1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "load_store_elimination.h" 18 19 #include "escape.h" 20 #include "side_effects_analysis.h" 21 22 #include <iostream> 23 24 namespace art { 25 26 class ReferenceInfo; 27 28 // A cap for the number of heap locations to prevent pathological time/space consumption. 29 // The number of heap locations for most of the methods stays below this threshold. 30 constexpr size_t kMaxNumberOfHeapLocations = 32; 31 32 // A ReferenceInfo contains additional info about a reference such as 33 // whether it's a singleton, returned, etc. 34 class ReferenceInfo : public ArenaObject<kArenaAllocMisc> { 35 public: 36 ReferenceInfo(HInstruction* reference, size_t pos) 37 : reference_(reference), 38 position_(pos), 39 is_singleton_(true), 40 is_singleton_and_not_returned_(true), 41 is_singleton_and_not_deopt_visible_(true), 42 has_index_aliasing_(false) { 43 CalculateEscape(reference_, 44 nullptr, 45 &is_singleton_, 46 &is_singleton_and_not_returned_, 47 &is_singleton_and_not_deopt_visible_); 48 } 49 50 HInstruction* GetReference() const { 51 return reference_; 52 } 53 54 size_t GetPosition() const { 55 return position_; 56 } 57 58 // Returns true if reference_ is the only name that can refer to its value during 59 // the lifetime of the method. So it's guaranteed to not have any alias in 60 // the method (including its callees). 61 bool IsSingleton() const { 62 return is_singleton_; 63 } 64 65 // Returns true if reference_ is a singleton and not returned to the caller or 66 // used as an environment local of an HDeoptimize instruction. 67 // The allocation and stores into reference_ may be eliminated for such cases. 68 bool IsSingletonAndRemovable() const { 69 return is_singleton_and_not_returned_ && is_singleton_and_not_deopt_visible_; 70 } 71 72 // Returns true if reference_ is a singleton and returned to the caller or 73 // used as an environment local of an HDeoptimize instruction. 74 bool IsSingletonAndNonRemovable() const { 75 return is_singleton_ && 76 (!is_singleton_and_not_returned_ || !is_singleton_and_not_deopt_visible_); 77 } 78 79 bool HasIndexAliasing() { 80 return has_index_aliasing_; 81 } 82 83 void SetHasIndexAliasing(bool has_index_aliasing) { 84 // Only allow setting to true. 85 DCHECK(has_index_aliasing); 86 has_index_aliasing_ = has_index_aliasing; 87 } 88 89 private: 90 HInstruction* const reference_; 91 const size_t position_; // position in HeapLocationCollector's ref_info_array_. 92 93 // Can only be referred to by a single name in the method. 94 bool is_singleton_; 95 // Is singleton and not returned to caller. 96 bool is_singleton_and_not_returned_; 97 // Is singleton and not used as an environment local of HDeoptimize. 98 bool is_singleton_and_not_deopt_visible_; 99 // Some heap locations with reference_ have array index aliasing, 100 // e.g. arr[i] and arr[j] may be the same location. 101 bool has_index_aliasing_; 102 103 DISALLOW_COPY_AND_ASSIGN(ReferenceInfo); 104 }; 105 106 // A heap location is a reference-offset/index pair that a value can be loaded from 107 // or stored to. 108 class HeapLocation : public ArenaObject<kArenaAllocMisc> { 109 public: 110 static constexpr size_t kInvalidFieldOffset = -1; 111 112 // TODO: more fine-grained array types. 113 static constexpr int16_t kDeclaringClassDefIndexForArrays = -1; 114 115 HeapLocation(ReferenceInfo* ref_info, 116 size_t offset, 117 HInstruction* index, 118 int16_t declaring_class_def_index) 119 : ref_info_(ref_info), 120 offset_(offset), 121 index_(index), 122 declaring_class_def_index_(declaring_class_def_index), 123 value_killed_by_loop_side_effects_(true) { 124 DCHECK(ref_info != nullptr); 125 DCHECK((offset == kInvalidFieldOffset && index != nullptr) || 126 (offset != kInvalidFieldOffset && index == nullptr)); 127 if (ref_info->IsSingleton() && !IsArrayElement()) { 128 // Assume this location's value cannot be killed by loop side effects 129 // until proven otherwise. 130 value_killed_by_loop_side_effects_ = false; 131 } 132 } 133 134 ReferenceInfo* GetReferenceInfo() const { return ref_info_; } 135 size_t GetOffset() const { return offset_; } 136 HInstruction* GetIndex() const { return index_; } 137 138 // Returns the definition of declaring class' dex index. 139 // It's kDeclaringClassDefIndexForArrays for an array element. 140 int16_t GetDeclaringClassDefIndex() const { 141 return declaring_class_def_index_; 142 } 143 144 bool IsArrayElement() const { 145 return index_ != nullptr; 146 } 147 148 bool IsValueKilledByLoopSideEffects() const { 149 return value_killed_by_loop_side_effects_; 150 } 151 152 void SetValueKilledByLoopSideEffects(bool val) { 153 value_killed_by_loop_side_effects_ = val; 154 } 155 156 private: 157 ReferenceInfo* const ref_info_; // reference for instance/static field or array access. 158 const size_t offset_; // offset of static/instance field. 159 HInstruction* const index_; // index of an array element. 160 const int16_t declaring_class_def_index_; // declaring class's def's dex index. 161 bool value_killed_by_loop_side_effects_; // value of this location may be killed by loop 162 // side effects because this location is stored 163 // into inside a loop. This gives 164 // better info on whether a singleton's location 165 // value may be killed by loop side effects. 