct skip_info *sip;
    461 
    462 	for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
    463 		if (IN_SKIP(sip, seq)) {
    464 			if (sip->start == seq) {
    465 				if (sip->end == seq)
    466 					remove_sip(pci, sip);
    467 				else
    468 					sip->start += 1;
    469 			} else if (sip->end == seq)
    470 				sip->end -= 1;
    471 			else {
    472 				sip->end = seq - 1;
    473 				insert_skip(pci, seq + 1, sip->end);
    474 			}
    475 			return 1;
    476 		}
    477 	}
    478 
    479 	return 0;
    480 }
    481 
    482 static void collect_pdi_skips(struct per_dev_info *pdi)
    483 {
    484 	struct skip_info *sip;
    485 	int cpu;
    486 
    487 	pdi->skips = 0;
    488 	pdi->seq_skips = 0;
    489 
    490 	for (cpu = 0; cpu < pdi->ncpus; cpu++) {
    491 		struct per_cpu_info *pci = &pdi->cpus[cpu];
    492 
    493 		for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
    494 			pdi->skips++;
    495 			pdi->seq_skips += (sip->end - sip->start + 1);
    496 			if (verbose)
    497 				fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
    498 					MAJOR(pdi->dev), MINOR(pdi->dev),
    499 					sip->start, sip->end);
    500 		}
    501 	}
    502 }
    503 
    504 static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
    505 {
    506 	if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
    507 		int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
    508 		unsigned long *map = malloc(new_max / sizeof(long));
    509 
    510 		memset(map, 0, new_max / sizeof(long));
    511 
    512 		if (pdi->cpu_map) {
    513 			memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
    514 			free(pdi->cpu_map);
    515 		}
    516 
    517 		pdi->cpu_map = map;
    518 		pdi->cpu_map_max = new_max;
    519 	}
    520 
    521 	pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
    522 }
    523 
    524 static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
    525 {
    526 	pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
    527 }
    528 
    529 static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
    530 {
    531 	return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
    532 }
    533 
    534 static inline int ppm_hash_pid(pid_t pid)
    535 {
    536 	return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
    537 }
    538 
    539 static struct process_pid_map *find_ppm(pid_t pid)
    540 {
    541 	const int hash_idx = ppm_hash_pid(pid);
    542 	struct process_pid_map *ppm;
    543 
    544 	ppm = ppm_hash_table[hash_idx];
    545 	while (ppm) {
    546 		if (ppm->pid == pid)
    547 			return ppm;
    548 
    549 		ppm = ppm->hash_next;
    550 	}
    551 
    552 	return NULL;
    553 }
    554 
    555 static struct process_pid_map *add_ppm_hash(pid_t pid, const char *name)
    556 {
    557 	const int hash_idx = ppm_hash_pid(pid);
    558 	struct process_pid_map *ppm;
    559 
    560 	ppm = find_ppm(pid);
    561 	if (!ppm) {
    562 		ppm = malloc(sizeof(*ppm));
    563 		memset(ppm, 0, sizeof(*ppm));
    564 		ppm->pid = pid;
    565 		strcpy(ppm->comm, name);
    566 		ppm->hash_next = ppm_hash_table[hash_idx];
    567 		ppm_hash_table[hash_idx] = ppm;
    568 	}
    569 
    570 	return ppm;
    571 }
    572 
    573 static void handle_notify(struct blk_io_trace *bit)
    574 {
    575 	void	*payload = (caddr_t) bit + sizeof(*bit);
    576 	__u32	two32[2];
    577 
    578 	switch (bit->action) {
    579 	case BLK_TN_PROCESS:
    580 		add_ppm_hash(bit->pid, payload);
    581 		break;
    582 
    583 	case BLK_TN_TIMESTAMP:
    584 		if (bit->pdu_len != sizeof(two32))
    585 			return;
    586 		memcpy(two32, payload, sizeof(two32));
    587 		if (!data_is_native) {
    588 			two32[0] = be32_to_cpu(two32[0]);
    589 			two32[1] = be32_to_cpu(two32[1]);
    590 		}
    591 		start_timestamp = bit->time;
    592 		abs_start_time.tv_sec  = two32[0];
    593 		abs_start_time.tv_nsec = two32[1];
    594 		if (abs_start_time.tv_nsec < 0) {
    595 			abs_start_time.tv_sec--;
    596 			abs_start_time.tv_nsec += 1000000000;
    597 		}
    598 
    599 		break;
    600 
    601 	case BLK_TN_MESSAGE:
    602 		if (bit->pdu_len > 0) {
    603 			char msg[bit->pdu_len+1];
    604 
    605 			memcpy(msg, (char *)payload, bit->pdu_len);
    606 			msg[bit->pdu_len] = '\0';
    607 
    608 			fprintf(ofp,
    609 				"%3d,%-3d %2d %8s %5d.%09lu %5u %2s %3s %s\n",
    610 				MAJOR(bit->device), MINOR(bit->device),
    611 				bit->cpu, "0", (int) SECONDS(bit->time),
    612 				(unsigned long) NANO_SECONDS(bit->time),
    613 				0, "m", "N", msg);
    614 		}
    615 		break;
    616 
    617 	default:
    618 		/* Ignore unknown notify events */
    619 		;
    620 	}
    621 }
    622 
    623 char *find_process_name(pid_t pid)
    624 {
    625 	struct process_pid_map *ppm = find_ppm(pid);
    626 
    627 	if (ppm)
    628 		return ppm->comm;
    629 
    630 	return NULL;
    631 }
    632 
    633 static inline int ppi_hash_pid(pid_t pid)
    634 {
    635 	return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
    636 }
    637 
    638 static inline int ppi_hash_name(const char *name)
    639 {
    640 	return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
    641 }
    642 
    643 static inline int ppi_hash(struct per_process_info *ppi)
    644 {
    645 	struct process_pid_map *ppm = ppi->ppm;
    646 
    647 	if (ppi_hash_by_pid)
    648 		return ppi_hash_pid(ppm->pid);
    649 
    650 	return ppi_hash_name(ppm->comm);
    651 }
    652 
    653 static inline void add_ppi_to_hash(struct per_process_info *ppi)
    654 {
    655 	const int hash_idx = ppi_hash(ppi);
    656 
    657 	ppi->hash_next = ppi_hash_table[hash_idx];
    658 	ppi_hash_table[hash_idx] = ppi;
    659 }
    660 
    661 static inline void add_ppi_to_list(struct per_process_info *ppi)
    662 {
    663 	ppi->list_next = ppi_list;
    664 	ppi_list = ppi;
    665 	ppi_list_entries++;
    666 }
    667 
    668 static struct per_process_info *find_ppi_by_name(char *name)
    669 {
    670 	const int hash_idx = ppi_hash_name(name);
    671 	struct per_process_info *ppi;
    672 
    673 	ppi = ppi_hash_table[hash_idx];
    674 	while (ppi) {
    675 		struct process_pid_map *ppm = ppi->ppm;
    676 
    677 		if (!strcmp(ppm->comm, name))
    678 			return ppi;
    679 
    680 		ppi = ppi->hash_next;
    681 	}
    682 
    683 	return NULL;
    684 }
    685 
    686 static struct per_process_info *find_ppi_by_pid(pid_t pid)
    687 {
    688 	const int hash_idx = ppi_hash_pid(pid);
    689 	struct per_process_info *ppi;
    690 
    691 	ppi = ppi_hash_table[hash_idx];
    692 	while (ppi) {
    693 		struct process_pid_map *ppm = ppi->ppm;
    694 
    695 		if (ppm->pid == pid)
    696 			return ppi;
    697 
    698 		ppi = ppi->hash_next;
    699 	}
    700 
    701 	return NULL;
    702 }
    703 
    704 static struct per_process_info *find_ppi(pid_t pid)
    705 {
    706 	struct per_process_info *ppi;
    707 	char *name;
    708 
    709 	if (ppi_hash_by_pid)
    710 		return find_ppi_by_pid(pid);
    711 
    712 	name = find_process_name(pid);
    713 	if (!name)
    714 		return NULL;
    715 
    716 	ppi = find_ppi_by_name(name);
    717 	if (ppi && ppi->ppm->pid != pid)
    718 		ppi->more_than_one = 1;
    719 
    720 	return ppi;
    721 }
    722 
    723 /*
    724  * struct trace and blktrace allocation cache, we do potentially
    725  * millions of mallocs for these structures while only using at most
    726  * a few thousand at the time
    727  */
    728 static inline void t_free(struct trace *t)
    729 {
    730 	if (t_alloc_cache < 1024) {
    731 		t->next = t_alloc_list;
    732 		t_alloc_list = t;
    733 		t_alloc_cache++;
    734 	} else
    735 		free(t);
    736 }
    737 
    738 static inline struct trace *t_alloc(void)
    739 {
    740 	struct trace *t = t_alloc_list;
    741 
    742 	if (t) {
    743 		t_alloc_list = t->next;
    744 		t_alloc_cache--;
    745 		return t;
    746 	}
    747 
    748 	return malloc(sizeof(*t));
    749 }
    750 
    751 static inline void bit_free(struct blk_io_trace *bit)
    752 {
    753 	if (bit_alloc_cache < 1024 && !bit->pdu_len) {
    754 		/*
    755 		 * abuse a 64-bit field for a next pointer for the free item
    756 		 */
    757 		bit->time = (__u64) (unsigned long) bit_alloc_list;
    758 		bit_alloc_list = (struct blk_io_trace *) bit;
    759 		bit_alloc_cache++;
    760 	} else
    761 		free(bit);
    762 }
    763 
    764 static inline struct blk_io_trace *bit_alloc(void)
    765 {
    766 	struct blk_io_trace *bit = bit_alloc_list;
    767 
    768 	if (bit) {
    769 		bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
