Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_simplifier_shared.h"
     18 
     19 namespace art {
     20 
     21 namespace {
     22 
     23 bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
     24                                          HBinaryOperation* input_binop,
     25                                          HInstruction* input_other) {
     26   DCHECK(Primitive::IsIntOrLongType(mul->GetType()));
     27   DCHECK(input_binop->IsAdd() || input_binop->IsSub());
     28   DCHECK_NE(input_binop, input_other);
     29   if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
     30     return false;
     31   }
     32 
     33   // Try to interpret patterns like
     34   //    a * (b <+/-> 1)
     35   // as
     36   //    (a * b) <+/-> a
     37   HInstruction* input_a = input_other;
     38   HInstruction* input_b = nullptr;  // Set to a non-null value if we found a pattern to optimize.
     39   HInstruction::InstructionKind op_kind;
     40 
     41   if (input_binop->IsAdd()) {
     42     if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
     43       // Interpret
     44       //    a * (b + 1)
     45       // as
     46       //    (a * b) + a
     47       input_b = input_binop->GetLeastConstantLeft();
     48       op_kind = HInstruction::kAdd;
     49     }
     50   } else {
     51     DCHECK(input_binop->IsSub());
     52     if (input_binop->GetRight()->IsConstant() &&
     53         input_binop->GetRight()->AsConstant()->IsMinusOne()) {
     54       // Interpret
     55       //    a * (b - (-1))
     56       // as
     57       //    a + (a * b)
     58       input_b = input_binop->GetLeft();
     59       op_kind = HInstruction::kAdd;
     60     } else if (input_binop->GetLeft()->IsConstant() &&
     61                input_binop->GetLeft()->AsConstant()->IsOne()) {
     62       // Interpret
     63       //    a * (1 - b)
     64       // as
     65       //    a - (a * b)
     66       input_b = input_binop->GetRight();
     67       op_kind = HInstruction::kSub;
     68     }
     69   }
     70 
     71   if (input_b == nullptr) {
     72     // We did not find a pattern we can optimize.
     73     return false;
     74   }
     75 
     76   ArenaAllocator* arena = mul->GetBlock()->GetGraph()->GetArena();
     77   HMultiplyAccumulate* mulacc = new(arena) HMultiplyAccumulate(
     78       mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
     79 
     80   mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
     81   input_binop->GetBlock()->RemoveInstruction(input_binop);
     82 
     83   return true;
     84 }
     85 
     86 }  // namespace
     87 
     88 bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
     89   Primitive::Type type = mul->GetType();
     90   switch (isa) {
     91     case kArm:
     92     case kThumb2:
     93       if (type != Primitive::kPrimInt) {
     94         return false;
     95       }
     96       break;
     97     case kArm64:
     98       if (!Primitive::IsIntOrLongType(type)) {
     99         return false;
    100       }
    101       break;
    102     default:
    103       return false;
    104   }
    105 
    106   ArenaAllocator* arena = mul->GetBlock()->GetGraph()->GetArena();
    107 
    108   if (mul->HasOnlyOneNonEnvironmentUse()) {
    109     HInstruction* use = mul->GetUses().front().GetUser();
    110     if (use->IsAdd() || use->IsSub()) {
    111       // Replace code looking like
    112       //    MUL tmp, x, y
    113       //    SUB dst, acc, tmp
    114       // with
    115       //    MULSUB dst, acc, x, y
    116       // Note that we do not want to (unconditionally) perform the merge when the
    117       // multiplication has multiple uses and it can be merged in all of them.
    118       // Multiple uses could happen on the same control-flow path, and we would
    119       // then increase the amount of work. In the future we could try to evaluate
    120       // whether all uses are on different control-flow paths (using dominance and
    121       // reverse-dominance information) and only perform the merge when they are.
    122       HInstruction* accumulator = nullptr;
    123       HBinaryOperation* binop = use->AsBinaryOperation();
    124       HInstruction* binop_left = binop->GetLeft();
    125       HInstruction* binop_right = binop->GetRight();
    126       // Be careful after GVN. This should not happen since the `HMul` has only
    127       // one use.