166 167 DISALLOW_COPY_AND_ASSIGN(HeapLocation); 168 }; 169 170 static HInstruction* HuntForOriginalReference(HInstruction* ref) { 171 DCHECK(ref != nullptr); 172 while (ref->IsNullCheck() || ref->IsBoundType()) { 173 ref = ref->InputAt(0); 174 } 175 return ref; 176 } 177 178 // A HeapLocationCollector collects all relevant heap locations and keeps 179 // an aliasing matrix for all locations. 180 class HeapLocationCollector : public HGraphVisitor { 181 public: 182 static constexpr size_t kHeapLocationNotFound = -1; 183 // Start with a single uint32_t word. That's enough bits for pair-wise 184 // aliasing matrix of 8 heap locations. 185 static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32; 186 187 explicit HeapLocationCollector(HGraph* graph) 188 : HGraphVisitor(graph), 189 ref_info_array_(graph->GetArena()->Adapter(kArenaAllocLSE)), 190 heap_locations_(graph->GetArena()->Adapter(kArenaAllocLSE)), 191 aliasing_matrix_(graph->GetArena(), 192 kInitialAliasingMatrixBitVectorSize, 193 true, 194 kArenaAllocLSE), 195 has_heap_stores_(false), 196 has_volatile_(false), 197 has_monitor_operations_(false) {} 198 199 size_t GetNumberOfHeapLocations() const { 200 return heap_locations_.size(); 201 } 202 203 HeapLocation* GetHeapLocation(size_t index) const { 204 return heap_locations_[index]; 205 } 206 207 ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const { 208 for (size_t i = 0; i < ref_info_array_.size(); i++) { 209 ReferenceInfo* ref_info = ref_info_array_[i]; 210 if (ref_info->GetReference() == ref) { 211 DCHECK_EQ(i, ref_info->GetPosition()); 212 return ref_info; 213 } 214 } 215 return nullptr; 216 } 217 218 bool HasHeapStores() const { 219 return has_heap_stores_; 220 } 221 222 bool HasVolatile() const { 223 return has_volatile_; 224 } 225 226 bool HasMonitorOps() const { 227 return has_monitor_operations_; 228 } 229 230 // Find and return the heap location index in heap_locations_. 231 size_t FindHeapLocationIndex(ReferenceInfo* ref_info, 232 size_t offset, 233 HInstruction* index, 234 int16_t declaring_class_def_index) const { 235 for (size_t i = 0; i < heap_locations_.size(); i++) { 236 HeapLocation* loc = heap_locations_[i]; 237 if (loc->GetReferenceInfo() == ref_info && 238 loc->GetOffset() == offset && 239 loc->GetIndex() == index && 240 loc->GetDeclaringClassDefIndex() == declaring_class_def_index) { 241 return i; 242 } 243 } 244 return kHeapLocationNotFound; 245 } 246 247 // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias. 248 bool MayAlias(size_t index1, size_t index2) const { 249 if (index1 < index2) { 250 return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2)); 251 } else if (index1 > index2) { 252 return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1)); 253 } else { 254 DCHECK(false) << "index1 and index2 are expected to be different"; 255 return true; 256 } 257 } 258 259 void BuildAliasingMatrix() { 260 const size_t number_of_locations = heap_locations_.size(); 261 if (number_of_locations == 0) { 262 return; 263 } 264 size_t pos = 0; 265 // Compute aliasing info between every pair of different heap locations. 266 // Save the result in a matrix represented as a BitVector. 267 for (size_t i = 0; i < number_of_locations - 1; i++) { 268 for (size_t j = i + 1; j < number_of_locations; j++) { 269 if (ComputeMayAlias(i, j)) { 270 aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos)); 271 } 272 pos++; 273 } 274 } 275 } 276 277 private: 278 // An allocation cannot alias with a name which already exists at the point 279 // of the allocation, such as a parameter or a load happening before the allocation. 280 bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { 281 if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) { 282 // Any reference that can alias with the allocation must appear after it in the block/in 283 // the block's successors. In reverse post order, those instructions will be visited after 284 // the allocation. 285 return ref_info2->GetPosition() >= ref_info1->GetPosition(); 286 } 287 return true; 288 } 289 290 bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) const { 291 if (ref_info1 == ref_info2) { 292 return true; 293 } else if (ref_info1->IsSingleton()) { 294 return false; 295 } else if (ref_info2->IsSingleton()) { 296 return false; 297 } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) || 298 !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) { 299 return false; 300 } 301 return true; 302 } 303 304 // `index1` and `index2` are indices in the array of collected heap locations. 305 // Returns the position in the bit vector that tracks whether the two heap 306 // locations may alias. 307 size_t AliasingMatrixPosition(size_t index1, size_t index2) const { 308 DCHECK(index2 > index1); 309 const size_t number_of_locations = heap_locations_.size(); 310 // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1). 311 return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1)); 312 } 313 314 // An additional position is passed in to make sure the calculated position is correct. 315 size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) { 316 size_t calculated_position = AliasingMatrixPosition(index1, index2); 317 DCHECK_EQ(calculated_position, position); 318 return calculated_position; 319 } 320 321 // Compute if two locations may alias to each other. 