    770 				 bit->time;
    771 		bit_alloc_cache--;
    772 		return bit;
    773 	}
    774 
    775 	return malloc(sizeof(*bit));
    776 }
    777 
    778 static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
    779 {
    780 	struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
    781 
    782 	rb_erase(&t->rb_node, &pci->rb_last);
    783 	pci->rb_last_entries--;
    784 
    785 	bit_free(t->bit);
    786 	t_free(t);
    787 }
    788 
    789 static void put_trace(struct per_dev_info *pdi, struct trace *t)
    790 {
    791 	rb_erase(&t->rb_node, &rb_sort_root);
    792 	rb_sort_entries--;
    793 
    794 	trace_rb_insert_last(pdi, t);
    795 }
    796 
    797 static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
    798 {
    799 	struct rb_node **p = &root->rb_node;
    800 	struct rb_node *parent = NULL;
    801 	struct trace *__t;
    802 
    803 	while (*p) {
    804 		parent = *p;
    805 
    806 		__t = rb_entry(parent, struct trace, rb_node);
    807 
    808 		if (t->bit->time < __t->bit->time)
    809 			p = &(*p)->rb_left;
    810 		else if (t->bit->time > __t->bit->time)
    811 			p = &(*p)->rb_right;
    812 		else if (t->bit->device < __t->bit->device)
    813 			p = &(*p)->rb_left;
    814 		else if (t->bit->device > __t->bit->device)
    815 			p = &(*p)->rb_right;
    816 		else if (t->bit->sequence < __t->bit->sequence)
    817 			p = &(*p)->rb_left;
    818 		else	/* >= sequence */
    819 			p = &(*p)->rb_right;
    820 	}
    821 
    822 	rb_link_node(&t->rb_node, parent, p);
    823 	rb_insert_color(&t->rb_node, root);
    824 	return 0;
    825 }
    826 
    827 static inline int trace_rb_insert_sort(struct trace *t)
    828 {
    829 	if (!trace_rb_insert(t, &rb_sort_root)) {
    830 		rb_sort_entries++;
    831 		return 0;
    832 	}
    833 
    834 	return 1;
    835 }
    836 
    837 static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
    838 {
    839 	struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
    840 
    841 	if (trace_rb_insert(t, &pci->rb_last))
    842 		return 1;
    843 
    844 	pci->rb_last_entries++;
    845 
    846 	if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
    847 		struct rb_node *n = rb_first(&pci->rb_last);
    848 
    849 		t = rb_entry(n, struct trace, rb_node);
    850 		__put_trace_last(pdi, t);
    851 	}
    852 
    853 	return 0;
    854 }
    855 
    856 static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
    857 				   struct rb_root *root, int order)
    858 {
    859 	struct rb_node *n = root->rb_node;
    860 	struct rb_node *prev = NULL;
    861 	struct trace *__t;
    862 
    863 	while (n) {
    864 		__t = rb_entry(n, struct trace, rb_node);
    865 		prev = n;
    866 
    867 		if (device < __t->bit->device)
    868 			n = n->rb_left;
    869 		else if (device > __t->bit->device)
    870 			n = n->rb_right;
    871 		else if (sequence < __t->bit->sequence)
    872 			n = n->rb_left;
    873 		else if (sequence > __t->bit->sequence)
    874 			n = n->rb_right;
    875 		else
    876 			return __t;
    877 	}
    878 
    879 	/*
    880 	 * hack - the list may not be sequence ordered because some
    881 	 * events don't have sequence and time matched. so we end up
    882 	 * being a little off in the rb lookup here, because we don't
    883 	 * know the time we are looking for. compensate by browsing
    884 	 * a little ahead from the last entry to find the match
    885 	 */
    886 	if (order && prev) {
    887 		int max = 5;
    888 
    889 		while (((n = rb_next(prev)) != NULL) && max--) {
    890 			__t = rb_entry(n, struct trace, rb_node);
    891 
    892 			if (__t->bit->device == device &&
    893 			    __t->bit->sequence == sequence)
    894 				return __t;
    895 
    896 			prev = n;
    897 		}
    898 	}
    899 
    900 	return NULL;
    901 }
    902 
    903 static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
    904 					       struct per_cpu_info *pci,
    905 					       unsigned long seq)
    906 {
    907 	return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
    908 }
    909 
    910 static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
    911 {
    912 	struct rb_node **p = &pdi->rb_track.rb_node;
    913 	struct rb_node *parent = NULL;
    914 	struct io_track *__iot;
    915 
    916 	while (*p) {
    917 		parent = *p;
    918 		__iot = rb_entry(parent, struct io_track, rb_node);
    919 
    920 		if (iot->sector < __iot->sector)
    921 			p = &(*p)->rb_left;
    922 		else if (iot->sector > __iot->sector)
    923 			p = &(*p)->rb_right;
    924 		else {
    925 			fprintf(stderr,
    926 				"sector alias (%Lu) on device %d,%d!\n",
    927 				(unsigned long long) iot->sector,
    928 				MAJOR(pdi->dev), MINOR(pdi->dev));
    929 			return 1;
    930 		}
    931 	}
    932 
    933 	rb_link_node(&iot->rb_node, parent, p);
    934 	rb_insert_color(&iot->rb_node, &pdi->rb_track);
    935 	return 0;
    936 }
    937 
    938 static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
    939 {
    940 	struct rb_node *n = pdi->rb_track.rb_node;
    941 	struct io_track *__iot;
    942 
    943 	while (n) {
    944 		__iot = rb_entry(n, struct io_track, rb_node);
    945 
    946 		if (sector < __iot->sector)
    947 			n = n->rb_left;
    948 		else if (sector > __iot->sector)
    949 			n = n->rb_right;
    950 		else
    951 			return __iot;
    952 	}
    953 
    954 	return NULL;
    955 }
    956 
    957 static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
    958 				   __u64 sector)
    959 {
    960 	struct io_track *iot;
    961 
    962 	iot = __find_track(pdi, sector);
    963 	if (!iot) {
    964 		iot = malloc(sizeof(*iot));
    965 		iot->ppm = find_ppm(pid);
    966 		if (!iot->ppm)
    967 			iot->ppm = add_ppm_hash(pid, "unknown");
    968 		iot->sector = sector;
    969 		track_rb_insert(pdi, iot);
    970 	}
    971 
    972 	return iot;
    973 }
    974 
    975 static void log_track_frontmerge(struct per_dev_info *pdi,
    976 				 struct blk_io_trace *t)
    977 {
    978 	struct io_track *iot;
    979 
    980 	if (!track_ios)
    981 		return;
    982 
    983 	iot = __find_track(pdi, t->sector + t_sec(t));
    984 	if (!iot) {
    985 		if (verbose)
    986 			fprintf(stderr, "merge not found for (%d,%d): %llu\n",
    987 				MAJOR(pdi->dev), MINOR(pdi->dev),
    988 				(unsigned long long) t->sector + t_sec(t));
    989 		return;
    990 	}
    991 
    992 	rb_erase(&iot->rb_node, &pdi->rb_track);
    993 	iot->sector -= t_sec(t);
    994 	track_rb_insert(pdi, iot);
    995 }
    996 
    997 static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
    998 {
    999 	struct io_track *iot;
   1000 
   1001 	if (!track_ios)
   1002 		return;
   1003 
   1004 	iot = find_track(pdi, t->pid, t->sector);
   1005 	iot->allocation_time = t->time;
   1006 }
   1007 
   1008 static inline int is_remapper(struct per_dev_info *pdi)
   1009 {
   1010 	int major = MAJOR(pdi->dev);
   1011 
   1012 	return (major == 253 || major == 9);
   1013 }
   1014 
   1015 /*
   1016  * for md/dm setups, the interesting cycle is Q -> C. So track queueing
   1017  * time here, as dispatch time
   1018  */
   1019 static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
   1020 {
   1021 	struct io_track *iot;
   1022 
   1023 	if (!track_ios)
   1024 		return;
   1025 	if (!is_remapper(pdi))
   1026 		return;
   1027 
   1028 	iot = find_track(pdi, t->pid, t->sector);
   1029 	iot->dispatch_time = t->time;
   1030 }
   1031 
   1032 /*
   1033  * return time between rq allocation and insertion
   1034  */
   1035 static unsigned long long log_track_insert(struct per_dev_info *pdi,
   1036 					   struct blk_io_trace *t)
   1037 {
   1038 	unsigned long long elapsed;
   1039 	struct io_track *iot;
   1040 
   1041 	if (!track_ios)
   1042 		return -1;
   1043 
   1044 	iot = find_track(pdi, t->pid, t->sector);
   1045 	iot->queue_time = t->time;
   1046 
   1047 	if (!iot->allocation_time)
   1048 		return -1;
   1049 
   1050 	elapsed = iot->queue_time - iot->allocation_time;
   1051 
   1052 	if (per_process_stats) {
   1053 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1054 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1055 
   1056 		if (ppi && elapsed > ppi->longest_allocation_wait[w])
   1057 			ppi->longest_allocation_wait[w] = elapsed;
   1058 	}
   1059 
   1060 	return elapsed;
   1061 }
   1062 
   1063 /*
   1064  * return time between queue and issue
   1065  */
   1066 static unsigned long long log_track_issue(struct per_dev_info *pdi,
   1067 					  struct blk_io_trace *t)
   1068 {
   1069 	unsigned long long elapsed;
   1070 	struct io_track *iot;
   1071 
   1072 	if (!track_ios)
