Home | History | Annotate | Download | only in Modules
      1 /* Definitions of some C99 math library functions, for those platforms
      2    that don't implement these functions already. */
      3 
      4 #include "Python.h"
      5 #include <float.h>
      6 #include "_math.h"
      7 
      8 /* The following copyright notice applies to the original
      9    implementations of acosh, asinh and atanh. */
     10 
     11 /*
     12  * ====================================================
     13  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     14  *
     15  * Developed at SunPro, a Sun Microsystems, Inc. business.
     16  * Permission to use, copy, modify, and distribute this
     17  * software is freely granted, provided that this notice
     18  * is preserved.
     19  * ====================================================
     20  */
     21 
     22 static const double ln2 = 6.93147180559945286227E-01;
     23 static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
     24 static const double two_pow_p28 = 268435456.0; /* 2**28 */
     25 static const double zero = 0.0;
     26 
     27 /* acosh(x)
     28  * Method :
     29  *      Based on
     30  *            acosh(x) = log [ x + sqrt(x*x-1) ]
     31  *      we have
     32  *            acosh(x) := log(x)+ln2, if x is large; else
     33  *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
     34  *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
     35  *
     36  * Special cases:
     37  *      acosh(x) is NaN with signal if x<1.
     38  *      acosh(NaN) is NaN without signal.
     39  */
     40 
     41 double
     42 _Py_acosh(double x)
     43 {
     44     if (Py_IS_NAN(x)) {
     45         return x+x;
     46     }
     47     if (x < 1.) {                       /* x < 1;  return a signaling NaN */
     48         errno = EDOM;
     49 #ifdef Py_NAN
     50         return Py_NAN;
     51 #else
     52         return (x-x)/(x-x);
     53 #endif
     54     }
     55     else if (x >= two_pow_p28) {        /* x > 2**28 */
     56         if (Py_IS_INFINITY(x)) {
     57             return x+x;
     58         }
     59         else {
     60             return log(x)+ln2;          /* acosh(huge)=log(2x) */
     61         }
     62     }
     63     else if (x == 1.) {
     64         return 0.0;                     /* acosh(1) = 0 */
     65     }
     66     else if (x > 2.) {                  /* 2 < x < 2**28 */
     67         double t = x*x;
     68         return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
     69     }
     70     else {                              /* 1 < x <= 2 */
     71         double t = x - 1.0;
     72         return m_log1p(t + sqrt(2.0*t + t*t));
     73     }
     74 }
     75 
     76 
     77 /* asinh(x)
     78  * Method :
     79  *      Based on
     80  *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
     81  *      we have
     82  *      asinh(x) := x  if  1+x*x=1,
     83  *               := sign(x)*(log(x)+ln2)) for large |x|, else
     84  *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
     85  *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
     86  */
     87 
     88 double
     89 _Py_asinh(double x)
     90 {
     91     double w;
     92     double absx = fabs(x);
     93 
     94     if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
     95         return x+x;
     96     }
     97     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
     98         return x;                       /* return x inexact except 0 */
     99     }
    100     if (absx > two_pow_p28) {           /* |x| > 2**28 */
    101         w = log(absx)+ln2;
    102     }
    103     else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
    104         w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
    105     }
    106     else {                              /* 2**-28 <= |x| < 2= */
    107         double t = x*x;
    108         w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
    109     }
    110     return copysign(w, x);
    111 
    112 }
    113 
    114 /* atanh(x)
    115  * Method :
    116  *    1.Reduced x to positive by atanh(-x) = -atanh(x)
    117  *    2.For x>=0.5
    118  *                  1              2x                          x
    119  *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
    120  *                  2             1 - x                      1 - x
    121  *
    122  *      For x<0.5
    123  *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
    124  *
    125  * Special cases:
    126  *      atanh(x) is NaN if |x| >= 1 with signal;
    127  *      atanh(NaN) is that NaN with no signal;
    128  *
    129  */
    130 
    131 double
    132 _Py_atanh(double x)
    133 {
    134     double absx;
    135     double t;
    136 
    137     if (Py_IS_NAN(x)) {
    138         return x+x;
    139     }
    140     absx = fabs(x);
    141     if (absx >= 1.) {                   /* |x| >= 1 */
    142         errno = EDOM;
    143 #ifdef Py_NAN
    144         return Py_NAN;
    145 #else
    146         return x/zero;
    147 #endif
    148     }
    149     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
    150         return x;
    151     }
    152     if (absx < 0.5) {                   /* |x| < 0.5 */
    153         t = absx+absx;
    154         t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
    155     }
    156     else {                              /* 0.5 <= |x| <= 1.0 */
    157         t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
    158     }
    159     return copysign(t, x);
    160 }
    161 
    162 /* Mathematically, expm1(x) = exp(x) - 1.  The expm1 function is designed
    163    to avoid the significant loss of precision that arises from direct
    164    evaluation of the expression exp(x) - 1, for x near 0. */
    165 
    166 double
    167 _Py_expm1(double x)
    168 {
    169     /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
    170        also works fine for infinities and nans.
    171 
    172        For smaller x, we can use a method due to Kahan that achieves close to
    173        full accuracy.
    174     */
    175 
    176     if (fabs(x) < 0.7) {
    177         double u;
    178         u = exp(x);
    179         if (u == 1.0)
    180             return x;
    181         else
    182             return (u - 1.0) * x / log(u);
    183     }
    184     else
    185         return exp(x) - 1.0;
    186 }
    187 
    188 /* log1p(x) = log(1+x).  The log1p function is designed to avoid the
    189    significant loss of precision that arises from direct evaluation when x is
    190    small. */
    191 
    192 double
    193 _Py_log1p(double x)
    194 {
    195     /* For x small, we use the following approach.  Let y be the nearest float
    196        to 1+x, then
    197 
    198          1+x = y * (1 - (y-1-x)/y)
    199 
    200        so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, the
    201        second term is well approximated by (y-1-x)/y.  If abs(x) >=
    202        DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
    203        then y-1-x will be exactly representable, and is computed exactly by
    204        (y-1)-x.
    205 
    206        If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
    207        round-to-nearest then this method is slightly dangerous: 1+x could be
    208        rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
    209        y-1-x will not be exactly representable any more and the result can be
    210        off by many ulps.  But this is easily fixed: for a floating-point
    211        number |x| < DBL_EPSILON/2., the closest floating-point number to
    212        log(1+x) is exactly x.
    213     */
    214 
    215     double y;
    216     if (fabs(x) < DBL_EPSILON/2.) {
    217         return x;
    218     }
    219     else if (-0.5 <= x && x <= 1.) {
    220         /* WARNING: it's possible than an overeager compiler
    221            will incorrectly optimize the following two lines
    222            to the equivalent of "return log(1.+x)". If this
    223            happens, then results from log1p will be inaccurate
    224            for small x. */
    225         y = 1.+x;
    226         return log(y)-((y-1.)-x)/y;
    227     }
    228     else {
    229         /* NaNs and infinities should end up here */
    230         return log(1.+x);
    231     }
    232 }
    233