322 bool ComputeMayAlias(size_t index1, size_t index2) const { 323 HeapLocation* loc1 = heap_locations_[index1]; 324 HeapLocation* loc2 = heap_locations_[index2]; 325 if (loc1->GetOffset() != loc2->GetOffset()) { 326 // Either two different instance fields, or one is an instance 327 // field and the other is an array element. 328 return false; 329 } 330 if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) { 331 // Different types. 332 return false; 333 } 334 if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) { 335 return false; 336 } 337 if (loc1->IsArrayElement() && loc2->IsArrayElement()) { 338 HInstruction* array_index1 = loc1->GetIndex(); 339 HInstruction* array_index2 = loc2->GetIndex(); 340 DCHECK(array_index1 != nullptr); 341 DCHECK(array_index2 != nullptr); 342 if (array_index1->IsIntConstant() && 343 array_index2->IsIntConstant() && 344 array_index1->AsIntConstant()->GetValue() != array_index2->AsIntConstant()->GetValue()) { 345 // Different constant indices do not alias. 346 return false; 347 } 348 ReferenceInfo* ref_info = loc1->GetReferenceInfo(); 349 ref_info->SetHasIndexAliasing(true); 350 } 351 return true; 352 } 353 354 ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) { 355 ReferenceInfo* ref_info = FindReferenceInfoOf(instruction); 356 if (ref_info == nullptr) { 357 size_t pos = ref_info_array_.size(); 358 ref_info = new (GetGraph()->GetArena()) ReferenceInfo(instruction, pos); 359 ref_info_array_.push_back(ref_info); 360 } 361 return ref_info; 362 } 363 364 void CreateReferenceInfoForReferenceType(HInstruction* instruction) { 365 if (instruction->GetType() != Primitive::kPrimNot) { 366 return; 367 } 368 DCHECK(FindReferenceInfoOf(instruction) == nullptr); 369 GetOrCreateReferenceInfo(instruction); 370 } 371 372 HeapLocation* GetOrCreateHeapLocation(HInstruction* ref, 373 size_t offset, 374 HInstruction* index, 375 int16_t declaring_class_def_index) { 376 HInstruction* original_ref = HuntForOriginalReference(ref); 377 ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref); 378 size_t heap_location_idx = FindHeapLocationIndex( 379 ref_info, offset, index, declaring_class_def_index); 380 if (heap_location_idx == kHeapLocationNotFound) { 381 HeapLocation* heap_loc = new (GetGraph()->GetArena()) 382 HeapLocation(ref_info, offset, index, declaring_class_def_index); 383 heap_locations_.push_back(heap_loc); 384 return heap_loc; 385 } 386 return heap_locations_[heap_location_idx]; 387 } 388 389 HeapLocation* VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) { 390 if (field_info.IsVolatile()) { 391 has_volatile_ = true; 392 } 393 const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex(); 394 const size_t offset = field_info.GetFieldOffset().SizeValue(); 395 return GetOrCreateHeapLocation(ref, offset, nullptr, declaring_class_def_index); 396 } 397 398 void VisitArrayAccess(HInstruction* array, HInstruction* index) { 399 GetOrCreateHeapLocation(array, HeapLocation::kInvalidFieldOffset, 400 index, HeapLocation::kDeclaringClassDefIndexForArrays); 401 } 402 403 void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { 404 VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); 405 CreateReferenceInfoForReferenceType(instruction); 406 } 407 408 void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { 409 HeapLocation* location = VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); 410 has_heap_stores_ = true; 411 if (location->GetReferenceInfo()->IsSingleton()) { 412 // A singleton's location value may be killed by loop side effects if it's 413 // defined before that loop, and it's stored into inside that loop. 414 HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); 415 if (loop_info != nullptr) { 416 HInstruction* ref = location->GetReferenceInfo()->GetReference(); 417 DCHECK(ref->IsNewInstance()); 418 if (loop_info->IsDefinedOutOfTheLoop(ref)) { 419 // ref's location value may be killed by this loop's side effects. 420 location->SetValueKilledByLoopSideEffects(true); 421 } else { 422 // ref is defined inside this loop so this loop's side effects cannot 423 // kill its location value at the loop header since ref/its location doesn't 424 // exist yet at the loop header. 425 } 426 } 427 } else { 428 // For non-singletons, value_killed_by_loop_side_effects_ is inited to 429 // true. 430 DCHECK_EQ(location->IsValueKilledByLoopSideEffects(), true); 431 } 432 } 433 434 void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { 435 VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); 436 CreateReferenceInfoForReferenceType(instruction); 437 } 438 439 void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { 440 VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); 441 has_heap_stores_ = true; 442 } 443 444 // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses 445 // since we cannot accurately track the fields. 446 447 void VisitArrayGet(HArrayGet* instruction) OVERRIDE { 448 VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); 449 CreateReferenceInfoForReferenceType(instruction); 450 } 451 452 void VisitArraySet(HArraySet* instruction) OVERRIDE { 453 VisitArrayAccess(instruction->InputAt(0), instruction->InputAt(1)); 454 has_heap_stores_ = true; 455 } 456 457 void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { 458 // Any references appearing in the ref_info_array_ so far cannot alias with new_instance. 