   1073 		return -1;
   1074 	if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
   1075 		return -1;
   1076 
   1077 	iot = __find_track(pdi, t->sector);
   1078 	if (!iot) {
   1079 		if (verbose)
   1080 			fprintf(stderr, "issue not found for (%d,%d): %llu\n",
   1081 				MAJOR(pdi->dev), MINOR(pdi->dev),
   1082 				(unsigned long long) t->sector);
   1083 		return -1;
   1084 	}
   1085 
   1086 	iot->dispatch_time = t->time;
   1087 	elapsed = iot->dispatch_time - iot->queue_time;
   1088 
   1089 	if (per_process_stats) {
   1090 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1091 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1092 
   1093 		if (ppi && elapsed > ppi->longest_dispatch_wait[w])
   1094 			ppi->longest_dispatch_wait[w] = elapsed;
   1095 	}
   1096 
   1097 	return elapsed;
   1098 }
   1099 
   1100 /*
   1101  * return time between dispatch and complete
   1102  */
   1103 static unsigned long long log_track_complete(struct per_dev_info *pdi,
   1104 					     struct blk_io_trace *t)
   1105 {
   1106 	unsigned long long elapsed;
   1107 	struct io_track *iot;
   1108 
   1109 	if (!track_ios)
   1110 		return -1;
   1111 
   1112 	iot = __find_track(pdi, t->sector);
   1113 	if (!iot) {
   1114 		if (verbose)
   1115 			fprintf(stderr,"complete not found for (%d,%d): %llu\n",
   1116 				MAJOR(pdi->dev), MINOR(pdi->dev),
   1117 				(unsigned long long) t->sector);
   1118 		return -1;
   1119 	}
   1120 
   1121 	iot->completion_time = t->time;
   1122 	elapsed = iot->completion_time - iot->dispatch_time;
   1123 
   1124 	if (per_process_stats) {
   1125 		struct per_process_info *ppi = find_ppi(iot->ppm->pid);
   1126 		int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1127 
   1128 		if (ppi && elapsed > ppi->longest_completion_wait[w])
   1129 			ppi->longest_completion_wait[w] = elapsed;
   1130 	}
   1131 
   1132 	/*
   1133 	 * kill the trace, we don't need it after completion
   1134 	 */
   1135 	rb_erase(&iot->rb_node, &pdi->rb_track);
   1136 	free(iot);
   1137 
   1138 	return elapsed;
   1139 }
   1140 
   1141 
   1142 static struct io_stats *find_process_io_stats(pid_t pid)
   1143 {
   1144 	struct per_process_info *ppi = find_ppi(pid);
   1145 
   1146 	if (!ppi) {
   1147 		ppi = malloc(sizeof(*ppi));
   1148 		memset(ppi, 0, sizeof(*ppi));
   1149 		ppi->ppm = find_ppm(pid);
   1150 		if (!ppi->ppm)
   1151 			ppi->ppm = add_ppm_hash(pid, "unknown");
   1152 		add_ppi_to_hash(ppi);
   1153 		add_ppi_to_list(ppi);
   1154 	}
   1155 
   1156 	return &ppi->io_stats;
   1157 }
   1158 
   1159 static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
   1160 {
   1161 	if (pdi->name)
   1162 		snprintf(buffer, size, "%s", pdi->name);
   1163 	else
   1164 		snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
   1165 	return buffer;
   1166 }
   1167 
   1168 static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
   1169 {
   1170 	unsigned long long this = bit->time;
   1171 	unsigned long long last = pdi->last_reported_time;
   1172 
   1173 	pdi->backwards = (this < last) ? 'B' : ' ';
   1174 	pdi->last_reported_time = this;
   1175 }
   1176 
   1177 static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
   1178 			       int rw)
   1179 {
   1180 	if (rw) {
   1181 		ios->mwrites++;
   1182 		ios->mwrite_kb += t_kb(t);
   1183 	} else {
   1184 		ios->mreads++;
   1185 		ios->mread_kb += t_kb(t);
   1186 	}
   1187 }
   1188 
   1189 static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
   1190 			     int rw)
   1191 {
   1192 	__account_m(&pci->io_stats, t, rw);
   1193 
   1194 	if (per_process_stats) {
   1195 		struct io_stats *ios = find_process_io_stats(t->pid);
   1196 
   1197 		__account_m(ios, t, rw);
   1198 	}
   1199 }
   1200 
   1201 static inline void __account_pc_queue(struct io_stats *ios,
   1202 				      struct blk_io_trace *t, int rw)
   1203 {
   1204 	if (rw) {
   1205 		ios->qwrites_pc++;
   1206 		ios->qwrite_kb_pc += t_kb(t);
   1207 	} else {
   1208 		ios->qreads_pc++;
   1209 		ios->qread_kb += t_kb(t);
   1210 	}
   1211 }
   1212 
   1213 static inline void account_pc_queue(struct blk_io_trace *t,
   1214 				    struct per_cpu_info *pci, int rw)
   1215 {
   1216 	__account_pc_queue(&pci->io_stats, t, rw);
   1217 
   1218 	if (per_process_stats) {
   1219 		struct io_stats *ios = find_process_io_stats(t->pid);
   1220 
   1221 		__account_pc_queue(ios, t, rw);
   1222 	}
   1223 }
   1224 
   1225 static inline void __account_pc_issue(struct io_stats *ios, int rw,
   1226 				      unsigned int bytes)
   1227 {
   1228 	if (rw) {
   1229 		ios->iwrites_pc++;
   1230 		ios->iwrite_kb_pc += bytes >> 10;
   1231 	} else {
   1232 		ios->ireads_pc++;
   1233 		ios->iread_kb_pc += bytes >> 10;
   1234 	}
   1235 }
   1236 
   1237 static inline void account_pc_issue(struct blk_io_trace *t,
   1238 				    struct per_cpu_info *pci, int rw)
   1239 {
   1240 	__account_pc_issue(&pci->io_stats, rw, t->bytes);
   1241 
   1242 	if (per_process_stats) {
   1243 		struct io_stats *ios = find_process_io_stats(t->pid);
   1244 
   1245 		__account_pc_issue(ios, rw, t->bytes);
   1246 	}
   1247 }
   1248 
   1249 static inline void __account_pc_requeue(struct io_stats *ios,
   1250 					struct blk_io_trace *t, int rw)
   1251 {
   1252 	if (rw) {
   1253 		ios->wrqueue_pc++;
   1254 		ios->iwrite_kb_pc -= t_kb(t);
   1255 	} else {
   1256 		ios->rrqueue_pc++;
   1257 		ios->iread_kb_pc -= t_kb(t);
   1258 	}
   1259 }
   1260 
   1261 static inline void account_pc_requeue(struct blk_io_trace *t,
   1262 				      struct per_cpu_info *pci, int rw)
   1263 {
   1264 	__account_pc_requeue(&pci->io_stats, t, rw);
   1265 
   1266 	if (per_process_stats) {
   1267 		struct io_stats *ios = find_process_io_stats(t->pid);
   1268 
   1269 		__account_pc_requeue(ios, t, rw);
   1270 	}
   1271 }
   1272 
   1273 static inline void __account_pc_c(struct io_stats *ios, int rw)
   1274 {
   1275 	if (rw)
   1276 		ios->cwrites_pc++;
   1277 	else
   1278 		ios->creads_pc++;
   1279 }
   1280 
   1281 static inline void account_pc_c(struct blk_io_trace *t,
   1282 				struct per_cpu_info *pci, int rw)
   1283 {
   1284 	__account_pc_c(&pci->io_stats, rw);
   1285 
   1286 	if (per_process_stats) {
   1287 		struct io_stats *ios = find_process_io_stats(t->pid);
   1288 
   1289 		__account_pc_c(ios, rw);
   1290 	}
   1291 }
   1292 
   1293 static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
   1294 				   int rw)
   1295 {
   1296 	if (rw) {
   1297 		ios->qwrites++;
   1298 		ios->qwrite_kb += t_kb(t);
   1299 	} else {
   1300 		ios->qreads++;
   1301 		ios->qread_kb += t_kb(t);
   1302 	}
   1303 }
   1304 
   1305 static inline void account_queue(struct blk_io_trace *t,
   1306 				 struct per_cpu_info *pci, int rw)
   1307 {
   1308 	__account_queue(&pci->io_stats, t, rw);
   1309 
   1310 	if (per_process_stats) {
   1311 		struct io_stats *ios = find_process_io_stats(t->pid);
   1312 
   1313 		__account_queue(ios, t, rw);
   1314 	}
   1315 }
   1316 
   1317 static inline void __account_c(struct io_stats *ios, int rw, int bytes)
   1318 {
   1319 	if (rw) {
   1320 		ios->cwrites++;
   1321 		ios->cwrite_kb += bytes >> 10;
   1322 	} else {
   1323 		ios->creads++;
   1324 		ios->cread_kb += bytes >> 10;
   1325 	}
   1326 }
   1327 
   1328 static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
   1329 			     int rw, int bytes)
   1330 {
   1331 	__account_c(&pci->io_stats, rw, bytes);
   1332 
   1333 	if (per_process_stats) {
   1334 		struct io_stats *ios = find_process_io_stats(t->pid);
   1335 
   1336 		__account_c(ios, rw, bytes);
   1337 	}
   1338 }
   1339 
   1340 static inline void __account_issue(struct io_stats *ios, int rw,
   1341 				   unsigned int bytes)
   1342 {
   1343 	if (rw) {
   1344 		ios->iwrites++;
   1345 		ios->iwrite_kb += bytes >> 10;
   1346 	} else {
   1347 		ios->ireads++;
   1348 		ios->iread_kb += bytes >> 10;
   1349 	}
   1350 }
   1351 
   1352 static inline void account_issue(struct blk_io_trace *t,
   1353 				 struct per_cpu_info *pci, int rw)
   1354 {
   1355 	__account_issue(&pci->io_stats, rw, t->bytes);
   1356 
   1357 	if (per_process_stats) {
   1358 		struct io_stats *ios = find_process_io_stats(t->pid);
   1359 
   1360 		__account_issue(ios, rw, t->bytes);
   1361 	}
   1362 }
   1363 
   1364 static inline void __account_unplug(struct io_stats *ios, int timer)
   1365 {
   1366 	if (timer)
   1367 		ios->timer_unplugs++;
   1368 	else
   1369 		ios->io_unplugs++;
   1370 }
   1371 
   1372 static inline void account_unplug(struct blk_io_trace *t,
   1373 				  struct per_cpu_info *pci, int timer)
   1374 {
