Home | History | Annotate | Download | only in openssl
      1 /* Copyright (c) 2014, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #ifndef OPENSSL_HEADER_AEAD_H
     16 #define OPENSSL_HEADER_AEAD_H
     17 
     18 #include <openssl/base.h>
     19 
     20 #if defined(__cplusplus)
     21 extern "C" {
     22 #endif
     23 
     24 
     25 /* Authenticated Encryption with Additional Data.
     26  *
     27  * AEAD couples confidentiality and integrity in a single primitive. AEAD
     28  * algorithms take a key and then can seal and open individual messages. Each
     29  * message has a unique, per-message nonce and, optionally, additional data
     30  * which is authenticated but not included in the ciphertext.
     31  *
     32  * The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
     33  * performs any precomputation needed to use |aead| with |key|. The length of
     34  * the key, |key_len|, is given in bytes.
     35  *
     36  * The |tag_len| argument contains the length of the tags, in bytes, and allows
     37  * for the processing of truncated authenticators. A zero value indicates that
     38  * the default tag length should be used and this is defined as
     39  * |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
     40  * truncated tags increases an attacker's chance of creating a valid forgery.
     41  * Be aware that the attacker's chance may increase more than exponentially as
     42  * would naively be expected.
     43  *
     44  * When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
     45  * passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
     46  *
     47  * With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
     48  * operations are intended to meet the standard notions of privacy and
     49  * authenticity for authenticated encryption. For formal definitions see
     50  * Bellare and Namprempre, "Authenticated encryption: relations among notions
     51  * and analysis of the generic composition paradigm," Lecture Notes in Computer
     52  * Science B<1976> (2000), 531545,
     53  * http://www-cse.ucsd.edu/~mihir/papers/oem.html.
     54  *
     55  * When sealing messages, a nonce must be given. The length of the nonce is
     56  * fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
     57  * nonce must be unique for all messages with the same key*. This is critically
     58  * important - nonce reuse may completely undermine the security of the AEAD.
     59  * Nonces may be predictable and public, so long as they are unique. Uniqueness
     60  * may be achieved with a simple counter or, if large enough, may be generated
     61  * randomly. The nonce must be passed into the "open" operation by the receiver
     62  * so must either be implicit (e.g. a counter), or must be transmitted along
     63  * with the sealed message.
     64  *
     65  * The "seal" and "open" operations are atomic - an entire message must be
     66  * encrypted or decrypted in a single call. Large messages may have to be split
     67  * up in order to accommodate this. When doing so, be mindful of the need not to
     68  * repeat nonces and the possibility that an attacker could duplicate, reorder
     69  * or drop message chunks. For example, using a single key for a given (large)
     70  * message and sealing chunks with nonces counting from zero would be secure as
     71  * long as the number of chunks was securely transmitted. (Otherwise an
     72  * attacker could truncate the message by dropping chunks from the end.)
     73  *
     74  * The number of chunks could be transmitted by prefixing it to the plaintext,
     75  * for example. This also assumes that no other message would ever use the same
     76  * key otherwise the rule that nonces must be unique for a given key would be
     77  * violated.
     78  *
     79  * The "seal" and "open" operations also permit additional data to be
     80  * authenticated via the |ad| parameter. This data is not included in the
     81  * ciphertext and must be identical for both the "seal" and "open" call. This
     82  * permits implicit context to be authenticated but may be empty if not needed.
     83  *
     84  * The "seal" and "open" operations may work in-place if the |out| and |in|
     85  * arguments are equal. Otherwise, if |out| and |in| alias, input data may be
     86  * overwritten before it is read. This situation will cause an error.
     87  *
     88  * The "seal" and "open" operations return one on success and zero on error. */
     89 
     90 
     91 /* AEAD algorithms. */
     92 
     93 /* EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode. */
     94 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
     95 
     96 /* EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode. */
     97 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
     98 
     99 /* EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
    100  * Poly1305 as described in RFC 7539. */
    101 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
    102 
    103 /* EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
    104  * authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
    105  * block counter, thus the maximum plaintext size is 64GB. */
    106 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
    107 
    108 /* EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
    109  * authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details. */
    110 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
    111 
    112 /* EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
    113  * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
    114 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
    115 
    116 /* EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
    117  * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
    118 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
    119 
    120 /* EVP_has_aes_hardware returns one if we enable hardware support for fast and
    121  * constant-time AES-GCM. */
    122 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
    123 
    124 
    125 /* Utility functions. */
    126 
    127 /* EVP_AEAD_key_length returns the length, in bytes, of the keys used by
    128  * |aead|. */
    129 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
    130 
    131 /* EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
    132  * for |aead|. */
    133 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
    134 
    135 /* EVP_AEAD_max_overhead returns the maximum number of additional bytes added
    136  * by the act of sealing data with |aead|. */
    137 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
    138 
    139 /* EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
    140  * is the largest value that can be passed as |tag_len| to
    141  * |EVP_AEAD_CTX_init|. */
    142 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
    143 
    144 
    145 /* AEAD operations. */
    146 
    147 /* An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
    148  * and message-independent IV. */
    149 typedef struct evp_aead_ctx_st {
    150   const EVP_AEAD *aead;
    151   /* aead_state is an opaque pointer to whatever state the AEAD needs to
    152    * maintain. */
    153   void *aead_state;
    154 } EVP_AEAD_CTX;
    155 
    156 /* EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
    157  * any AEAD defined in this header. */
    158 #define EVP_AEAD_MAX_KEY_LENGTH 80
    159 
    160 /* EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
    161  * any AEAD defined in this header. */
    162 #define EVP_AEAD_MAX_NONCE_LENGTH 16
    163 
    164 /* EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
    165  * defined in this header. */
    166 #define EVP_AEAD_MAX_OVERHEAD 64
    167 
    168 /* EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
    169  * EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
    170  * be used. */
    171 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
    172 
    173 /* EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
    174  * initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
    175  * necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
    176  * more uniform cleanup of |EVP_AEAD_CTX|. */
    177 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
    178 
    179 /* EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
    180  * argument is ignored and should be NULL. Authentication tags may be truncated
    181  * by passing a size as |tag_len|. A |tag_len| of zero indicates the default
    182  * tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
    183  * readability.