459 CreateReferenceInfoForReferenceType(new_instance); 460 } 461 462 void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) OVERRIDE { 463 CreateReferenceInfoForReferenceType(instruction); 464 } 465 466 void VisitInvokeVirtual(HInvokeVirtual* instruction) OVERRIDE { 467 CreateReferenceInfoForReferenceType(instruction); 468 } 469 470 void VisitInvokeInterface(HInvokeInterface* instruction) OVERRIDE { 471 CreateReferenceInfoForReferenceType(instruction); 472 } 473 474 void VisitParameterValue(HParameterValue* instruction) OVERRIDE { 475 CreateReferenceInfoForReferenceType(instruction); 476 } 477 478 void VisitSelect(HSelect* instruction) OVERRIDE { 479 CreateReferenceInfoForReferenceType(instruction); 480 } 481 482 void VisitMonitorOperation(HMonitorOperation* monitor ATTRIBUTE_UNUSED) OVERRIDE { 483 has_monitor_operations_ = true; 484 } 485 486 ArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses. 487 ArenaVector<HeapLocation*> heap_locations_; // All heap locations. 488 ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations. 489 bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better 490 // alias analysis and won't be as effective. 491 bool has_volatile_; // If there are volatile field accesses. 492 bool has_monitor_operations_; // If there are monitor operations. 493 494 DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector); 495 }; 496 497 // An unknown heap value. Loads with such a value in the heap location cannot be eliminated. 498 // A heap location can be set to kUnknownHeapValue when: 499 // - initially set a value. 500 // - killed due to aliasing, merging, invocation, or loop side effects. 501 static HInstruction* const kUnknownHeapValue = 502 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1)); 503 504 // Default heap value after an allocation. 505 // A heap location can be set to that value right after an allocation. 506 static HInstruction* const kDefaultHeapValue = 507 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2)); 508 509 class LSEVisitor : public HGraphVisitor { 510 public: 511 LSEVisitor(HGraph* graph, 512 const HeapLocationCollector& heap_locations_collector, 513 const SideEffectsAnalysis& side_effects) 514 : HGraphVisitor(graph), 515 heap_location_collector_(heap_locations_collector), 516 side_effects_(side_effects), 517 heap_values_for_(graph->GetBlocks().size(), 518 ArenaVector<HInstruction*>(heap_locations_collector. 519 GetNumberOfHeapLocations(), 520 kUnknownHeapValue, 521 graph->GetArena()->Adapter(kArenaAllocLSE)), 522 graph->GetArena()->Adapter(kArenaAllocLSE)), 523 removed_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), 524 substitute_instructions_for_loads_(graph->GetArena()->Adapter(kArenaAllocLSE)), 525 possibly_removed_stores_(graph->GetArena()->Adapter(kArenaAllocLSE)), 526 singleton_new_instances_(graph->GetArena()->Adapter(kArenaAllocLSE)), 527 singleton_new_arrays_(graph->GetArena()->Adapter(kArenaAllocLSE)) { 528 } 529 530 void VisitBasicBlock(HBasicBlock* block) OVERRIDE { 531 // Populate the heap_values array for this block. 532 // TODO: try to reuse the heap_values array from one predecessor if possible. 533 if (block->IsLoopHeader()) { 534 HandleLoopSideEffects(block); 535 } else { 536 MergePredecessorValues(block); 537 } 538 HGraphVisitor::VisitBasicBlock(block); 539 } 540 541 // Remove recorded instructions that should be eliminated. 542 void RemoveInstructions() { 543 size_t size = removed_loads_.size(); 544 DCHECK_EQ(size, substitute_instructions_for_loads_.size()); 545 for (size_t i = 0; i < size; i++) { 546 HInstruction* load = removed_loads_[i]; 547 DCHECK(load != nullptr); 548 DCHECK(load->IsInstanceFieldGet() || 549 load->IsStaticFieldGet() || 550 load->IsArrayGet()); 551 HInstruction* substitute = substitute_instructions_for_loads_[i]; 552 DCHECK(substitute != nullptr); 553 // Keep tracing substitute till one that's not removed. 554 HInstruction* sub_sub = FindSubstitute(substitute); 555 while (sub_sub != substitute) { 556 substitute = sub_sub; 557 sub_sub = FindSubstitute(substitute); 558 } 559 load->ReplaceWith(substitute); 560 load->GetBlock()->RemoveInstruction(load); 561 } 562 563 // At this point, stores in possibly_removed_stores_ can be safely removed. 564 for (HInstruction* store : possibly_removed_stores_) { 565 DCHECK(store->IsInstanceFieldSet() || store->IsStaticFieldSet() || store->IsArraySet()); 566 store->GetBlock()->RemoveInstruction(store); 567 } 568 569 // Eliminate allocations that are not used. 570 for (HInstruction* new_instance : singleton_new_instances_) { 571 if (!new_instance->HasNonEnvironmentUses()) { 572 new_instance->RemoveEnvironmentUsers(); 573 new_instance->GetBlock()->RemoveInstruction(new_instance); 574 } 575 } 576 for (HInstruction* new_array : singleton_new_arrays_) { 577 if (!new_array->HasNonEnvironmentUses()) { 578 new_array->RemoveEnvironmentUsers(); 579 new_array->GetBlock()->RemoveInstruction(new_array); 580 } 581 } 582 } 583 584 private: 585 // If heap_values[index] is an instance field store, need to keep the store. 586 // This is necessary if a heap value is killed due to merging, or loop side 587 // effects (which is essentially merging also), since a load later from the 588 // location won't be eliminated. 589 void KeepIfIsStore(HInstruction* heap_value) { 590 if (heap_value == kDefaultHeapValue || 591 heap_value == kUnknownHeapValue || 592 !