Home | History | Annotate | Download | only in Analysis
      1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
     11 // conditions), based off of an annotation system.
     12 //
     13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
     14 // for more information.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "clang/AST/Attr.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/StmtCXX.h"
     22 #include "clang/AST/StmtVisitor.h"
     23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     24 #include "clang/Analysis/Analyses/ThreadSafety.h"
     25 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
     26 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
     27 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
     28 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
     29 #include "clang/Analysis/AnalysisContext.h"
     30 #include "clang/Analysis/CFG.h"
     31 #include "clang/Analysis/CFGStmtMap.h"
     32 #include "clang/Basic/OperatorKinds.h"
     33 #include "clang/Basic/SourceLocation.h"
     34 #include "clang/Basic/SourceManager.h"
     35 #include "llvm/ADT/BitVector.h"
     36 #include "llvm/ADT/FoldingSet.h"
     37 #include "llvm/ADT/ImmutableMap.h"
     38 #include "llvm/ADT/PostOrderIterator.h"
     39 #include "llvm/ADT/SmallVector.h"
     40 #include "llvm/ADT/StringRef.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <algorithm>
     43 #include <ostream>
     44 #include <sstream>
     45 #include <utility>
     46 #include <vector>
     47 using namespace clang;
     48 using namespace threadSafety;
     49 
     50 // Key method definition
     51 ThreadSafetyHandler::~ThreadSafetyHandler() {}
     52 
     53 namespace {
     54 class TILPrinter :
     55   public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
     56 
     57 
     58 /// Issue a warning about an invalid lock expression
     59 static void warnInvalidLock(ThreadSafetyHandler &Handler,
     60                             const Expr *MutexExp, const NamedDecl *D,
     61                             const Expr *DeclExp, StringRef Kind) {
     62   SourceLocation Loc;
     63   if (DeclExp)
     64     Loc = DeclExp->getExprLoc();
     65 
     66   // FIXME: add a note about the attribute location in MutexExp or D
     67   if (Loc.isValid())
     68     Handler.handleInvalidLockExp(Kind, Loc);
     69 }
     70 
     71 /// \brief A set of CapabilityInfo objects, which are compiled from the
     72 /// requires attributes on a function.
     73 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
     74 public:
     75   /// \brief Push M onto list, but discard duplicates.
     76   void push_back_nodup(const CapabilityExpr &CapE) {
     77     iterator It = std::find_if(begin(), end(),
     78                                [=](const CapabilityExpr &CapE2) {
     79       return CapE.equals(CapE2);
     80     });
     81     if (It == end())
     82       push_back(CapE);
     83   }
     84 };
     85 
     86 class FactManager;
     87 class FactSet;
     88 
     89 /// \brief This is a helper class that stores a fact that is known at a
     90 /// particular point in program execution.  Currently, a fact is a capability,
     91 /// along with additional information, such as where it was acquired, whether
     92 /// it is exclusive or shared, etc.
     93 ///
     94 /// FIXME: this analysis does not currently support either re-entrant
     95 /// locking or lock "upgrading" and "downgrading" between exclusive and
     96 /// shared.
     97 class FactEntry : public CapabilityExpr {
     98 private:
     99   LockKind          LKind;            ///<  exclusive or shared
    100   SourceLocation    AcquireLoc;       ///<  where it was acquired.
    101   bool              Asserted;         ///<  true if the lock was asserted
    102   bool              Declared;         ///<  true if the lock was declared
    103 
    104 public:
    105   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
    106             bool Asrt, bool Declrd = false)
    107       : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
    108         Declared(Declrd) {}
    109 
    110   virtual ~FactEntry() {}
    111 
    112   LockKind          kind()       const { return LKind;      }
    113   SourceLocation    loc()        const { return AcquireLoc; }
    114   bool              asserted()   const { return Asserted; }
    115   bool              declared()   const { return Declared; }
    116 
    117   void setDeclared(bool D) { Declared = D; }
    118 
    119   virtual void
    120   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    121                                 SourceLocation JoinLoc, LockErrorKind LEK,
    122                                 ThreadSafetyHandler &Handler) const = 0;
    123   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
    124                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    125                             bool FullyRemove, ThreadSafetyHandler &Handler,
    126                             StringRef DiagKind) const = 0;
    127 
    128   // Return true if LKind >= LK, where exclusive > shared
    129   bool isAtLeast(LockKind LK) {
    130     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
    131   }
    132 };
    133 
    134 
    135 typedef unsigned short FactID;
    136 
    137 /// \brief FactManager manages the memory for all facts that are created during
    138 /// the analysis of a single routine.