    184  *
    185  * Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
    186  * the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
    187  * harmless to do so. */
    188 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
    189                                      const uint8_t *key, size_t key_len,
    190                                      size_t tag_len, ENGINE *impl);
    191 
    192 /* EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
    193  * call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
    194  * all zeros. */
    195 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
    196 
    197 /* EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
    198  * authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
    199  * returns one on success and zero otherwise.
    200  *
    201  * This function may be called (with the same |EVP_AEAD_CTX|) concurrently with
    202  * itself or |EVP_AEAD_CTX_open|.
    203  *
    204  * At most |max_out_len| bytes are written to |out| and, in order to ensure
    205  * success, |max_out_len| should be |in_len| plus the result of
    206  * |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
    207  * actual number of bytes written.
    208  *
    209  * The length of |nonce|, |nonce_len|, must be equal to the result of
    210  * |EVP_AEAD_nonce_length| for this AEAD.
    211  *
    212  * |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
    213  * insufficient, zero will be returned. (In this case, |*out_len| is set to
    214  * zero.)
    215  *
    216  * If |in| and |out| alias then |out| must be == |in|. */
    217 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
    218                                      size_t *out_len, size_t max_out_len,
    219                                      const uint8_t *nonce, size_t nonce_len,
    220                                      const uint8_t *in, size_t in_len,
    221                                      const uint8_t *ad, size_t ad_len);
    222 
    223 /* EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
    224  * from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
    225  * success and zero otherwise.
    226  *
    227  * This function may be called (with the same |EVP_AEAD_CTX|) concurrently with
    228  * itself or |EVP_AEAD_CTX_seal|.
    229  *
    230  * At most |in_len| bytes are written to |out|. In order to ensure success,
    231  * |max_out_len| should be at least |in_len|. On successful return, |*out_len|
    232  * is set to the the actual number of bytes written.
    233  *
    234  * The length of |nonce|, |nonce_len|, must be equal to the result of
    235  * |EVP_AEAD_nonce_length| for this AEAD.
    236  *
    237  * |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
    238  * insufficient, zero will be returned. (In this case, |*out_len| is set to
    239  * zero.)
    240  *
    241  * If |in| and |out| alias then |out| must be == |in|. */
    242 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
    243                                      size_t *out_len, size_t max_out_len,
    244                                      const uint8_t *nonce, size_t nonce_len,
    245                                      const uint8_t *in, size_t in_len,
    246                                      const uint8_t *ad, size_t ad_len);
    247 
    248 /* EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
    249  * not been set. */
    250 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
    251 
    252 
    253 /* TLS-specific AEAD algorithms.
    254  *
    255  * These AEAD primitives do not meet the definition of generic AEADs. They are
    256  * all specific to TLS and should not be used outside of that context. They must
    257  * be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
    258  * not be used concurrently. Any nonces are used as IVs, so they must be
    259  * unpredictable. They only accept an |ad| parameter of length 11 (the standard
    260  * TLS one with length omitted). */
    261 
    262 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
    263 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
    264 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
    265 
    266 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
    267 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
    268 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
    269 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
    270 
    271 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
    272 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
    273 
    274 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
    275 
    276 
    277 /* SSLv3-specific AEAD algorithms.
    278  *
    279  * These AEAD primitives do not meet the definition of generic AEADs. They are
    280  * all specific to SSLv3 and should not be used outside of that context. They
    281  * must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
    282  * and may not be used concurrently. They only accept an |ad| parameter of
    283  * length 9 (the standard TLS one with length and version omitted). */
    284 
    285 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_ssl3(void);
    286 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_ssl3(void);
    287 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_ssl3(void);
    288 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_ssl3(void);
    289 
    290 
    291 /* Obscure functions. */
    292 
    293 /* evp_aead_direction_t denotes the direction of an AEAD operation. */
    294 enum evp_aead_direction_t {
    295   evp_aead_open,
    296   evp_aead_seal,
    297 };
    298 
    299 /* EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
    300  * AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
    301  * given direction. */
    302 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
    303     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
    304     size_t tag_len, enum evp_aead_direction_t dir);
    305 
    306 /* EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
    307  * sets |*out_iv| to point to that many bytes of the current IV. This is only
    308  * meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
    309  *
    310  * It returns one on success or zero on error. */
    311 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
    312                                        const uint8_t **out_iv, size_t *out_len);
    313 
    314 
    315 #if defined(__cplusplus)
    316 }  /* extern C */
    317 
    318 #if !defined(BORINGSSL_NO_CXX)
    319 extern "C++" {
    320 
    321 namespace bssl {
    322 
    323 using ScopedEVP_AEAD_CTX =
    324     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
    325                              EVP_AEAD_CTX_cleanup>;
    326 
    327 }  // namespace bssl
    328 
    329 }  // extern C++
    330 #endif
    331 
    332 #endif
    333 
    334 #endif  /* OPENSSL_HEADER_AEAD_H */
    335