(heap_value->IsInstanceFieldSet() || heap_value->IsArraySet())) { 593 return; 594 } 595 auto idx = std::find(possibly_removed_stores_.begin(), 596 possibly_removed_stores_.end(), heap_value); 597 if (idx != possibly_removed_stores_.end()) { 598 // Make sure the store is kept. 599 possibly_removed_stores_.erase(idx); 600 } 601 } 602 603 void HandleLoopSideEffects(HBasicBlock* block) { 604 DCHECK(block->IsLoopHeader()); 605 int block_id = block->GetBlockId(); 606 ArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id]; 607 608 // Don't eliminate loads in irreducible loops. This is safe for singletons, because 609 // they are always used by the non-eliminated loop-phi. 610 if (block->GetLoopInformation()->IsIrreducible()) { 611 if (kIsDebugBuild) { 612 for (size_t i = 0; i < heap_values.size(); i++) { 613 DCHECK_EQ(heap_values[i], kUnknownHeapValue); 614 } 615 } 616 return; 617 } 618 619 HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader(); 620 ArenaVector<HInstruction*>& pre_header_heap_values = 621 heap_values_for_[pre_header->GetBlockId()]; 622 623 // Inherit the values from pre-header. 624 for (size_t i = 0; i < heap_values.size(); i++) { 625 heap_values[i] = pre_header_heap_values[i]; 626 } 627 628 // We do a single pass in reverse post order. For loops, use the side effects as a hint 629 // to see if the heap values should be killed. 630 if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) { 631 for (size_t i = 0; i < heap_values.size(); i++) { 632 HeapLocation* location = heap_location_collector_.GetHeapLocation(i); 633 ReferenceInfo* ref_info = location->GetReferenceInfo(); 634 if (ref_info->IsSingletonAndRemovable() && 635 !location->IsValueKilledByLoopSideEffects()) { 636 // A removable singleton's field that's not stored into inside a loop is 637 // invariant throughout the loop. Nothing to do. 638 DCHECK(ref_info->IsSingletonAndRemovable()); 639 } else { 640 // heap value is killed by loop side effects (stored into directly, or 641 // due to aliasing). Or the heap value may be needed after method return 642 // or deoptimization. 643 KeepIfIsStore(pre_header_heap_values[i]); 644 heap_values[i] = kUnknownHeapValue; 645 } 646 } 647 } 648 } 649 650 void MergePredecessorValues(HBasicBlock* block) { 651 const ArenaVector<HBasicBlock*>& predecessors = block->GetPredecessors(); 652 if (predecessors.size() == 0) { 653 return; 654 } 655 656 ArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()]; 657 for (size_t i = 0; i < heap_values.size(); i++) { 658 HInstruction* merged_value = nullptr; 659 // Whether merged_value is a result that's merged from all predecessors. 660 bool from_all_predecessors = true; 661 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); 662 HInstruction* singleton_ref = nullptr; 663 if (ref_info->IsSingleton()) { 664 // We do more analysis of liveness when merging heap values for such 665 // cases since stores into such references may potentially be eliminated. 666 singleton_ref = ref_info->GetReference(); 667 } 668 669 for (HBasicBlock* predecessor : predecessors) { 670 HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i]; 671 if ((singleton_ref != nullptr) && 672 !singleton_ref->GetBlock()->Dominates(predecessor)) { 673 // singleton_ref is not live in this predecessor. Skip this predecessor since 674 // it does not really have the location. 675 DCHECK_EQ(pred_value, kUnknownHeapValue); 676 from_all_predecessors = false; 677 continue; 678 } 679 if (merged_value == nullptr) { 680 // First seen heap value. 681 merged_value = pred_value; 682 } else if (pred_value != merged_value) { 683 // There are conflicting values. 684 merged_value = kUnknownHeapValue; 685 break; 686 } 687 } 688 689 if (merged_value == kUnknownHeapValue || ref_info->IsSingletonAndNonRemovable()) { 690 // There are conflicting heap values from different predecessors, 691 // or the heap value may be needed after method return or deoptimization. 692 // Keep the last store in each predecessor since future loads cannot be eliminated. 693 for (HBasicBlock* predecessor : predecessors) { 694 ArenaVector<HInstruction*>& pred_values = heap_values_for_[predecessor->GetBlockId()]; 695 KeepIfIsStore(pred_values[i]); 696 } 697 } 698 699 if ((merged_value == nullptr) || !from_all_predecessors) { 700 DCHECK(singleton_ref != nullptr); 701 DCHECK((singleton_ref->GetBlock() == block) || 702 !singleton_ref->GetBlock()->Dominates(block)); 703 // singleton_ref is not defined before block or defined only in some of its 704 // predecessors, so block doesn't really have the location at its entry. 705 heap_values[i] = kUnknownHeapValue; 706 } else { 707 heap_values[i] = merged_value; 708 } 709 } 710 } 711 712 // `instruction` is being removed. Try to see if the null check on it 713 // can be removed. This can happen if the same value is set in two branches 714 // but not in dominators. Such as: 715 // int[] a = foo(); 716 // if () { 717 // a[0] = 2; 718 // } else { 719 // a[0] = 2; 720 // } 721 // // a[0] can now be replaced with constant 2, and the null check on it can be removed. 722 void TryRemovingNullCheck(HInstruction* instruction) { 723 HInstruction* prev = instruction->GetPrevious(); 724 if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) { 725 // Previous instruction is a null check for this instruction. Remove the null check. 