    139 class FactManager {
    140 private:
    141   std::vector<std::unique_ptr<FactEntry>> Facts;
    142 
    143 public:
    144   FactID newFact(std::unique_ptr<FactEntry> Entry) {
    145     Facts.push_back(std::move(Entry));
    146     return static_cast<unsigned short>(Facts.size() - 1);
    147   }
    148 
    149   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
    150   FactEntry &operator[](FactID F) { return *Facts[F]; }
    151 };
    152 
    153 
    154 /// \brief A FactSet is the set of facts that are known to be true at a
    155 /// particular program point.  FactSets must be small, because they are
    156 /// frequently copied, and are thus implemented as a set of indices into a
    157 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
    158 /// locks, so we can get away with doing a linear search for lookup.  Note
    159 /// that a hashtable or map is inappropriate in this case, because lookups
    160 /// may involve partial pattern matches, rather than exact matches.
    161 class FactSet {
    162 private:
    163   typedef SmallVector<FactID, 4> FactVec;
    164 
    165   FactVec FactIDs;
    166 
    167 public:
    168   typedef FactVec::iterator       iterator;
    169   typedef FactVec::const_iterator const_iterator;
    170 
    171   iterator       begin()       { return FactIDs.begin(); }
    172   const_iterator begin() const { return FactIDs.begin(); }
    173 
    174   iterator       end()       { return FactIDs.end(); }
    175   const_iterator end() const { return FactIDs.end(); }
    176 
    177   bool isEmpty() const { return FactIDs.size() == 0; }
    178 
    179   // Return true if the set contains only negative facts
    180   bool isEmpty(FactManager &FactMan) const {
    181     for (FactID FID : *this) {
    182       if (!FactMan[FID].negative())
    183         return false;
    184     }
    185     return true;
    186   }
    187 
    188   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
    189 
    190   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
    191     FactID F = FM.newFact(std::move(Entry));
    192     FactIDs.push_back(F);
    193     return F;
    194   }
    195 
    196   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
    197     unsigned n = FactIDs.size();
    198     if (n == 0)
    199       return false;
    200 
    201     for (unsigned i = 0; i < n-1; ++i) {
    202       if (FM[FactIDs[i]].matches(CapE)) {
    203         FactIDs[i] = FactIDs[n-1];
    204         FactIDs.pop_back();
    205         return true;
    206       }
    207     }
    208     if (FM[FactIDs[n-1]].matches(CapE)) {
    209       FactIDs.pop_back();
    210       return true;
    211     }
    212     return false;
    213   }
    214 
    215   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
    216     return std::find_if(begin(), end(), [&](FactID ID) {
    217       return FM[ID].matches(CapE);
    218     });
    219   }
    220 
    221   FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
    222     auto I = std::find_if(begin(), end(), [&](FactID ID) {
    223       return FM[ID].matches(CapE);
    224     });
    225     return I != end() ? &FM[*I] : nullptr;
    226   }
    227 
    228   FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
    229     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    230       return FM[ID].matchesUniv(CapE);
    231     });
    232     return I != end() ? &FM[*I] : nullptr;
    233   }
    234 
    235   FactEntry *findPartialMatch(FactManager &FM,
    236                               const CapabilityExpr &CapE) const {
    237     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    238       return FM[ID].partiallyMatches(CapE);
    239     });
    240     return I != end() ? &FM[*I] : nullptr;
    241   }
    242 
    243   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
    244     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
    245       return FM[ID].valueDecl() == Vd;
    246     });
    247     return I != end();
    248   }
    249 };
    250 
    251 class ThreadSafetyAnalyzer;
    252 } // namespace
    253 
    254 namespace clang {
    255 namespace threadSafety {
    256 class BeforeSet {
    257 private:
    258   typedef SmallVector<const ValueDecl*, 4>  BeforeVect;
    259 
    260   struct BeforeInfo {
    261     BeforeInfo() : Visited(0) {}
    262     BeforeInfo(BeforeInfo &&O) : Vect(std::move(O.Vect)), Visited(O.Visited) {}
    263 
    264     BeforeVect Vect;
    265     int Visited;
    266   };
    267 
    268   typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>
    269       BeforeMap;
    270   typedef llvm::DenseMap<const ValueDecl*, bool>        CycleMap;
    271 
    272 public:
    273   BeforeSet() { }
    274 
    275   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
    276                               ThreadSafetyAnalyzer& Analyzer);
    277 
    278   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
    279                                    ThreadSafetyAnalyzer &Analyzer);
    280 
    281   void checkBeforeAfter(const ValueDecl* Vd,
    282                         const FactSet& FSet,
    283                         ThreadSafetyAnalyzer& Analyzer,
    284                         SourceLocation Loc, StringRef CapKind);
    285 
    286 private:
    287   BeforeMap BMap;
    288   CycleMap  CycMap;
    289 };
    290 } // end namespace threadSafety
    291 } // end namespace clang
    292 
    293 namespace {
    294 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
    295 class LocalVariableMap;
    296 
    297 /// A side (entry or exit) of a CFG node.