   1375 	__account_unplug(&pci->io_stats, timer);
   1376 
   1377 	if (per_process_stats) {
   1378 		struct io_stats *ios = find_process_io_stats(t->pid);
   1379 
   1380 		__account_unplug(ios, timer);
   1381 	}
   1382 }
   1383 
   1384 static inline void __account_requeue(struct io_stats *ios,
   1385 				     struct blk_io_trace *t, int rw)
   1386 {
   1387 	if (rw) {
   1388 		ios->wrqueue++;
   1389 		ios->iwrite_kb -= t_kb(t);
   1390 	} else {
   1391 		ios->rrqueue++;
   1392 		ios->iread_kb -= t_kb(t);
   1393 	}
   1394 }
   1395 
   1396 static inline void account_requeue(struct blk_io_trace *t,
   1397 				   struct per_cpu_info *pci, int rw)
   1398 {
   1399 	__account_requeue(&pci->io_stats, t, rw);
   1400 
   1401 	if (per_process_stats) {
   1402 		struct io_stats *ios = find_process_io_stats(t->pid);
   1403 
   1404 		__account_requeue(ios, t, rw);
   1405 	}
   1406 }
   1407 
   1408 static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1409 			 struct blk_io_trace *t, char *act)
   1410 {
   1411 	process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
   1412 }
   1413 
   1414 static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1415 		       struct blk_io_trace *t, char *act)
   1416 {
   1417 	process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
   1418 }
   1419 
   1420 static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
   1421 		      char *act)
   1422 {
   1423 	process_fmt(act, pci, t, -1, 0, NULL);
   1424 }
   1425 
   1426 static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1427 		      struct blk_io_trace *t, char *act)
   1428 {
   1429 	process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
   1430 }
   1431 
   1432 static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
   1433 		      struct blk_io_trace *t, char *act)
   1434 {
   1435 	if (act[0] == 'F')
   1436 		log_track_frontmerge(pdi, t);
   1437 
   1438 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1439 }
   1440 
   1441 static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
   1442 			char *act)
   1443 {
   1444 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1445 }
   1446 
   1447 static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
   1448 			char *act)
   1449 {
   1450 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1451 }
   1452 
   1453 static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
   1454 		      char *act)
   1455 {
   1456 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1457 }
   1458 
   1459 static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
   1460 		      char *act)
   1461 {
   1462 	process_fmt(act, pci, t, -1ULL, 0, NULL);
   1463 }
   1464 
   1465 static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
   1466 {
   1467 	unsigned char *buf = (unsigned char *) t + sizeof(*t);
   1468 
   1469 	process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
   1470 }
   1471 
   1472 static void dump_trace_pc(struct blk_io_trace *t, struct per_dev_info *pdi,
   1473 			  struct per_cpu_info *pci)
   1474 {
   1475 	int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1476 	int act = t->action & 0xffff;
   1477 
   1478 	switch (act) {
   1479 		case __BLK_TA_QUEUE:
   1480 			log_generic(pci, t, "Q");
   1481 			account_pc_queue(t, pci, w);
   1482 			break;
   1483 		case __BLK_TA_GETRQ:
   1484 			log_generic(pci, t, "G");
   1485 			break;
   1486 		case __BLK_TA_SLEEPRQ:
   1487 			log_generic(pci, t, "S");
   1488 			break;
   1489 		case __BLK_TA_REQUEUE:
   1490 			/*
   1491 			 * can happen if we miss traces, don't let it go
   1492 			 * below zero
   1493 			 */
   1494 			if (pdi->cur_depth[w])
   1495 				pdi->cur_depth[w]--;
   1496 			account_pc_requeue(t, pci, w);
   1497 			log_generic(pci, t, "R");
   1498 			break;
   1499 		case __BLK_TA_ISSUE:
   1500 			account_pc_issue(t, pci, w);
   1501 			pdi->cur_depth[w]++;
   1502 			if (pdi->cur_depth[w] > pdi->max_depth[w])
   1503 				pdi->max_depth[w] = pdi->cur_depth[w];
   1504 			log_pc(pci, t, "D");
   1505 			break;
   1506 		case __BLK_TA_COMPLETE:
   1507 			if (pdi->cur_depth[w])
   1508 				pdi->cur_depth[w]--;
   1509 			log_pc(pci, t, "C");
   1510 			account_pc_c(t, pci, w);
   1511 			break;
   1512 		case __BLK_TA_INSERT:
   1513 			log_pc(pci, t, "I");
   1514 			break;
   1515 		default:
   1516 			fprintf(stderr, "Bad pc action %x\n", act);
   1517 			break;
   1518 	}
   1519 }
   1520 
   1521 static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
   1522 			  struct per_cpu_info *pci)
   1523 {
   1524 	int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
   1525 	int act = t->action & 0xffff;
   1526 
   1527 	switch (act) {
   1528 		case __BLK_TA_QUEUE:
   1529 			log_track_queue(pdi, t);
   1530 			account_queue(t, pci, w);
   1531 			log_queue(pci, t, "Q");
   1532 			break;
   1533 		case __BLK_TA_INSERT:
   1534 			log_insert(pdi, pci, t, "I");
   1535 			break;
   1536 		case __BLK_TA_BACKMERGE:
   1537 			account_m(t, pci, w);
   1538 			log_merge(pdi, pci, t, "M");
   1539 			break;
   1540 		case __BLK_TA_FRONTMERGE:
   1541 			account_m(t, pci, w);
   1542 			log_merge(pdi, pci, t, "F");
   1543 			break;
   1544 		case __BLK_TA_GETRQ:
   1545 			log_track_getrq(pdi, t);
   1546 			log_generic(pci, t, "G");
   1547 			break;
   1548 		case __BLK_TA_SLEEPRQ:
   1549 			log_generic(pci, t, "S");
   1550 			break;
   1551 		case __BLK_TA_REQUEUE:
   1552 			/*
   1553 			 * can happen if we miss traces, don't let it go
   1554 			 * below zero
   1555 			 */
   1556 			if (pdi->cur_depth[w])
   1557 				pdi->cur_depth[w]--;
   1558 			account_requeue(t, pci, w);
   1559 			log_queue(pci, t, "R");
   1560 			break;
   1561 		case __BLK_TA_ISSUE:
   1562 			account_issue(t, pci, w);
   1563 			pdi->cur_depth[w]++;
   1564 			if (pdi->cur_depth[w] > pdi->max_depth[w])
   1565 				pdi->max_depth[w] = pdi->cur_depth[w];
   1566 			log_issue(pdi, pci, t, "D");
   1567 			break;
   1568 		case __BLK_TA_COMPLETE:
   1569 			if (pdi->cur_depth[w])
   1570 				pdi->cur_depth[w]--;
   1571 			account_c(t, pci, w, t->bytes);
   1572 			log_complete(pdi, pci, t, "C");
   1573 			break;
   1574 		case __BLK_TA_PLUG:
   1575 			log_action(pci, t, "P");
   1576 			break;
   1577 		case __BLK_TA_UNPLUG_IO:
   1578 			account_unplug(t, pci, 0);
   1579 			log_unplug(pci, t, "U");
   1580 			break;
   1581 		case __BLK_TA_UNPLUG_TIMER:
   1582 			account_unplug(t, pci, 1);
   1583 			log_unplug(pci, t, "UT");
   1584 			break;
   1585 		case __BLK_TA_SPLIT:
   1586 			log_split(pci, t, "X");
   1587 			break;
   1588 		case __BLK_TA_BOUNCE:
   1589 			log_generic(pci, t, "B");
   1590 			break;
   1591 		case __BLK_TA_REMAP:
   1592 			log_generic(pci, t, "A");
   1593 			break;
   1594 		case __BLK_TA_DRV_DATA:
   1595 			have_drv_data = 1;
   1596 			/* dump to binary file only */
   1597 			break;
   1598 		default:
   1599 			fprintf(stderr, "Bad fs action %x\n", t->action);
   1600 			break;
   1601 	}
   1602 }
   1603 
   1604 static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
   1605 		       struct per_dev_info *pdi)
   1606 {
   1607 	if (text_output) {
   1608 		if (t->action == BLK_TN_MESSAGE)
   1609 			handle_notify(t);
   1610 		else if (t->action & BLK_TC_ACT(BLK_TC_PC))
   1611 			dump_trace_pc(t, pdi, pci);
   1612 		else
   1613 			dump_trace_fs(t, pdi, pci);
   1614 	}
   1615 
   1616 	if (!pdi->events)
   1617 		pdi->first_reported_time = t->time;
   1618 
   1619 	pdi->events++;
   1620 
   1621 	if (bin_output_msgs ||
   1622 			    !(t->action & BLK_TC_ACT(BLK_TC_NOTIFY) &&
   1623 			      t->action == BLK_TN_MESSAGE))
   1624 		output_binary(t, sizeof(*t) + t->pdu_len);
   1625 }
   1626 
   1627 /*
   1628  * print in a proper way, not too small and not too big. if more than
   1629  * 1000,000K, turn into M and so on
   1630  */
   1631 static char *size_cnv(char *dst, unsigned long long num, int in_kb)
   1632 {
   1633 	char suff[] = { '\0', 'K', 'M', 'G', 'P' };
   1634 	unsigned int i = 0;
   1635 
   1636 	if (in_kb)
   1637 		i++;
   1638 
   1639 	while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
   1640 		i++;
   1641 		num /= 1000;
   1642 	}
   1643 
   1644 	sprintf(dst, "%'8Lu%c", num, suff[i]);
   1645 	return dst;
   1646 }
   1647 
   1648 static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
   1649 			  char *msg)
   1650 {
   1651 	static char x[256], y[256];
   1652 
   1653 	fprintf(ofp, "%s\n", msg);
   1654 
   1655 	fprintf(ofp, " Reads Queued:    %s, %siB\t", size_cnv(x, ios->qreads, 0), size_cnv(y, ios->qread_kb, 1));
   1656 	fprintf(ofp, " Writes Queued:    %s, %siB\n", size_cnv(x, ios->qwrites, 0), size_cnv(y, ios->qwrite_kb, 1));