726 prev->ReplaceWith(prev->InputAt(0)); 727 prev->GetBlock()->RemoveInstruction(prev); 728 } 729 } 730 731 HInstruction* GetDefaultValue(Primitive::Type type) { 732 switch (type) { 733 case Primitive::kPrimNot: 734 return GetGraph()->GetNullConstant(); 735 case Primitive::kPrimBoolean: 736 case Primitive::kPrimByte: 737 case Primitive::kPrimChar: 738 case Primitive::kPrimShort: 739 case Primitive::kPrimInt: 740 return GetGraph()->GetIntConstant(0); 741 case Primitive::kPrimLong: 742 return GetGraph()->GetLongConstant(0); 743 case Primitive::kPrimFloat: 744 return GetGraph()->GetFloatConstant(0); 745 case Primitive::kPrimDouble: 746 return GetGraph()->GetDoubleConstant(0); 747 default: 748 UNREACHABLE(); 749 } 750 } 751 752 void VisitGetLocation(HInstruction* instruction, 753 HInstruction* ref, 754 size_t offset, 755 HInstruction* index, 756 int16_t declaring_class_def_index) { 757 HInstruction* original_ref = HuntForOriginalReference(ref); 758 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); 759 size_t idx = heap_location_collector_.FindHeapLocationIndex( 760 ref_info, offset, index, declaring_class_def_index); 761 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); 762 ArenaVector<HInstruction*>& heap_values = 763 heap_values_for_[instruction->GetBlock()->GetBlockId()]; 764 HInstruction* heap_value = heap_values[idx]; 765 if (heap_value == kDefaultHeapValue) { 766 HInstruction* constant = GetDefaultValue(instruction->GetType()); 767 removed_loads_.push_back(instruction); 768 substitute_instructions_for_loads_.push_back(constant); 769 heap_values[idx] = constant; 770 return; 771 } 772 if (heap_value != kUnknownHeapValue) { 773 if (heap_value->IsInstanceFieldSet() || heap_value->IsArraySet()) { 774 HInstruction* store = heap_value; 775 // This load must be from a singleton since it's from the same 776 // field/element that a "removed" store puts the value. That store 777 // must be to a singleton's field/element. 778 DCHECK(ref_info->IsSingleton()); 779 // Get the real heap value of the store. 780 heap_value = heap_value->IsInstanceFieldSet() ? store->InputAt(1) : store->InputAt(2); 781 } 782 } 783 if (heap_value == kUnknownHeapValue) { 784 // Load isn't eliminated. Put the load as the value into the HeapLocation. 785 // This acts like GVN but with better aliasing analysis. 786 heap_values[idx] = instruction; 787 } else { 788 if (Primitive::PrimitiveKind(heap_value->GetType()) 789 != Primitive::PrimitiveKind(instruction->GetType())) { 790 // The only situation where the same heap location has different type is when 791 // we do an array get on an instruction that originates from the null constant 792 // (the null could be behind a field access, an array access, a null check or 793 // a bound type). 794 // In order to stay properly typed on primitive types, we do not eliminate 795 // the array gets. 796 if (kIsDebugBuild) { 797 DCHECK(heap_value->IsArrayGet()) << heap_value->DebugName(); 798 DCHECK(instruction->IsArrayGet()) << instruction->DebugName(); 799 } 800 return; 801 } 802 removed_loads_.push_back(instruction); 803 substitute_instructions_for_loads_.push_back(heap_value); 804 TryRemovingNullCheck(instruction); 805 } 806 } 807 808 bool Equal(HInstruction* heap_value, HInstruction* value) { 809 if (heap_value == value) { 810 return true; 811 } 812 if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) { 813 return true; 814 } 815 return false; 816 } 817 818 void VisitSetLocation(HInstruction* instruction, 819 HInstruction* ref, 820 size_t offset, 821 HInstruction* index, 822 int16_t declaring_class_def_index, 823 HInstruction* value) { 824 HInstruction* original_ref = HuntForOriginalReference(ref); 825 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref); 826 size_t idx = heap_location_collector_.FindHeapLocationIndex( 827 ref_info, offset, index, declaring_class_def_index); 828 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound); 829 ArenaVector<HInstruction*>& heap_values = 830 heap_values_for_[instruction->GetBlock()->GetBlockId()]; 831 HInstruction* heap_value = heap_values[idx]; 832 bool same_value = false; 833 bool possibly_redundant = false; 834 if (Equal(heap_value, value)) { 835 // Store into the heap location with the same value. 836 same_value = true; 837 } else if (index != nullptr && ref_info->HasIndexAliasing()) { 838 // For array element, don't eliminate stores if the index can be aliased. 839 } else if (ref_info->IsSingleton()) { 840 // Store into a field of a singleton. The value cannot be killed due to 841 // aliasing/invocation. It can be redundant since future loads can 842 // directly get the value set by this instruction. The value can still be killed due to 843 // merging or loop side effects. Stores whose values are killed due to merging/loop side 844 // effects later will be removed from possibly_removed_stores_ when that is detected. 845 // Stores whose values may be needed after method return or deoptimization 846 // are also removed from possibly_removed_stores_ when that is detected. 847 possibly_redundant = true; 848 HNewInstance* new_instance = ref_info->GetReference()->AsNewInstance(); 849 if (new_instance != nullptr && new_instance->IsFinalizable()) { 850 // Finalizable objects escape globally. Need to keep the store. 851 possibly_redundant = false; 852 } else { 853 HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); 854 if (loop_info != nullptr) { 855 // instruction is a store in the loop so the loop must does write. 856 DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite()); 857 858 if (loop_info->IsDefinedOutOfTheLoop(original_ref)) { 859 DCHECK(original_ref->GetBlock()->Dominates(loop_info->GetPreHeader())); 860 // Keep the store since its value may be needed at the loop header. 