Home | History | Annotate | Download | only in nonstiff
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.ode.nonstiff;
     19 
     20 import org.apache.commons.math.util.FastMath;
     21 
     22 
     23 /**
     24  * This class implements the 5(4) Dormand-Prince integrator for Ordinary
     25  * Differential Equations.
     26 
     27  * <p>This integrator is an embedded Runge-Kutta integrator
     28  * of order 5(4) used in local extrapolation mode (i.e. the solution
     29  * is computed using the high order formula) with stepsize control
     30  * (and automatic step initialization) and continuous output. This
     31  * method uses 7 functions evaluations per step. However, since this
     32  * is an <i>fsal</i>, the last evaluation of one step is the same as
     33  * the first evaluation of the next step and hence can be avoided. So
     34  * the cost is really 6 functions evaluations per step.</p>
     35  *
     36  * <p>This method has been published (whithout the continuous output
     37  * that was added by Shampine in 1986) in the following article :
     38  * <pre>
     39  *  A family of embedded Runge-Kutta formulae
     40  *  J. R. Dormand and P. J. Prince
     41  *  Journal of Computational and Applied Mathematics
     42  *  volume 6, no 1, 1980, pp. 19-26
     43  * </pre></p>
     44  *
     45  * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 aot 2010) $
     46  * @since 1.2
     47  */
     48 
     49 public class DormandPrince54Integrator extends EmbeddedRungeKuttaIntegrator {
     50 
     51   /** Integrator method name. */
     52   private static final String METHOD_NAME = "Dormand-Prince 5(4)";
     53 
     54   /** Time steps Butcher array. */
     55   private static final double[] STATIC_C = {
     56     1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0
     57   };
     58 
     59   /** Internal weights Butcher array. */
     60   private static final double[][] STATIC_A = {
     61     {1.0/5.0},
     62     {3.0/40.0, 9.0/40.0},
     63     {44.0/45.0, -56.0/15.0, 32.0/9.0},
     64     {19372.0/6561.0, -25360.0/2187.0, 64448.0/6561.0,  -212.0/729.0},
     65     {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0},
     66     {35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0}
     67   };
     68 
     69   /** Propagation weights Butcher array. */
     70   private static final double[] STATIC_B = {
     71     35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0
     72   };
     73 
     74   /** Error array, element 1. */
     75   private static final double E1 =     71.0 / 57600.0;
     76 
     77   // element 2 is zero, so it is neither stored nor used
     78 
     79   /** Error array, element 3. */
     80   private static final double E3 =    -71.0 / 16695.0;
     81 
     82   /** Error array, element 4. */
     83   private static final double E4 =     71.0 / 1920.0;
     84 
     85   /** Error array, element 5. */
     86   private static final double E5 = -17253.0 / 339200.0;
     87 
     88   /** Error array, element 6. */
     89   private static final double E6 =     22.0 / 525.0;
     90 
     91   /** Error array, element 7. */
     92   private static final double E7 =     -1.0 / 40.0;
     93 
     94   /** Simple constructor.
     95    * Build a fifth order Dormand-Prince integrator with the given step bounds
     96    * @param minStep minimal step (must be positive even for backward
     97    * integration), the last step can be smaller than this
     98    * @param maxStep maximal step (must be positive even for backward
     99    * integration)
    100    * @param scalAbsoluteTolerance allowed absolute error
    101    * @param scalRelativeTolerance allowed relative error
    102    */
    103   public DormandPrince54Integrator(final double minStep, final double maxStep,
    104                                    final double scalAbsoluteTolerance,
    105                                    final double scalRelativeTolerance) {
    106     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
    107           minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
    108   }
    109 
    110   /** Simple constructor.
    111    * Build a fifth order Dormand-Prince integrator with the given step bounds
    112    * @param minStep minimal step (must be positive even for backward
    113    * integration), the last step can be smaller than this
    114    * @param maxStep maximal step (must be positive even for backward
    115    * integration)
    116    * @param vecAbsoluteTolerance allowed absolute error
    117    * @param vecRelativeTolerance allowed relative error
    118    */
    119   public DormandPrince54Integrator(final double minStep, final double maxStep,
    120                                    final double[] vecAbsoluteTolerance,
    121                                    final double[] vecRelativeTolerance) {
    122     super(METHOD_NAME, true, STATIC_C, STATIC_A, STATIC_B, new DormandPrince54StepInterpolator(),
    123           minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
    124   }
    125 
    126   /** {@inheritDoc} */
    127   @Override
    128   public int getOrder() {
    129     return 5;
    130   }
    131 
    132   /** {@inheritDoc} */
    133   @Override
    134   protected double estimateError(final double[][] yDotK,
    135                                  final double[] y0, final double[] y1,
    136                                  final double h) {
    137 
    138     double error = 0;
    139 
    140     for (int j = 0; j < mainSetDimension; ++j) {
    141         final double errSum = E1 * yDotK[0][j] +  E3 * yDotK[2][j] +
    142                               E4 * yDotK[3][j] +  E5 * yDotK[4][j] +
    143                               E6 * yDotK[5][j] +  E7 * yDotK[6][j];
    144 
    145         final double yScale = FastMath.max(FastMath.abs(y0[j]), FastMath.abs(y1[j]));
    146         final double tol = (vecAbsoluteTolerance == null) ?
    147                            (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
    148                                (vecAbsoluteTolerance[j] + vecRelativeTolerance[j] * yScale);
    149         final double ratio  = h * errSum / tol;
    150         error += ratio * ratio;
    151 
    152     }
    153 
    154     return FastMath.sqrt(error / mainSetDimension);
    155 
    156   }
    157 
    158 }
    159