   1657 	fprintf(ofp, " Read Dispatches: %s, %siB\t", size_cnv(x, ios->ireads, 0), size_cnv(y, ios->iread_kb, 1));
   1658 	fprintf(ofp, " Write Dispatches: %s, %siB\n", size_cnv(x, ios->iwrites, 0), size_cnv(y, ios->iwrite_kb, 1));
   1659 	fprintf(ofp, " Reads Requeued:  %s\t\t", size_cnv(x, ios->rrqueue, 0));
   1660 	fprintf(ofp, " Writes Requeued:  %s\n", size_cnv(x, ios->wrqueue, 0));
   1661 	fprintf(ofp, " Reads Completed: %s, %siB\t", size_cnv(x, ios->creads, 0), size_cnv(y, ios->cread_kb, 1));
   1662 	fprintf(ofp, " Writes Completed: %s, %siB\n", size_cnv(x, ios->cwrites, 0), size_cnv(y, ios->cwrite_kb, 1));
   1663 	fprintf(ofp, " Read Merges:     %s, %siB\t", size_cnv(x, ios->mreads, 0), size_cnv(y, ios->mread_kb, 1));
   1664 	fprintf(ofp, " Write Merges:     %s, %siB\n", size_cnv(x, ios->mwrites, 0), size_cnv(y, ios->mwrite_kb, 1));
   1665 	if (pdi) {
   1666 		fprintf(ofp, " Read depth:      %'8u%8c\t", pdi->max_depth[0], ' ');
   1667 		fprintf(ofp, " Write depth:      %'8u\n", pdi->max_depth[1]);
   1668 	}
   1669 	if (ios->qreads_pc || ios->qwrites_pc || ios->ireads_pc || ios->iwrites_pc ||
   1670 	    ios->rrqueue_pc || ios->wrqueue_pc || ios->creads_pc || ios->cwrites_pc) {
   1671 		fprintf(ofp, " PC Reads Queued: %s, %siB\t", size_cnv(x, ios->qreads_pc, 0), size_cnv(y, ios->qread_kb_pc, 1));
   1672 		fprintf(ofp, " PC Writes Queued: %s, %siB\n", size_cnv(x, ios->qwrites_pc, 0), size_cnv(y, ios->qwrite_kb_pc, 1));
   1673 		fprintf(ofp, " PC Read Disp.:   %s, %siB\t", size_cnv(x, ios->ireads_pc, 0), size_cnv(y, ios->iread_kb_pc, 1));
   1674 		fprintf(ofp, " PC Write Disp.:   %s, %siB\n", size_cnv(x, ios->iwrites_pc, 0), size_cnv(y, ios->iwrite_kb_pc, 1));
   1675 		fprintf(ofp, " PC Reads Req.:   %s\t\t", size_cnv(x, ios->rrqueue_pc, 0));
   1676 		fprintf(ofp, " PC Writes Req.:   %s\n", size_cnv(x, ios->wrqueue_pc, 0));
   1677 		fprintf(ofp, " PC Reads Compl.: %s\t\t", size_cnv(x, ios->creads_pc, 0));
   1678 		fprintf(ofp, " PC Writes Compl.: %s\n", size_cnv(x, ios->cwrites, 0));
   1679 	}
   1680 	fprintf(ofp, " IO unplugs:      %'8lu%8c\t", ios->io_unplugs, ' ');
   1681 	fprintf(ofp, " Timer unplugs:    %'8lu\n", ios->timer_unplugs);
   1682 }
   1683 
   1684 static void dump_wait_stats(struct per_process_info *ppi)
   1685 {
   1686 	unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
   1687 	unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
   1688 	unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
   1689 	unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
   1690 	unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
   1691 	unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
   1692 
   1693 	fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
   1694 	fprintf(ofp, " Allocation wait:  %'8lu\n", wawait);
   1695 	fprintf(ofp, " Dispatch wait:   %'8lu%8c\t", rdwait, ' ');
   1696 	fprintf(ofp, " Dispatch wait:    %'8lu\n", wdwait);
   1697 	fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
   1698 	fprintf(ofp, " Completion wait:  %'8lu\n", wcwait);
   1699 }
   1700 
   1701 static int ppi_name_compare(const void *p1, const void *p2)
   1702 {
   1703 	struct per_process_info *ppi1 = *((struct per_process_info **) p1);
   1704 	struct per_process_info *ppi2 = *((struct per_process_info **) p2);
   1705 	int res;
   1706 
   1707 	res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
   1708 	if (!res)
   1709 		res = ppi1->ppm->pid > ppi2->ppm->pid;
   1710 
   1711 	return res;
   1712 }
   1713 
   1714 static void sort_process_list(void)
   1715 {
   1716 	struct per_process_info **ppis;
   1717 	struct per_process_info *ppi;
   1718 	int i = 0;
   1719 
   1720 	ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
   1721 
   1722 	ppi = ppi_list;
   1723 	while (ppi) {
   1724 		ppis[i++] = ppi;
   1725 		ppi = ppi->list_next;
   1726 	}
   1727 
   1728 	qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
   1729 
   1730 	i = ppi_list_entries - 1;
   1731 	ppi_list = NULL;
   1732 	while (i >= 0) {
   1733 		ppi = ppis[i];
   1734 
   1735 		ppi->list_next = ppi_list;
   1736 		ppi_list = ppi;
   1737 		i--;
   1738 	}
   1739 
   1740 	free(ppis);
   1741 }
   1742 
   1743 static void show_process_stats(void)
   1744 {
   1745 	struct per_process_info *ppi;
   1746 
   1747 	sort_process_list();
   1748 
   1749 	ppi = ppi_list;
   1750 	while (ppi) {
   1751 		struct process_pid_map *ppm = ppi->ppm;
   1752 		char name[64];
   1753 
   1754 		if (ppi->more_than_one)
   1755 			sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
   1756 		else
   1757 			sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
   1758 
   1759 		dump_io_stats(NULL, &ppi->io_stats, name);
   1760 		dump_wait_stats(ppi);
   1761 		ppi = ppi->list_next;
   1762 	}
   1763 
   1764 	fprintf(ofp, "\n");
   1765 }
   1766 
   1767 static void show_device_and_cpu_stats(void)
   1768 {
   1769 	struct per_dev_info *pdi;
   1770 	struct per_cpu_info *pci;
   1771 	struct io_stats total, *ios;
   1772 	unsigned long long rrate, wrate, msec;
   1773 	int i, j, pci_events;
   1774 	char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
   1775 	char name[32];
   1776 	double ratio;
   1777 
   1778 	for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
   1779 
   1780 		memset(&total, 0, sizeof(total));
   1781 		pci_events = 0;
   1782 
   1783 		if (i > 0)
   1784 			fprintf(ofp, "\n");
   1785 
   1786 		for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
   1787 			if (!pci->nelems)
   1788 				continue;
   1789 
   1790 			ios = &pci->io_stats;
   1791 			total.qreads += ios->qreads;
   1792 			total.qwrites += ios->qwrites;
   1793 			total.creads += ios->creads;
   1794 			total.cwrites += ios->cwrites;
   1795 			total.mreads += ios->mreads;
   1796 			total.mwrites += ios->mwrites;
   1797 			total.ireads += ios->ireads;
   1798 			total.iwrites += ios->iwrites;
   1799 			total.rrqueue += ios->rrqueue;
   1800 			total.wrqueue += ios->wrqueue;
   1801 			total.qread_kb += ios->qread_kb;
   1802 			total.qwrite_kb += ios->qwrite_kb;
   1803 			total.cread_kb += ios->cread_kb;
   1804 			total.cwrite_kb += ios->cwrite_kb;
   1805 			total.iread_kb += ios->iread_kb;
   1806 			total.iwrite_kb += ios->iwrite_kb;
   1807 			total.mread_kb += ios->mread_kb;
   1808 			total.mwrite_kb += ios->mwrite_kb;
   1809 
   1810 			total.qreads_pc += ios->qreads_pc;
   1811 			total.qwrites_pc += ios->qwrites_pc;
   1812 			total.creads_pc += ios->creads_pc;
   1813 			total.cwrites_pc += ios->cwrites_pc;
   1814 			total.ireads_pc += ios->ireads_pc;
   1815 			total.iwrites_pc += ios->iwrites_pc;
   1816 			total.rrqueue_pc += ios->rrqueue_pc;
   1817 			total.wrqueue_pc += ios->wrqueue_pc;
   1818 			total.qread_kb_pc += ios->qread_kb_pc;
   1819 			total.qwrite_kb_pc += ios->qwrite_kb_pc;
   1820 			total.iread_kb_pc += ios->iread_kb_pc;
   1821 			total.iwrite_kb_pc += ios->iwrite_kb_pc;
   1822 
   1823 			total.timer_unplugs += ios->timer_unplugs;
   1824 			total.io_unplugs += ios->io_unplugs;
   1825 
   1826 			snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
   1827 				 j, get_dev_name(pdi, name, sizeof(name)));
   1828 			dump_io_stats(pdi, ios, line);
   1829 			pci_events++;
   1830 		}
   1831 
   1832 		if (pci_events > 1) {
   1833 			fprintf(ofp, "\n");
   1834 			snprintf(line, sizeof(line) - 1, "Total (%s):",
   1835 				 get_dev_name(pdi, name, sizeof(name)));
   1836 			dump_io_stats(NULL, &total, line);
   1837 		}
   1838 
   1839 		wrate = rrate = 0;
   1840 		msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
   1841 		if (msec) {
   1842 			rrate = 1000 * total.cread_kb / msec;
   1843 			wrate = 1000 * total.cwrite_kb / msec;
   1844 		}
   1845 
   1846 		fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
   1847 			rrate, wrate);
   1848 		fprintf(ofp, "Events (%s): %'Lu entries\n",
   1849 			get_dev_name(pdi, line, sizeof(line)), pdi->events);
   1850 
   1851 		collect_pdi_skips(pdi);
   1852 		if (!pdi->skips && !pdi->events)
   1853 			ratio = 0.0;
   1854 		else
   1855 			ratio = 100.0 * ((double)pdi->seq_skips /
   1856 					(double)(pdi->events + pdi->seq_skips));
   1857 		fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
   1858 			pdi->skips, pdi->seq_skips, ratio);
   1859 	}
   1860 }
   1861 
   1862 static void find_genesis(void)
   1863 {
   1864 	struct trace *t = trace_list;
   1865 
   1866 	genesis_time = -1ULL;
   1867 	while (t != NULL) {
   1868 		if (t->bit->time < genesis_time)
   1869 			genesis_time = t->bit->time;
   1870 
   1871 		t = t->next;
   1872 	}
   1873 
   1874 	/* The time stamp record will usually be the first
   1875 	 * record in the trace, but not always.