861 possibly_redundant = false; 862 } else { 863 // The singleton is created inside the loop. Value stored to it isn't needed at 864 // the loop header. This is true for outer loops also. 865 } 866 } 867 } 868 } 869 if (same_value || possibly_redundant) { 870 possibly_removed_stores_.push_back(instruction); 871 } 872 873 if (!same_value) { 874 if (possibly_redundant) { 875 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsArraySet()); 876 // Put the store as the heap value. If the value is loaded from heap 877 // by a load later, this store isn't really redundant. 878 heap_values[idx] = instruction; 879 } else { 880 heap_values[idx] = value; 881 } 882 } 883 // This store may kill values in other heap locations due to aliasing. 884 for (size_t i = 0; i < heap_values.size(); i++) { 885 if (i == idx) { 886 continue; 887 } 888 if (heap_values[i] == value) { 889 // Same value should be kept even if aliasing happens. 890 continue; 891 } 892 if (heap_values[i] == kUnknownHeapValue) { 893 // Value is already unknown, no need for aliasing check. 894 continue; 895 } 896 if (heap_location_collector_.MayAlias(i, idx)) { 897 // Kill heap locations that may alias. 898 heap_values[i] = kUnknownHeapValue; 899 } 900 } 901 } 902 903 void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE { 904 HInstruction* obj = instruction->InputAt(0); 905 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); 906 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); 907 VisitGetLocation(instruction, obj, offset, nullptr, declaring_class_def_index); 908 } 909 910 void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE { 911 HInstruction* obj = instruction->InputAt(0); 912 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); 913 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); 914 HInstruction* value = instruction->InputAt(1); 915 VisitSetLocation(instruction, obj, offset, nullptr, declaring_class_def_index, value); 916 } 917 918 void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE { 919 HInstruction* cls = instruction->InputAt(0); 920 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); 921 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); 922 VisitGetLocation(instruction, cls, offset, nullptr, declaring_class_def_index); 923 } 924 925 void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE { 926 HInstruction* cls = instruction->InputAt(0); 927 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue(); 928 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex(); 929 HInstruction* value = instruction->InputAt(1); 930 VisitSetLocation(instruction, cls, offset, nullptr, declaring_class_def_index, value); 931 } 932 933 void VisitArrayGet(HArrayGet* instruction) OVERRIDE { 934 HInstruction* array = instruction->InputAt(0); 935 HInstruction* index = instruction->InputAt(1); 936 VisitGetLocation(instruction, 937 array, 938 HeapLocation::kInvalidFieldOffset, 939 index, 940 HeapLocation::kDeclaringClassDefIndexForArrays); 941 } 942 943 void VisitArraySet(HArraySet* instruction) OVERRIDE { 944 HInstruction* array = instruction->InputAt(0); 945 HInstruction* index = instruction->InputAt(1); 946 HInstruction* value = instruction->InputAt(2); 947 VisitSetLocation(instruction, 948 array, 949 HeapLocation::kInvalidFieldOffset, 950 index, 951 HeapLocation::kDeclaringClassDefIndexForArrays, 952 value); 953 } 954 955 void VisitDeoptimize(HDeoptimize* instruction) { 956 const ArenaVector<HInstruction*>& heap_values = 957 heap_values_for_[instruction->GetBlock()->GetBlockId()]; 958 for (HInstruction* heap_value : heap_values) { 959 // Filter out fake instructions before checking instruction kind below. 960 if (heap_value == kUnknownHeapValue || heap_value == kDefaultHeapValue) { 961 continue; 962 } 963 // A store is kept as the heap value for possibly removed stores. 964 if (heap_value->IsInstanceFieldSet() || heap_value->IsArraySet()) { 965 // Check whether the reference for a store is used by an environment local of 966 // HDeoptimize. 967 HInstruction* reference = heap_value->InputAt(0); 968 DCHECK(heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton()); 969 for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) { 970 HEnvironment* user = use.GetUser(); 971 if (user->GetHolder() == instruction) { 972 // The singleton for the store is visible at this deoptimization 973 // point. Need to keep the store so that the heap value is 974 // seen by the interpreter. 975 KeepIfIsStore(heap_value); 976 } 977 } 978 } 979 } 980 } 981 982 void HandleInvoke(HInstruction* invoke) { 983 ArenaVector<HInstruction*>& heap_values = 984 heap_values_for_[invoke->GetBlock()->GetBlockId()]; 985 for (size_t i = 0; i < heap_values.size(); i++) { 986 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo(); 987 if (ref_info->IsSingleton()) { 988 // Singleton references cannot be seen by the callee. 989 } else { 990 heap_values[i] = kUnknownHeapValue; 991 } 992 } 993 } 994 995 void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE { 996 HandleInvoke(invoke); 997 } 998 999 void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE { 1000 HandleInvoke(invoke); 1001 } 1002 1003 void VisitInvokeInterface(HInvokeInterface* invoke) OVERRIDE { 1004 HandleInvoke(invoke); 1005 } 1006 1007 void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE { 1008 HandleInvoke(invoke); 1009 } 1010 1011 void VisitInvokePolymorphic(HInvokePolymorphic* invoke) OVERRIDE { 1012 HandleInvoke(invoke); 1013 } 1014 1015 void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE { 1016 HandleInvoke(clinit); 1017 } 1018 1019 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE { 1020 // Conservatively treat it as an invocation. 