    128       DCHECK_NE(binop_left, binop_right);
    129       if (binop_right == mul) {
    130         accumulator = binop_left;
    131       } else if (use->IsAdd()) {
    132         DCHECK_EQ(binop_left, mul);
    133         accumulator = binop_right;
    134       }
    135 
    136       if (accumulator != nullptr) {
    137         HMultiplyAccumulate* mulacc =
    138             new (arena) HMultiplyAccumulate(type,
    139                                             binop->GetKind(),
    140                                             accumulator,
    141                                             mul->GetLeft(),
    142                                             mul->GetRight());
    143 
    144         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
    145         DCHECK(!mul->HasUses());
    146         mul->GetBlock()->RemoveInstruction(mul);
    147         return true;
    148       }
    149     } else if (use->IsNeg() && isa != kArm) {
    150       HMultiplyAccumulate* mulacc =
    151           new (arena) HMultiplyAccumulate(type,
    152                                           HInstruction::kSub,
    153                                           mul->GetBlock()->GetGraph()->GetConstant(type, 0),
    154                                           mul->GetLeft(),
    155                                           mul->GetRight());
    156 
    157       use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
    158       DCHECK(!mul->HasUses());
    159       mul->GetBlock()->RemoveInstruction(mul);
    160       return true;
    161     }
    162   }
    163 
    164   // Use multiply accumulate instruction for a few simple patterns.
    165   // We prefer not applying the following transformations if the left and
    166   // right inputs perform the same operation.
    167   // We rely on GVN having squashed the inputs if appropriate. However the
    168   // results are still correct even if that did not happen.
    169   if (mul->GetLeft() == mul->GetRight()) {
    170     return false;
    171   }
    172 
    173   HInstruction* left = mul->GetLeft();
    174   HInstruction* right = mul->GetRight();
    175   if ((right->IsAdd() || right->IsSub()) &&
    176       TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
    177     return true;
    178   }
    179   if ((left->IsAdd() || left->IsSub()) &&
    180       TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
    181     return true;
    182   }
    183   return false;
    184 }
    185 
    186 
    187 bool TryMergeNegatedInput(HBinaryOperation* op) {
    188   DCHECK(op->IsAnd() || op->IsOr() || op->IsXor()) << op->DebugName();
    189   HInstruction* left = op->GetLeft();
    190   HInstruction* right = op->GetRight();
    191 
    192   // Only consider the case where there is exactly one Not, with 2 Not's De
    193   // Morgan's laws should be applied instead.
    194   if (left->IsNot() ^ right->IsNot()) {
    195     HInstruction* hnot = (left->IsNot() ? left : right);
    196     HInstruction* hother = (left->IsNot() ? right : left);
    197 
    198     // Only do the simplification if the Not has only one use and can thus be
    199     // safely removed. Even though ARM64 negated bitwise operations do not have
    200     // an immediate variant (only register), we still do the simplification when
    201     // `hother` is a constant, because it removes an instruction if the constant
    202     // cannot be encoded as an immediate:
    203     //   mov r0, #large_constant
    204     //   neg r2, r1
    205     //   and r0, r0, r2
    206     // becomes:
    207     //   mov r0, #large_constant
    208     //   bic r0, r0, r1
    209     if (hnot->HasOnlyOneNonEnvironmentUse()) {
    210       // Replace code looking like
    211       //    NOT tmp, mask
    212       //    AND dst, src, tmp   (respectively ORR, EOR)
    213       // with
    214       //    BIC dst, src, mask  (respectively ORN, EON)
    215       HInstruction* src = hnot->AsNot()->GetInput();
    216 
    217       HBitwiseNegatedRight* neg_op = new (hnot->GetBlock()->GetGraph()->GetArena())
    218           HBitwiseNegatedRight(op->GetType(), op->GetKind(), hother, src, op->GetDexPc());
    219 
    220       op->GetBlock()->ReplaceAndRemoveInstructionWith(op, neg_op);
    221       hnot->GetBlock()->RemoveInstruction(hnot);
    222       return true;
    223     }
    224   }
    225 
    226   return false;
    227 }
    228 
    229 
    230 bool TryExtractArrayAccessAddress(HInstruction* access,
    231                                   HInstruction* array,
    232                                   HInstruction* index,
    233                                   size_t data_offset) {
    234   if (index->IsConstant() ||
    235       (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
    236     // When the index is a constant all the addressing can be fitted in the
    237     // memory access instruction, so do not split the access.
    238     return false;
    239   }
    240   if (access->IsArraySet() &&
    241       access->AsArraySet()->GetValue()->GetType() == Primitive::kPrimNot) {
    242     // The access may require a runtime call or the original array pointer.