   1876 	 */
   1877 	if (start_timestamp
   1878 	 && start_timestamp != genesis_time) {
   1879 		long delta = genesis_time - start_timestamp;
   1880 
   1881 		abs_start_time.tv_sec  += SECONDS(delta);
   1882 		abs_start_time.tv_nsec += NANO_SECONDS(delta);
   1883 		if (abs_start_time.tv_nsec < 0) {
   1884 			abs_start_time.tv_nsec += 1000000000;
   1885 			abs_start_time.tv_sec -= 1;
   1886 		} else
   1887 		if (abs_start_time.tv_nsec > 1000000000) {
   1888 			abs_start_time.tv_nsec -= 1000000000;
   1889 			abs_start_time.tv_sec += 1;
   1890 		}
   1891 	}
   1892 }
   1893 
   1894 static inline int check_stopwatch(struct blk_io_trace *bit)
   1895 {
   1896 	if (bit->time < stopwatch_end &&
   1897 	    bit->time >= stopwatch_start)
   1898 		return 0;
   1899 
   1900 	return 1;
   1901 }
   1902 
   1903 /*
   1904  * return youngest entry read
   1905  */
   1906 static int sort_entries(unsigned long long *youngest)
   1907 {
   1908 	struct per_dev_info *pdi = NULL;
   1909 	struct per_cpu_info *pci = NULL;
   1910 	struct trace *t;
   1911 
   1912 	if (!genesis_time)
   1913 		find_genesis();
   1914 
   1915 	*youngest = 0;
   1916 	while ((t = trace_list) != NULL) {
   1917 		struct blk_io_trace *bit = t->bit;
   1918 
   1919 		trace_list = t->next;
   1920 
   1921 		bit->time -= genesis_time;
   1922 
   1923 		if (bit->time < *youngest || !*youngest)
   1924 			*youngest = bit->time;
   1925 
   1926 		if (!pdi || pdi->dev != bit->device) {
   1927 			pdi = get_dev_info(bit->device);
   1928 			pci = NULL;
   1929 		}
   1930 
   1931 		if (!pci || pci->cpu != bit->cpu)
   1932 			pci = get_cpu_info(pdi, bit->cpu);
   1933 
   1934 		if (bit->sequence < pci->smallest_seq_read)
   1935 			pci->smallest_seq_read = bit->sequence;
   1936 
   1937 		if (check_stopwatch(bit)) {
   1938 			bit_free(bit);
   1939 			t_free(t);
   1940 			continue;
   1941 		}
   1942 
   1943 		if (trace_rb_insert_sort(t))
   1944 			return -1;
   1945 	}
   1946 
   1947 	return 0;
   1948 }
   1949 
   1950 /*
   1951  * to continue, we must have traces from all online cpus in the tree
   1952  */
   1953 static int check_cpu_map(struct per_dev_info *pdi)
   1954 {
   1955 	unsigned long *cpu_map;
   1956 	struct rb_node *n;
   1957 	struct trace *__t;
   1958 	unsigned int i;
   1959 	int ret, cpu;
   1960 
   1961 	/*
   1962 	 * create a map of the cpus we have traces for
   1963 	 */
   1964 	cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
   1965 	n = rb_first(&rb_sort_root);
   1966 	while (n) {
   1967 		__t = rb_entry(n, struct trace, rb_node);
   1968 		cpu = __t->bit->cpu;
   1969 
   1970 		cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
   1971 		n = rb_next(n);
   1972 	}
   1973 
   1974 	/*
   1975 	 * we can't continue if pdi->cpu_map has entries set that we don't
   1976 	 * have in the sort rbtree. the opposite is not a problem, though
   1977 	 */
   1978 	ret = 0;
   1979 	for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
   1980 		if (pdi->cpu_map[i] & ~(cpu_map[i])) {
   1981 			ret = 1;
   1982 			break;
   1983 		}
   1984 	}
   1985 
   1986 	free(cpu_map);
   1987 	return ret;
   1988 }
   1989 
   1990 static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
   1991 {
   1992 	struct blk_io_trace *bit = t->bit;
   1993 	unsigned long expected_sequence;
   1994 	struct per_cpu_info *pci;
   1995 	struct trace *__t;
   1996 
   1997 	pci = get_cpu_info(pdi, bit->cpu);
   1998 	expected_sequence = pci->last_sequence + 1;
   1999 
   2000 	if (!expected_sequence) {
   2001 		/*
   2002 		 * 1 should be the first entry, just allow it
   2003 		 */
   2004 		if (bit->sequence == 1)
   2005 			return 0;
   2006 		if (bit->sequence == pci->smallest_seq_read)
   2007 			return 0;
   2008 
   2009 		return check_cpu_map(pdi);
   2010 	}
   2011 
   2012 	if (bit->sequence == expected_sequence)
   2013 		return 0;
   2014 
   2015 	/*
   2016 	 * we may not have seen that sequence yet. if we are not doing
   2017 	 * the final run, break and wait for more entries.
   2018 	 */
   2019 	if (expected_sequence < pci->smallest_seq_read) {
   2020 		__t = trace_rb_find_last(pdi, pci, expected_sequence);
   2021 		if (!__t)
   2022 			goto skip;
   2023 
   2024 		__put_trace_last(pdi, __t);
   2025 		return 0;
   2026 	} else if (!force) {
   2027 		return 1;
   2028 	} else {
   2029 skip:
   2030 		if (check_current_skips(pci, bit->sequence))
   2031 			return 0;
   2032 
   2033 		if (expected_sequence < bit->sequence)
   2034 			insert_skip(pci, expected_sequence, bit->sequence - 1);
   2035 		return 0;
   2036 	}
   2037 }
   2038 
   2039 static void show_entries_rb(int force)
   2040 {
   2041 	struct per_dev_info *pdi = NULL;
   2042 	struct per_cpu_info *pci = NULL;
   2043 	struct blk_io_trace *bit;
   2044 	struct rb_node *n;
   2045 	struct trace *t;
   2046 
   2047 	while ((n = rb_first(&rb_sort_root)) != NULL) {
   2048 		if (is_done() && !force && !pipeline)
   2049 			break;
   2050 
   2051 		t = rb_entry(n, struct trace, rb_node);
   2052 		bit = t->bit;
   2053 
   2054 		if (read_sequence - t->read_sequence < 1 && !force)
   2055 			break;
   2056 
   2057 		if (!pdi || pdi->dev != bit->device) {
   2058 			pdi = get_dev_info(bit->device);
   2059 			pci = NULL;
   2060 		}
   2061 
   2062 		if (!pdi) {
   2063 			fprintf(stderr, "Unknown device ID? (%d,%d)\n",
   2064 				MAJOR(bit->device), MINOR(bit->device));
   2065 			break;
   2066 		}
   2067 
   2068 		if (check_sequence(pdi, t, force))
   2069 			break;
   2070 
   2071 		if (!force && bit->time > last_allowed_time)
   2072 			break;
   2073 
   2074 		check_time(pdi, bit);
   2075 
   2076 		if (!pci || pci->cpu != bit->cpu)
   2077 			pci = get_cpu_info(pdi, bit->cpu);
   2078 
   2079 		pci->last_sequence = bit->sequence;
   2080 
   2081 		pci->nelems++;
   2082 
   2083 		if (bit->action & (act_mask << BLK_TC_SHIFT))
   2084 			dump_trace(bit, pci, pdi);
   2085 
   2086 		put_trace(pdi, t);
   2087 	}
   2088 }
   2089 
   2090 static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
   2091 {
   2092 	int ret, bytes_left, fl;
   2093 	void *p;
   2094 
   2095 	if (block != *fdblock) {
   2096 		fl = fcntl(fd, F_GETFL);
   2097 
   2098 		if (!block) {
   2099 			*fdblock = 0;
   2100 			fcntl(fd, F_SETFL, fl | O_NONBLOCK);
   2101 		} else {
   2102 			*fdblock = 1;
   2103 			fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
   2104 		}
   2105 	}
   2106 
   2107 	bytes_left = bytes;
   2108 	p = buffer;
   2109 	while (bytes_left > 0) {
   2110 		ret = read(fd, p, bytes_left);
   2111 		if (!ret)
   2112 			return 1;
   2113 		else if (ret < 0) {
   2114 			if (errno != EAGAIN) {
   2115 				perror("read");
   2116 				return -1;
   2117 			}
   2118 
   2119 			/*
   2120 			 * never do partial reads. we can return if we
   2121 			 * didn't read anything and we should not block,
   2122 			 * otherwise wait for data
   2123 			 */
   2124 			if ((bytes_left == bytes) && !block)
   2125 				return 1;
   2126 
   2127 			usleep(10);
   2128 			continue;
   2129 		} else {
   2130 			p += ret;
   2131 			bytes_left -= ret;
   2132 		}
   2133 	}
   2134 
   2135 	return 0;
   2136 }
   2137 
   2138 static inline __u16 get_pdulen(struct blk_io_trace *bit)
   2139 {
   2140 	if (data_is_native)
   2141 		return bit->pdu_len;
   2142 
   2143 	return __bswap_16(bit->pdu_len);
   2144 }
   2145 
   2146 static inline __u32 get_magic(struct blk_io_trace *bit)
   2147 {
   2148 	if (data_is_native)
   2149 		return bit->magic;
   2150 
   2151 	return __bswap_32(bit->magic);
   2152 }
   2153 
   2154 static int read_events(int fd, int always_block, int *fdblock)
   2155 {
   2156 	struct per_dev_info *pdi = NULL;
   2157 	unsigned int events = 0;
   2158 
   2159 	while (!is_done() && events < rb_batch) {
   2160 		struct blk_io_trace *bit;
   2161 		struct trace *t;
   2162 		int pdu_len, should_block, ret;
   2163 		__u32 magic;
   2164 
   2165 		bit = bit_alloc();
   2166 
   2167 		should_block = !events || always_block;
   2168 
   2169 		ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
   2170 		if (ret) {
   2171 			bit_free(bit);
   2172 			if (!events && ret < 0)
   2173 				events = ret;
   2174 			break;
   2175 		}
   2176 
   2177 		/*
   2178 		 * look at first trace to check whether we need to convert
   2179 		 * data in the future
   2180 		 */
   2181 		if (data_is_native == -1 && check_data_endianness(bit->magic))
   2182 			break;
   2183 
   2184 		magic = get_magic(bit);
   2185 		if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
   2186 			fprintf(stderr, "Bad magic %x\n", magic);
   2187 			break;
   2188 		}
   2189 
   2190 		pdu_len = get_pdulen(bit);
   2191 		if (pdu_len) {
   2192 			void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
   2193 
   2194 			if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
   2195 				bit_free(ptr);
   2196 				break;
   2197 			}
   2198 
   2199 			bit = ptr;
   2200 		}
   2201 
   2202 		trace_to_cpu(bit);
   2203 
   2204 		if (verify_trace(bit)) {
   2205 			bit_free(bit);
   2206 			continue;
   2207 		}
   2208 
   2209 		/*
   2210 		 * not a real trace, so grab and handle it here
   2211 		 */
   2212 		if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
   2213 			handle_notify(bit);
   2214 			output_binary(bit, sizeof(*bit) + bit->pdu_len);
   2215 			continue;
   2216 		}
   2217 
   2218 		t = t_alloc();
   2219 		memset(t, 0, sizeof(*t));
   2220 		t->bit = bit;
   2221 		t->read_sequence = read_sequence;
   2222 
   2223 		t->next = trace_list;
   2224 		trace_list = t;
   2225 