    298 enum CFGBlockSide { CBS_Entry, CBS_Exit };
    299 
    300 /// CFGBlockInfo is a struct which contains all the information that is
    301 /// maintained for each block in the CFG.  See LocalVariableMap for more
    302 /// information about the contexts.
    303 struct CFGBlockInfo {
    304   FactSet EntrySet;             // Lockset held at entry to block
    305   FactSet ExitSet;              // Lockset held at exit from block
    306   LocalVarContext EntryContext; // Context held at entry to block
    307   LocalVarContext ExitContext;  // Context held at exit from block
    308   SourceLocation EntryLoc;      // Location of first statement in block
    309   SourceLocation ExitLoc;       // Location of last statement in block.
    310   unsigned EntryIndex;          // Used to replay contexts later
    311   bool Reachable;               // Is this block reachable?
    312 
    313   const FactSet &getSet(CFGBlockSide Side) const {
    314     return Side == CBS_Entry ? EntrySet : ExitSet;
    315   }
    316   SourceLocation getLocation(CFGBlockSide Side) const {
    317     return Side == CBS_Entry ? EntryLoc : ExitLoc;
    318   }
    319 
    320 private:
    321   CFGBlockInfo(LocalVarContext EmptyCtx)
    322     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
    323   { }
    324 
    325 public:
    326   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
    327 };
    328 
    329 
    330 
    331 // A LocalVariableMap maintains a map from local variables to their currently
    332 // valid definitions.  It provides SSA-like functionality when traversing the
    333 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
    334 // unique name (an integer), which acts as the SSA name for that definition.
    335 // The total set of names is shared among all CFG basic blocks.
    336 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
    337 // with their SSA-names.  Instead, we compute a Context for each point in the
    338 // code, which maps local variables to the appropriate SSA-name.  This map
    339 // changes with each assignment.
    340 //
    341 // The map is computed in a single pass over the CFG.  Subsequent analyses can
    342 // then query the map to find the appropriate Context for a statement, and use
    343 // that Context to look up the definitions of variables.
    344 class LocalVariableMap {
    345 public:
    346   typedef LocalVarContext Context;
    347 
    348   /// A VarDefinition consists of an expression, representing the value of the
    349   /// variable, along with the context in which that expression should be
    350   /// interpreted.  A reference VarDefinition does not itself contain this
    351   /// information, but instead contains a pointer to a previous VarDefinition.
    352   struct VarDefinition {
    353   public:
    354     friend class LocalVariableMap;
    355 
    356     const NamedDecl *Dec;  // The original declaration for this variable.
    357     const Expr *Exp;       // The expression for this variable, OR
    358     unsigned Ref;          // Reference to another VarDefinition
    359     Context Ctx;           // The map with which Exp should be interpreted.
    360 
    361     bool isReference() { return !Exp; }
    362 
    363   private:
    364     // Create ordinary variable definition
    365     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
    366       : Dec(D), Exp(E), Ref(0), Ctx(C)
    367     { }
    368 
    369     // Create reference to previous definition
    370     VarDefinition(const NamedDecl *D, unsigned R, Context C)
    371       : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
    372     { }
    373   };
    374 
    375 private:
    376   Context::Factory ContextFactory;
    377   std::vector<VarDefinition> VarDefinitions;
    378   std::vector<unsigned> CtxIndices;
    379   std::vector<std::pair<Stmt*, Context> > SavedContexts;
    380 
    381 public:
    382   LocalVariableMap() {
    383     // index 0 is a placeholder for undefined variables (aka phi-nodes).
    384     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
    385   }
    386 
    387   /// Look up a definition, within the given context.
    388   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
    389     const unsigned *i = Ctx.lookup(D);
    390     if (!i)
    391       return nullptr;
    392     assert(*i < VarDefinitions.size());
    393     return &VarDefinitions[*i];
    394   }
    395 
    396   /// Look up the definition for D within the given context.  Returns
    397   /// NULL if the expression is not statically known.  If successful, also
    398   /// modifies Ctx to hold the context of the return Expr.
    399   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
    400     const unsigned *P = Ctx.lookup(D);
    401     if (!P)
    402       return nullptr;
    403 
    404     unsigned i = *P;
    405     while (i > 0) {
    406       if (VarDefinitions[i].Exp) {
    407         Ctx = VarDefinitions[i].Ctx;
    408         return VarDefinitions[i].Exp;
    409       }
    410       i = VarDefinitions[i].Ref;
    411     }
    412     return nullptr;
    413   }
    414 
    415   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
    416 
    417   /// Return the next context after processing S.  This function is used by
    418   /// clients of the class to get the appropriate context when traversing the
    419   /// CFG.  It must be called for every assignment or DeclStmt.