    243     return false;
    244   }
    245   if (kEmitCompilerReadBarrier &&
    246       access->IsArrayGet() &&
    247       access->GetType() == Primitive::kPrimNot) {
    248     // For object arrays, the read barrier instrumentation requires
    249     // the original array pointer.
    250     return false;
    251   }
    252 
    253   // Proceed to extract the base address computation.
    254   HGraph* graph = access->GetBlock()->GetGraph();
    255   ArenaAllocator* arena = graph->GetArena();
    256 
    257   HIntConstant* offset = graph->GetIntConstant(data_offset);
    258   HIntermediateAddress* address = new (arena) HIntermediateAddress(array, offset, kNoDexPc);
    259   // TODO: Is it ok to not have this on the intermediate address?
    260   // address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
    261   access->GetBlock()->InsertInstructionBefore(address, access);
    262   access->ReplaceInput(address, 0);
    263   // Both instructions must depend on GC to prevent any instruction that can
    264   // trigger GC to be inserted between the two.
    265   access->AddSideEffects(SideEffects::DependsOnGC());
    266   DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
    267   DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
    268   // TODO: Code generation for HArrayGet and HArraySet will check whether the input address
    269   // is an HIntermediateAddress and generate appropriate code.
    270   // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
    271   // `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
    272   // because these new instructions would not bring any advantages yet.
    273   // Also see the comments in
    274   // `InstructionCodeGeneratorARM::VisitArrayGet()`
    275   // `InstructionCodeGeneratorARM::VisitArraySet()`
    276   // `InstructionCodeGeneratorARM64::VisitArrayGet()`
    277   // `InstructionCodeGeneratorARM64::VisitArraySet()`.
    278   return true;
    279 }
    280 
    281 bool TryCombineVecMultiplyAccumulate(HVecMul* mul, InstructionSet isa) {
    282   Primitive::Type type = mul->GetPackedType();
    283   switch (isa) {
    284     case kArm64:
    285       if (!(type == Primitive::kPrimByte ||
    286             type == Primitive::kPrimChar ||
    287             type == Primitive::kPrimShort ||
    288             type == Primitive::kPrimInt)) {
    289         return false;
    290       }
    291       break;
    292     default:
    293       return false;
    294   }
    295 
    296   ArenaAllocator* arena = mul->GetBlock()->GetGraph()->GetArena();
    297 
    298   if (mul->HasOnlyOneNonEnvironmentUse()) {
    299     HInstruction* use = mul->GetUses().front().GetUser();
    300     if (use->IsVecAdd() || use->IsVecSub()) {
    301       // Replace code looking like
    302       //    VECMUL tmp, x, y
    303       //    VECADD/SUB dst, acc, tmp
    304       // with
    305       //    VECMULACC dst, acc, x, y
    306       // Note that we do not want to (unconditionally) perform the merge when the
    307       // multiplication has multiple uses and it can be merged in all of them.
    308       // Multiple uses could happen on the same control-flow path, and we would
    309       // then increase the amount of work. In the future we could try to evaluate
    310       // whether all uses are on different control-flow paths (using dominance and
    311       // reverse-dominance information) and only perform the merge when they are.
    312       HInstruction* accumulator = nullptr;
    313       HVecBinaryOperation* binop = use->AsVecBinaryOperation();
    314       HInstruction* binop_left = binop->GetLeft();
    315       HInstruction* binop_right = binop->GetRight();
    316       // This is always true since the `HVecMul` has only one use (which is checked above).
    317       DCHECK_NE(binop_left, binop_right);
    318       if (binop_right == mul) {
    319         accumulator = binop_left;
    320       } else if (use->IsVecAdd()) {
    321         DCHECK_EQ(binop_left, mul);
    322         accumulator = binop_right;
    323       }
    324 
    325       HInstruction::InstructionKind kind =
    326           use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
    327       if (accumulator != nullptr) {
    328         HVecMultiplyAccumulate* mulacc =
    329             new (arena) HVecMultiplyAccumulate(arena,
    330                                                kind,
    331                                                accumulator,
    332                                                mul->GetLeft(),
    333                                                mul->GetRight(),
    334                                                binop->GetPackedType(),
    335                                                binop->GetVectorLength());
    336 
    337         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
    338         DCHECK(!mul->HasUses());
    339         mul->GetBlock()->RemoveInstruction(mul);
    340         return true;
    341       }
    342     }
    343   }
    344 
    345   return false;
    346 }
    347 
    348 }  // namespace art
    349