Home | History | Annotate | Download | only in bionic
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <errno.h>
     30 #include <pthread.h>
     31 #include <stdatomic.h>
     32 
     33 #include "private/bionic_tls.h"
     34 #include "pthread_internal.h"
     35 
     36 typedef void (*key_destructor_t)(void*);
     37 
     38 #define SEQ_KEY_IN_USE_BIT     0
     39 
     40 #define SEQ_INCREMENT_STEP  (1 << SEQ_KEY_IN_USE_BIT)
     41 
     42 // pthread_key_internal_t records the use of each pthread key slot:
     43 //   seq records the state of the slot.
     44 //      bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the
     45 //      pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use
     46 //      a sequence number instead of a boolean value here is that when the key slot is deleted and
     47 //      reused for a new key, pthread_getspecific will not return stale data.
     48 //   key_destructor records the destructor called at thread exit.
     49 struct pthread_key_internal_t {
     50   atomic_uintptr_t seq;
     51   atomic_uintptr_t key_destructor;
     52 };
     53 
     54 static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT];
     55 
     56 static inline bool SeqOfKeyInUse(uintptr_t seq) {
     57   return seq & (1 << SEQ_KEY_IN_USE_BIT);
     58 }
     59 
     60 #define KEY_VALID_FLAG (1 << 31)
     61 
     62 static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast<pthread_key_t>(-1) < 0,
     63               "pthread_key_t should be typedef to int");
     64 
     65 static inline bool KeyInValidRange(pthread_key_t key) {
     66   // key < 0 means bit 31 is set.
     67   // Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT.
     68   return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT));
     69 }
     70 
     71 // Called from pthread_exit() to remove all pthread keys. This must call the destructor of
     72 // all keys that have a non-NULL data value and a non-NULL destructor.
     73 __LIBC_HIDDEN__ void pthread_key_clean_all() {
     74   // Because destructors can do funky things like deleting/creating other keys,
     75   // we need to implement this in a loop.
     76   pthread_key_data_t* key_data = __get_thread()->key_data;
     77   for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
     78     size_t called_destructor_count = 0;
     79     for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
     80       uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
     81       if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != NULL) {
     82         // Other threads may be calling pthread_key_delete/pthread_key_create while current thread
     83         // is exiting. So we need to ensure we read the right key_destructor.
     84         // We can rely on a user-established happens-before relationship between the creation and
     85         // use of pthread key to ensure that we're not getting an earlier key_destructor.
     86         // To avoid using the key_destructor of the newly created key in the same slot, we need to
     87         // recheck the sequence number after reading key_destructor. As a result, we either see the
     88         // right key_destructor, or the sequence number must have changed when we reread it below.
     89         key_destructor_t key_destructor = reinterpret_cast<key_destructor_t>(
     90           atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed));
     91         if (key_destructor == NULL) {
     92           continue;
     93         }
     94         atomic_thread_fence(memory_order_acquire);
     95         if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) {
     96            continue;
     97         }
     98 
     99         // We need to clear the key data now, this will prevent the destructor (or a later one)
    100         // from seeing the old value if it calls pthread_getspecific().
    101         // We don't do this if 'key_destructor == NULL' just in case another destructor
    102         // function is responsible for manually releasing the corresponding data.
    103         void* data = key_data[i].data;
    104         key_data[i].data = NULL;
    105 
    106         (*key_destructor)(data);
    107         ++called_destructor_count;
    108       }
    109     }
    110 
    111     // If we didn't call any destructors, there is no need to check the pthread keys again.
    112     if (called_destructor_count == 0) {
    113       break;
    114     }
    115   }
    116 }
    117 
    118 int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
    119   for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
    120     uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
    121     while (!SeqOfKeyInUse(seq)) {
    122       if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
    123         atomic_store(&key_map[i].key_destructor, reinterpret_cast<uintptr_t>(key_destructor));
    124         *key = i | KEY_VALID_FLAG;
    125         return 0;
    126       }
    127     }
    128   }
    129   return EAGAIN;
    130 }
    131 
    132 // Deletes a pthread_key_t. note that the standard mandates that this does
    133 // not call the destructors for non-NULL key values. Instead, it is the
    134 // responsibility of the caller to properly dispose of the corresponding data
    135 // and resources, using any means it finds suitable.
    136 int pthread_key_delete(pthread_key_t key) {
    137   if (__predict_false(!KeyInValidRange(key))) {
    138     return EINVAL;
    139   }
    140   key &= ~KEY_VALID_FLAG;
    141   // Increase seq to invalidate values in all threads.
    142   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    143   if (SeqOfKeyInUse(seq)) {
    144     if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
    145       return 0;
    146     }
    147   }
    148   return EINVAL;
    149 }
    150 
    151 void* pthread_getspecific(pthread_key_t key) {
    152   if (__predict_false(!KeyInValidRange(key))) {
    153     return NULL;
    154   }
    155   key &= ~KEY_VALID_FLAG;
    156   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    157   pthread_key_data_t* data = &(__get_thread()->key_data[key]);
    158   // It is user's responsibility to synchornize between the creation and use of pthread keys,
    159   // so we use memory_order_relaxed when checking the sequence number.
    160   if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) {
    161     return data->data;
    162   }
    163   // We arrive here when current thread holds the seq of an deleted pthread key. So the
    164   // data is for the deleted pthread key, and should be cleared.
    165   data->data = NULL;
    166   return NULL;
    167 }
    168 
    169 int pthread_setspecific(pthread_key_t key, const void* ptr) {
    170   if (__predict_false(!KeyInValidRange(key))) {
    171     return EINVAL;
    172   }
    173   key &= ~KEY_VALID_FLAG;
    174   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    175   if (__predict_true(SeqOfKeyInUse(seq))) {
    176     pthread_key_data_t* data = &(__get_thread()->key_data[key]);
    177     data->seq = seq;
    178     data->data = const_cast<void*>(ptr);
    179     return 0;
    180   }
    181   return EINVAL;
    182 }
    183