   2226 		if (!pdi || pdi->dev != bit->device)
   2227 			pdi = get_dev_info(bit->device);
   2228 
   2229 		if (bit->time > pdi->last_read_time)
   2230 			pdi->last_read_time = bit->time;
   2231 
   2232 		events++;
   2233 	}
   2234 
   2235 	return events;
   2236 }
   2237 
   2238 /*
   2239  * Managing input streams
   2240  */
   2241 
   2242 struct ms_stream {
   2243 	struct ms_stream *next;
   2244 	struct trace *first, *last;
   2245 	struct per_dev_info *pdi;
   2246 	unsigned int cpu;
   2247 };
   2248 
   2249 #define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
   2250 
   2251 struct ms_stream *ms_head;
   2252 struct ms_stream *ms_hash[256];
   2253 
   2254 static void ms_sort(struct ms_stream *msp);
   2255 static int ms_prime(struct ms_stream *msp);
   2256 
   2257 static inline struct trace *ms_peek(struct ms_stream *msp)
   2258 {
   2259 	return (msp == NULL) ? NULL : msp->first;
   2260 }
   2261 
   2262 static inline __u64 ms_peek_time(struct ms_stream *msp)
   2263 {
   2264 	return ms_peek(msp)->bit->time;
   2265 }
   2266 
   2267 static inline void ms_resort(struct ms_stream *msp)
   2268 {
   2269 	if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
   2270 		ms_head = msp->next;
   2271 		msp->next = NULL;
   2272 		ms_sort(msp);
   2273 	}
   2274 }
   2275 
   2276 static inline void ms_deq(struct ms_stream *msp)
   2277 {
   2278 	msp->first = msp->first->next;
   2279 	if (!msp->first) {
   2280 		msp->last = NULL;
   2281 		if (!ms_prime(msp)) {
   2282 			ms_head = msp->next;
   2283 			msp->next = NULL;
   2284 			return;
   2285 		}
   2286 	}
   2287 
   2288 	ms_resort(msp);
   2289 }
   2290 
   2291 static void ms_sort(struct ms_stream *msp)
   2292 {
   2293 	__u64 msp_t = ms_peek_time(msp);
   2294 	struct ms_stream *this_msp = ms_head;
   2295 
   2296 	if (this_msp == NULL)
   2297 		ms_head = msp;
   2298 	else if (msp_t < ms_peek_time(this_msp)) {
   2299 		msp->next = this_msp;
   2300 		ms_head = msp;
   2301 	}
   2302 	else {
   2303 		while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
   2304 			this_msp = this_msp->next;
   2305 
   2306 		msp->next = this_msp->next;
   2307 		this_msp->next = msp;
   2308 	}
   2309 }
   2310 
   2311 static int ms_prime(struct ms_stream *msp)
   2312 {
   2313 	__u32 magic;
   2314 	unsigned int i;
   2315 	struct trace *t;
   2316 	struct per_dev_info *pdi = msp->pdi;
   2317 	struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
   2318 	struct blk_io_trace *bit = NULL;
   2319 	int ret, pdu_len, ndone = 0;
   2320 
   2321 	for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
   2322 		bit = bit_alloc();
   2323 		ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
   2324 		if (ret)
   2325 			goto err;
   2326 
   2327 		if (data_is_native == -1 && check_data_endianness(bit->magic))
   2328 			goto err;
   2329 
   2330 		magic = get_magic(bit);
   2331 		if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
   2332 			fprintf(stderr, "Bad magic %x\n", magic);
   2333 			goto err;
   2334 
   2335 		}
   2336 
   2337 		pdu_len = get_pdulen(bit);
   2338 		if (pdu_len) {
   2339 			void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
   2340 			ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
   2341 							     1, &pci->fdblock);
   2342 			if (ret) {
   2343 				free(ptr);
   2344 				bit = NULL;
   2345 				goto err;
   2346 			}
   2347 
   2348 			bit = ptr;
   2349 		}
   2350 
   2351 		trace_to_cpu(bit);
   2352 		if (verify_trace(bit))
   2353 			goto err;
   2354 
   2355 		if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
   2356 			handle_notify(bit);
   2357 			output_binary(bit, sizeof(*bit) + bit->pdu_len);
   2358 			bit_free(bit);
   2359 
   2360 			i -= 1;
   2361 			continue;
   2362 		}
   2363 
   2364 		if (bit->time > pdi->last_read_time)
   2365 			pdi->last_read_time = bit->time;
   2366 
   2367 		t = t_alloc();
   2368 		memset(t, 0, sizeof(*t));
   2369 		t->bit = bit;
   2370 
   2371 		if (msp->first == NULL)
   2372 			msp->first = msp->last = t;
   2373 		else {
   2374 			msp->last->next = t;
   2375 			msp->last = t;
   2376 		}
   2377 
   2378 		ndone++;
   2379 	}
   2380 
   2381 	return ndone;
   2382 
   2383 err:
   2384 	if (bit) bit_free(bit);
   2385 
   2386 	cpu_mark_offline(pdi, pci->cpu);
   2387 	close(pci->fd);
   2388 	pci->fd = -1;
   2389 
   2390 	return ndone;
   2391 }
   2392 
   2393 static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
   2394 {
   2395 	struct ms_stream *msp = malloc(sizeof(*msp));
   2396 
   2397 	msp->next = NULL;
   2398 	msp->first = msp->last = NULL;
   2399 	msp->pdi = pdi;
   2400 	msp->cpu = cpu;
   2401 
   2402 	if (ms_prime(msp))
   2403 		ms_sort(msp);
   2404 
   2405 	return msp;
   2406 }
   2407 
   2408 static int setup_file(struct per_dev_info *pdi, int cpu)
   2409 {
   2410 	int len = 0;
   2411 	struct stat st;
   2412 	char *p, *dname;
   2413 	struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
   2414 
   2415 	pci->cpu = cpu;
   2416 	pci->fdblock = -1;
   2417 
   2418 	p = strdup(pdi->name);
   2419 	dname = dirname(p);
   2420 	if (strcmp(dname, ".")) {
   2421 		input_dir = dname;
   2422 		p = strdup(pdi->name);
   2423 		strcpy(pdi->name, basename(p));
   2424 	}
   2425 	free(p);
   2426 
   2427 	if (input_dir)
   2428 		len = sprintf(pci->fname, "%s/", input_dir);
   2429 
   2430 	snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
   2431 		 "%s.blktrace.%d", pdi->name, pci->cpu);
   2432 	if (stat(pci->fname, &st) < 0)
   2433 		return 0;
   2434 	if (!st.st_size)
   2435 		return 1;
   2436 
   2437 	pci->fd = open(pci->fname, O_RDONLY);
   2438 	if (pci->fd < 0) {
   2439 		perror(pci->fname);
   2440 		return 0;
   2441 	}
   2442 
   2443 	printf("Input file %s added\n", pci->fname);
   2444 	cpu_mark_online(pdi, pci->cpu);
   2445 
   2446 	pdi->nfiles++;
   2447 	ms_alloc(pdi, pci->cpu);
   2448 
   2449 	return 1;
   2450 }
   2451 
   2452 static int handle(struct ms_stream *msp)
   2453 {
   2454 	struct trace *t;
   2455 	struct per_dev_info *pdi;
   2456 	struct per_cpu_info *pci;
   2457 	struct blk_io_trace *bit;
   2458 
   2459 	t = ms_peek(msp);
   2460 
   2461 	bit = t->bit;
   2462 	pdi = msp->pdi;
   2463 	pci = get_cpu_info(pdi, msp->cpu);
   2464 	pci->nelems++;
   2465 	bit->time -= genesis_time;
   2466 
   2467 	if (t->bit->time > stopwatch_end)
   2468 		return 0;
   2469 
   2470 	pdi->last_reported_time = bit->time;
   2471 	if ((bit->action & (act_mask << BLK_TC_SHIFT))&&
   2472 	    t->bit->time >= stopwatch_start)
   2473 		dump_trace(bit, pci, pdi);
   2474 
   2475 	ms_deq(msp);
   2476 
   2477 	if (text_output)
   2478 		trace_rb_insert_last(pdi, t);
   2479 	else {
   2480 		bit_free(t->bit);
   2481 		t_free(t);
   2482 	}
   2483 
   2484 	return 1;
   2485 }
   2486 
   2487 /*
   2488  * Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
   2489  * is given, then strip back down to 'foo' to avoid missing files.
   2490  */
   2491 static int name_fixup(char *name)
   2492 {
   2493 	char *b;
   2494 
   2495 	if (!name)
   2496 		return 1;
   2497 
   2498 	b = strstr(name, ".blktrace.");
   2499 	if (b)
   2500 		*b = '\0';
   2501 
   2502 	return 0;
   2503 }
   2504 
   2505 static int do_file(void)
   2506 {
   2507 	int i, cpu, ret;
   2508 	struct per_dev_info *pdi;
   2509 
   2510 	/*
   2511 	 * first prepare all files for reading
   2512 	 */
   2513 	for (i = 0; i < ndevices; i++) {
   2514 		pdi = &devices[i];
   2515 		ret = name_fixup(pdi->name);
   2516 		if (ret)
   2517 			return ret;
   2518 
   2519 		for (cpu = 0; setup_file(pdi, cpu); cpu++)
   2520 			;
   2521 	}
   2522 
   2523 	/*
   2524 	 * Get the initial time stamp
   2525 	 */
   2526 	if (ms_head)
   2527 		genesis_time = ms_peek_time(ms_head);
   2528 
   2529 	/*
   2530 	 * Keep processing traces while any are left
   2531 	 */
   2532 	while (!is_done() && ms_head && handle(ms_head))
   2533 		;
   2534 
   2535 	return 0;
   2536 }
   2537 
   2538 static void do_pipe(int fd)
   2539 {
   2540 	unsigned long long youngest;
   2541 	int events, fdblock;
   2542 
   2543 	last_allowed_time = -1ULL;
   2544 	fdblock = -1;
   2545 	while ((events = read_events(fd, 0, &fdblock)) > 0) {
   2546 		read_sequence++;
   2547 
   2548 #if 0
   2549 		smallest_seq_read = -1U;
   2550 #endif
   2551 
   2552 		if (sort_entries(&youngest))
   2553 			break;
   2554 
   2555 		if (youngest > stopwatch_end)
   2556 			break;
   2557 
   2558 		show_entries_rb(0);
   2559 	}
   2560 
   2561 	if (rb_sort_entries)
   2562 		show_entries_rb(1);
   2563 }
   2564 
   2565 static int do_fifo(void)
   2566 {
   2567 	int fd;
   2568 
   2569 	if (!strcmp(pipename, "-"))
   2570 		fd = dup(STDIN_FILENO);
   2571 	else
   2572 		fd = open(pipename, O_RDONLY);
   2573 
   2574 	if (fd == -1) {
   2575 		perror("dup stdin");
   2576 		return -1;
   2577 	}
   2578 
   2579 	do_pipe(fd);
   2580 	close(fd);
   2581 	return 0;
   2582 }
   2583 
   2584 static void show_stats(void)
   2585 {
   2586 	if (!ofp)
   2587 		return;
   2588 	if (stats_printed)
   2589 		return;
   2590 
   2591 	stats_printed = 1;
   2592 
   2593 	if (per_process_stats)
   2594 		show_process_stats();
   2595 
   2596 	if (per_device_and_cpu_stats)
   2597 		show_device_and_cpu_stats();
   2598 
   2599 	fflush(ofp);
   2600 }
   2601 
   2602 static void handle_sigint(__attribute__((__unused__)) int sig)
   2603 {
   2604 	done = 1;
   2605 }
   2606 
   2607 /*
   2608  * Extract start and duration times from a string, allowing
   2609  * us to specify a time interval of interest within a trace.