1021 HandleInvoke(instruction); 1022 } 1023 1024 void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE { 1025 // Conservatively treat it as an invocation. 1026 HandleInvoke(instruction); 1027 } 1028 1029 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE { 1030 // Conservatively treat it as an invocation. 1031 HandleInvoke(instruction); 1032 } 1033 1034 void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE { 1035 // Conservatively treat it as an invocation. 1036 HandleInvoke(instruction); 1037 } 1038 1039 void VisitNewInstance(HNewInstance* new_instance) OVERRIDE { 1040 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance); 1041 if (ref_info == nullptr) { 1042 // new_instance isn't used for field accesses. No need to process it. 1043 return; 1044 } 1045 if (ref_info->IsSingletonAndRemovable() && 1046 !new_instance->IsFinalizable() && 1047 !new_instance->NeedsChecks()) { 1048 singleton_new_instances_.push_back(new_instance); 1049 } 1050 ArenaVector<HInstruction*>& heap_values = 1051 heap_values_for_[new_instance->GetBlock()->GetBlockId()]; 1052 for (size_t i = 0; i < heap_values.size(); i++) { 1053 HInstruction* ref = 1054 heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference(); 1055 size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset(); 1056 if (ref == new_instance && offset >= mirror::kObjectHeaderSize) { 1057 // Instance fields except the header fields are set to default heap values. 1058 heap_values[i] = kDefaultHeapValue; 1059 } 1060 } 1061 } 1062 1063 void VisitNewArray(HNewArray* new_array) OVERRIDE { 1064 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array); 1065 if (ref_info == nullptr) { 1066 // new_array isn't used for array accesses. No need to process it. 1067 return; 1068 } 1069 if (ref_info->IsSingletonAndRemovable()) { 1070 singleton_new_arrays_.push_back(new_array); 1071 } 1072 ArenaVector<HInstruction*>& heap_values = 1073 heap_values_for_[new_array->GetBlock()->GetBlockId()]; 1074 for (size_t i = 0; i < heap_values.size(); i++) { 1075 HeapLocation* location = heap_location_collector_.GetHeapLocation(i); 1076 HInstruction* ref = location->GetReferenceInfo()->GetReference(); 1077 if (ref == new_array && location->GetIndex() != nullptr) { 1078 // Array elements are set to default heap values. 1079 heap_values[i] = kDefaultHeapValue; 1080 } 1081 } 1082 } 1083 1084 // Find an instruction's substitute if it should be removed. 1085 // Return the same instruction if it should not be removed. 1086 HInstruction* FindSubstitute(HInstruction* instruction) { 1087 size_t size = removed_loads_.size(); 1088 for (size_t i = 0; i < size; i++) { 1089 if (removed_loads_[i] == instruction) { 1090 return substitute_instructions_for_loads_[i]; 1091 } 1092 } 1093 return instruction; 1094 } 1095 1096 const HeapLocationCollector& heap_location_collector_; 1097 const SideEffectsAnalysis& side_effects_; 1098 1099 // One array of heap values for each block. 1100 ArenaVector<ArenaVector<HInstruction*>> heap_values_for_; 1101 1102 // We record the instructions that should be eliminated but may be 1103 // used by heap locations. They'll be removed in the end. 1104 ArenaVector<HInstruction*> removed_loads_; 1105 ArenaVector<HInstruction*> substitute_instructions_for_loads_; 1106 1107 // Stores in this list may be removed from the list later when it's 1108 // found that the store cannot be eliminated. 1109 ArenaVector<HInstruction*> possibly_removed_stores_; 1110 1111 ArenaVector<HInstruction*> singleton_new_instances_; 1112 ArenaVector<HInstruction*> singleton_new_arrays_; 1113 1114 DISALLOW_COPY_AND_ASSIGN(LSEVisitor); 1115 }; 1116 1117 void LoadStoreElimination::Run() { 1118 if (graph_->IsDebuggable() || graph_->HasTryCatch()) { 1119 // Debugger may set heap values or trigger deoptimization of callers. 1120 // Try/catch support not implemented yet. 1121 // Skip this optimization. 1122 return; 1123 } 1124 HeapLocationCollector heap_location_collector(graph_); 1125 for (HBasicBlock* block : graph_->GetReversePostOrder()) { 1126 heap_location_collector.VisitBasicBlock(block); 1127 } 1128 if (heap_location_collector.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) { 1129 // Bail out if there are too many heap locations to deal with. 1130 return; 1131 } 1132 if (!heap_location_collector.HasHeapStores()) { 1133 // Without heap stores, this pass would act mostly as GVN on heap accesses. 1134 return; 1135 } 1136 if (heap_location_collector.HasVolatile() || heap_location_collector.HasMonitorOps()) { 1137 // Don't do load/store elimination if the method has volatile field accesses or 1138 // monitor operations, for now. 1139 // TODO: do it right. 1140 return; 1141 } 1142 heap_location_collector.BuildAliasingMatrix(); 1143 LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_); 1144 for (HBasicBlock* block : graph_->GetReversePostOrder()) { 1145 lse_visitor.VisitBasicBlock(block); 1146 } 1147 lse_visitor.RemoveInstructions(); 1148 } 1149 1150 } // namespace art 1151