Home | History | Annotate | Download | only in src
      1 
      2 /* @(#)e_exp.c 1.6 04/04/22 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #include <sys/cdefs.h>
     14 __FBSDID("$FreeBSD$");
     15 
     16 /* __ieee754_exp(x)
     17  * Returns the exponential of x.
     18  *
     19  * Method
     20  *   1. Argument reduction:
     21  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
     22  *	Given x, find r and integer k such that
     23  *
     24  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
     25  *
     26  *      Here r will be represented as r = hi-lo for better
     27  *	accuracy.
     28  *
     29  *   2. Approximation of exp(r) by a special rational function on
     30  *	the interval [0,0.34658]:
     31  *	Write
     32  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
     33  *      We use a special Remes algorithm on [0,0.34658] to generate
     34  * 	a polynomial of degree 5 to approximate R. The maximum error
     35  *	of this polynomial approximation is bounded by 2**-59. In
     36  *	other words,
     37  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
     38  *  	(where z=r*r, and the values of P1 to P5 are listed below)
     39  *	and
     40  *	    |                  5          |     -59
     41  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
     42  *	    |                             |
     43  *	The computation of exp(r) thus becomes
     44  *                             2*r
     45  *		exp(r) = 1 + -------
     46  *		              R - r
     47  *                                 r*R1(r)
     48  *		       = 1 + r + ----------- (for better accuracy)
     49  *		                  2 - R1(r)
     50  *	where
     51  *			         2       4             10
     52  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
     53  *
     54  *   3. Scale back to obtain exp(x):
     55  *	From step 1, we have
     56  *	   exp(x) = 2^k * exp(r)
     57  *
     58  * Special cases:
     59  *	exp(INF) is INF, exp(NaN) is NaN;
     60  *	exp(-INF) is 0, and
     61  *	for finite argument, only exp(0)=1 is exact.
     62  *
     63  * Accuracy:
     64  *	according to an error analysis, the error is always less than
     65  *	1 ulp (unit in the last place).
     66  *
     67  * Misc. info.
     68  *	For IEEE double
     69  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
     70  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
     71  *
     72  * Constants:
     73  * The hexadecimal values are the intended ones for the following
     74  * constants. The decimal values may be used, provided that the
     75  * compiler will convert from decimal to binary accurately enough
     76  * to produce the hexadecimal values shown.
     77  */
     78 
     79 #include <float.h>
     80 
     81 #include "math.h"
     82 #include "math_private.h"
     83 
     84 static const double
     85 one	= 1.0,
     86 halF[2]	= {0.5,-0.5,},
     87 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
     88 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
     89 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
     90 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
     91 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
     92 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
     93 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
     94 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     95 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     96 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     97 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     98 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
     99 
    100 static volatile double
    101 huge	= 1.0e+300,
    102 twom1000= 9.33263618503218878990e-302;     /* 2**-1000=0x01700000,0*/
    103 
    104 double
    105 __ieee754_exp(double x)	/* default IEEE double exp */
    106 {
    107 	double y,hi=0.0,lo=0.0,c,t,twopk;
    108 	int32_t k=0,xsb;
    109 	u_int32_t hx;
    110 
    111 	GET_HIGH_WORD(hx,x);
    112 	xsb = (hx>>31)&1;		/* sign bit of x */
    113 	hx &= 0x7fffffff;		/* high word of |x| */
    114 
    115     /* filter out non-finite argument */
    116 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
    117             if(hx>=0x7ff00000) {
    118 	        u_int32_t lx;
    119 		GET_LOW_WORD(lx,x);
    120 		if(((hx&0xfffff)|lx)!=0)
    121 		     return x+x; 		/* NaN */
    122 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
    123 	    }
    124 	    if(x > o_threshold) return huge*huge; /* overflow */
    125 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
    126 	}
    127 
    128     /* argument reduction */
    129 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
    130 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
    131 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
    132 	    } else {
    133 		k  = (int)(invln2*x+halF[xsb]);
    134 		t  = k;
    135 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
    136 		lo = t*ln2LO[0];
    137 	    }
    138 	    STRICT_ASSIGN(double, x, hi - lo);
    139 	}
    140 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
    141 	    if(huge+x>one) return one+x;/* trigger inexact */
    142 	}
    143 	else k = 0;
    144 
    145     /* x is now in primary range */
    146 	t  = x*x;
    147 	if(k >= -1021)
    148 	    INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
    149 	else
    150 	    INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
    151 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    152 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
    153 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
    154 	if(k >= -1021) {
    155 	    if (k==1024) return y*2.0*0x1p1023;
    156 	    return y*twopk;
    157 	} else {
    158 	    return y*twopk*twom1000;
    159 	}
    160 }
    161 
    162 #if (LDBL_MANT_DIG == 53)
    163 __weak_reference(exp, expl);
    164 #endif
    165