   2610  * Format: "duration" (start is zero) or "start:duration".
   2611  */
   2612 static int find_stopwatch_interval(char *string)
   2613 {
   2614 	double value;
   2615 	char *sp;
   2616 
   2617 	value = strtod(string, &sp);
   2618 	if (sp == string) {
   2619 		fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
   2620 		return 1;
   2621 	}
   2622 	if (*sp == ':') {
   2623 		stopwatch_start = DOUBLE_TO_NANO_ULL(value);
   2624 		string = sp + 1;
   2625 		value = strtod(string, &sp);
   2626 		if (sp == string || *sp != '\0') {
   2627 			fprintf(stderr,"Invalid stopwatch duration time: %s\n",
   2628 				string);
   2629 			return 1;
   2630 		}
   2631 	} else if (*sp != '\0') {
   2632 		fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
   2633 		return 1;
   2634 	}
   2635 	stopwatch_end = DOUBLE_TO_NANO_ULL(value);
   2636 	if (stopwatch_end <= stopwatch_start) {
   2637 		fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
   2638 			stopwatch_start, stopwatch_end);
   2639 		return 1;
   2640 	}
   2641 
   2642 	return 0;
   2643 }
   2644 
   2645 static int is_pipe(const char *str)
   2646 {
   2647 	struct stat st;
   2648 
   2649 	if (!strcmp(str, "-"))
   2650 		return 1;
   2651 	if (!stat(str, &st) && S_ISFIFO(st.st_mode))
   2652 		return 1;
   2653 
   2654 	return 0;
   2655 }
   2656 
   2657 #define S_OPTS  "a:A:b:D:d:f:F:hi:o:Oqstw:vVM"
   2658 static char usage_str[] =    "\n\n" \
   2659 	"-i <file>           | --input=<file>\n" \
   2660 	"[ -a <action field> | --act-mask=<action field> ]\n" \
   2661 	"[ -A <action mask>  | --set-mask=<action mask> ]\n" \
   2662 	"[ -b <traces>       | --batch=<traces> ]\n" \
   2663 	"[ -d <file>         | --dump-binary=<file> ]\n" \
   2664 	"[ -D <dir>          | --input-directory=<dir> ]\n" \
   2665 	"[ -f <format>       | --format=<format> ]\n" \
   2666 	"[ -F <spec>         | --format-spec=<spec> ]\n" \
   2667 	"[ -h                | --hash-by-name ]\n" \
   2668 	"[ -o <file>         | --output=<file> ]\n" \
   2669 	"[ -O                | --no-text-output ]\n" \
   2670 	"[ -q                | --quiet ]\n" \
   2671 	"[ -s                | --per-program-stats ]\n" \
   2672 	"[ -t                | --track-ios ]\n" \
   2673 	"[ -w <time>         | --stopwatch=<time> ]\n" \
   2674 	"[ -M                | --no-msgs\n" \
   2675 	"[ -v                | --verbose ]\n" \
   2676 	"[ -V                | --version ]\n\n" \
   2677 	"\t-b stdin read batching\n" \
   2678 	"\t-d Output file. If specified, binary data is written to file\n" \
   2679 	"\t-D Directory to prepend to input file names\n" \
   2680 	"\t-f Output format. Customize the output format. The format field\n" \
   2681 	"\t   identifies can be found in the documentation\n" \
   2682 	"\t-F Format specification. Can be found in the documentation\n" \
   2683 	"\t-h Hash processes by name, not pid\n" \
   2684 	"\t-i Input file containing trace data, or '-' for stdin\n" \
   2685 	"\t-o Output file. If not given, output is stdout\n" \
   2686 	"\t-O Do NOT output text data\n" \
   2687 	"\t-q Quiet. Don't display any stats at the end of the trace\n" \
   2688 	"\t-s Show per-program io statistics\n" \
   2689 	"\t-t Track individual ios. Will tell you the time a request took\n" \
   2690 	"\t   to get queued, to get dispatched, and to get completed\n" \
   2691 	"\t-w Only parse data between the given time interval in seconds.\n" \
   2692 	"\t   If 'start' isn't given, blkparse defaults the start time to 0\n" \
   2693 	"\t-M Do not output messages to binary file\n" \
   2694 	"\t-v More verbose for marginal errors\n" \
   2695 	"\t-V Print program version info\n\n";
   2696 
   2697 static void usage(char *prog)
   2698 {
   2699 	fprintf(stderr, "Usage: %s %s %s", prog, blkparse_version, usage_str);
   2700 }
   2701 
   2702 int main(int argc, char *argv[])
   2703 {
   2704 	int i, c, ret, mode;
   2705 	int act_mask_tmp = 0;
   2706 	char *ofp_buffer = NULL;
   2707 	char *bin_ofp_buffer = NULL;
   2708 
   2709 	while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
   2710 		switch (c) {
   2711 		case 'a':
   2712 			i = find_mask_map(optarg);
   2713 			if (i < 0) {
   2714 				fprintf(stderr,"Invalid action mask %s\n",
   2715 					optarg);
   2716 				return 1;
   2717 			}
   2718 			act_mask_tmp |= i;
   2719 			break;
   2720 
   2721 		case 'A':
   2722 			if ((sscanf(optarg, "%x", &i) != 1) ||
   2723 							!valid_act_opt(i)) {
   2724 				fprintf(stderr,
   2725 					"Invalid set action mask %s/0x%x\n",
   2726 					optarg, i);
   2727 				return 1;
   2728 			}
   2729 			act_mask_tmp = i;
   2730 			break;
   2731 		case 'i':
   2732 			if (is_pipe(optarg) && !pipeline) {
   2733 				pipeline = 1;
   2734 				pipename = strdup(optarg);
   2735 			} else if (resize_devices(optarg) != 0)
   2736 				return 1;
   2737 			break;
   2738 		case 'D':
   2739 			input_dir = optarg;
   2740 			break;
   2741 		case 'o':
   2742 			output_name = optarg;
   2743 			break;
   2744 		case 'O':
   2745 			text_output = 0;
   2746 			break;
   2747 		case 'b':
   2748 			rb_batch = atoi(optarg);
   2749 			if (rb_batch <= 0)
   2750 				rb_batch = RB_BATCH_DEFAULT;
   2751 			break;
   2752 		case 's':
   2753 			per_process_stats = 1;
   2754 			break;
   2755 		case 't':
   2756 			track_ios = 1;
   2757 			break;
   2758 		case 'q':
   2759 			per_device_and_cpu_stats = 0;
   2760 			break;
   2761 		case 'w':
   2762 			if (find_stopwatch_interval(optarg) != 0)
   2763 				return 1;
   2764 			break;
   2765 		case 'f':
   2766 			set_all_format_specs(optarg);
   2767 			break;
   2768 		case 'F':
   2769 			if (add_format_spec(optarg) != 0)
   2770 				return 1;
   2771 			break;
   2772 		case 'h':
   2773 			ppi_hash_by_pid = 0;
   2774 			break;
   2775 		case 'v':
   2776 			verbose++;
   2777 			break;
   2778 		case 'V':
   2779 			printf("%s version %s\n", argv[0], blkparse_version);
   2780 			return 0;
   2781 		case 'd':
   2782 			dump_binary = optarg;
   2783 			break;
   2784 		case 'M':
   2785 			bin_output_msgs = 0;
   2786 			break;
   2787 		default:
   2788 			usage(argv[0]);
   2789 			return 1;
   2790 		}
   2791 	}
   2792 
   2793 	while (optind < argc) {
   2794 		if (is_pipe(argv[optind]) && !pipeline) {
   2795 			pipeline = 1;
   2796 			pipename = strdup(argv[optind]);
   2797 		} else if (resize_devices(argv[optind]) != 0)
   2798 			return 1;
   2799 		optind++;
   2800 	}
   2801 
   2802 	if (!pipeline && !ndevices) {
   2803 		usage(argv[0]);
   2804 		return 1;
   2805 	}
   2806 
   2807 	if (act_mask_tmp != 0)
   2808 		act_mask = act_mask_tmp;
   2809 
   2810 	memset(&rb_sort_root, 0, sizeof(rb_sort_root));
   2811 
   2812 	signal(SIGINT, handle_sigint);
   2813 	signal(SIGHUP, handle_sigint);
   2814 	signal(SIGTERM, handle_sigint);
   2815 
   2816 	setlocale(LC_NUMERIC, "en_US");
   2817 
   2818 	if (text_output) {
   2819 		if (!output_name) {
   2820 			ofp = fdopen(STDOUT_FILENO, "w");
   2821 			mode = _IOLBF;
   2822 		} else {
   2823 			char ofname[128];
   2824 
   2825 			snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
   2826 			ofp = fopen(ofname, "w");
   2827 			mode = _IOFBF;
   2828 		}
   2829 
   2830 		if (!ofp) {
   2831 			perror("fopen");
   2832 			return 1;
   2833 		}
   2834 
   2835 		ofp_buffer = malloc(4096);
   2836 		if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
   2837 			perror("setvbuf");
   2838 			return 1;
   2839 		}
   2840 	}
   2841 
   2842 	if (dump_binary) {
   2843 		dump_fp = fopen(dump_binary, "w");
   2844 		if (!dump_fp) {
   2845 			perror(dump_binary);
   2846 			dump_binary = NULL;
   2847 			return 1;
   2848 		}
   2849 		bin_ofp_buffer = malloc(128 * 1024);
   2850 		if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
   2851 			perror("setvbuf binary");
   2852 			return 1;
   2853 		}
   2854 	}
   2855 
   2856 	if (pipeline)
   2857 		ret = do_fifo();
   2858 	else
   2859 		ret = do_file();
   2860 
   2861 	if (!ret)
   2862 		show_stats();
   2863 
   2864 	if (have_drv_data && !dump_binary)
   2865 		printf("\ndiscarded traces containing low-level device driver "
   2866 		       "specific data (only available in binary output)\n");
   2867 
   2868 	if (ofp_buffer) {
   2869 		fflush(ofp);
   2870 		free(ofp_buffer);
   2871 	}
   2872 	if (bin_ofp_buffer) {
   2873 		fflush(dump_fp);
   2874 		free(bin_ofp_buffer);
   2875 	}
   2876 	return ret;
   2877 }
   2878