    420   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
    421     if (SavedContexts[CtxIndex+1].first == S) {
    422       CtxIndex++;
    423       Context Result = SavedContexts[CtxIndex].second;
    424       return Result;
    425     }
    426     return C;
    427   }
    428 
    429   void dumpVarDefinitionName(unsigned i) {
    430     if (i == 0) {
    431       llvm::errs() << "Undefined";
    432       return;
    433     }
    434     const NamedDecl *Dec = VarDefinitions[i].Dec;
    435     if (!Dec) {
    436       llvm::errs() << "<<NULL>>";
    437       return;
    438     }
    439     Dec->printName(llvm::errs());
    440     llvm::errs() << "." << i << " " << ((const void*) Dec);
    441   }
    442 
    443   /// Dumps an ASCII representation of the variable map to llvm::errs()
    444   void dump() {
    445     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
    446       const Expr *Exp = VarDefinitions[i].Exp;
    447       unsigned Ref = VarDefinitions[i].Ref;
    448 
    449       dumpVarDefinitionName(i);
    450       llvm::errs() << " = ";
    451       if (Exp) Exp->dump();
    452       else {
    453         dumpVarDefinitionName(Ref);
    454         llvm::errs() << "\n";
    455       }
    456     }
    457   }
    458 
    459   /// Dumps an ASCII representation of a Context to llvm::errs()
    460   void dumpContext(Context C) {
    461     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
    462       const NamedDecl *D = I.getKey();
    463       D->printName(llvm::errs());
    464       const unsigned *i = C.lookup(D);
    465       llvm::errs() << " -> ";
    466       dumpVarDefinitionName(*i);
    467       llvm::errs() << "\n";
    468     }
    469   }
    470 
    471   /// Builds the variable map.
    472   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
    473                    std::vector<CFGBlockInfo> &BlockInfo);
    474 
    475 protected:
    476   // Get the current context index
    477   unsigned getContextIndex() { return SavedContexts.size()-1; }
    478 
    479   // Save the current context for later replay
    480   void saveContext(Stmt *S, Context C) {
    481     SavedContexts.push_back(std::make_pair(S,C));
    482   }
    483 
    484   // Adds a new definition to the given context, and returns a new context.
    485   // This method should be called when declaring a new variable.
    486   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
    487     assert(!Ctx.contains(D));
    488     unsigned newID = VarDefinitions.size();
    489     Context NewCtx = ContextFactory.add(Ctx, D, newID);
    490     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
    491     return NewCtx;
    492   }
    493 
    494   // Add a new reference to an existing definition.
    495   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
    496     unsigned newID = VarDefinitions.size();
    497     Context NewCtx = ContextFactory.add(Ctx, D, newID);
    498     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
    499     return NewCtx;
    500   }
    501 
    502   // Updates a definition only if that definition is already in the map.
    503   // This method should be called when assigning to an existing variable.
    504   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
    505     if (Ctx.contains(D)) {
    506       unsigned newID = VarDefinitions.size();
    507       Context NewCtx = ContextFactory.remove(Ctx, D);
    508       NewCtx = ContextFactory.add(NewCtx, D, newID);
    509       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
    510       return NewCtx;
    511     }
    512     return Ctx;
    513   }
    514 
    515   // Removes a definition from the context, but keeps the variable name
    516   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
    517   Context clearDefinition(const NamedDecl *D, Context Ctx) {
    518     Context NewCtx = Ctx;
    519     if (NewCtx.contains(D)) {
    520       NewCtx = ContextFactory.remove(NewCtx, D);
    521       NewCtx = ContextFactory.add(NewCtx, D, 0);
    522     }
    523     return NewCtx;
    524   }
    525 
    526   // Remove a definition entirely frmo the context.
    527   Context removeDefinition(const NamedDecl *D, Context Ctx) {
    528     Context NewCtx = Ctx;
    529     if (NewCtx.contains(D)) {
    530       NewCtx = ContextFactory.remove(NewCtx, D);
    531     }
    532     return NewCtx;
    533   }
    534 
    535   Context intersectContexts(Context C1, Context C2);
    536   Context createReferenceContext(Context C);
    537   void intersectBackEdge(Context C1, Context C2);
    538 
    539   friend class VarMapBuilder;
    540 };
    541 
    542 
    543 // This has to be defined after LocalVariableMap.
    544 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
    545   return CFGBlockInfo(M.getEmptyContext());
    546 }
    547 
    548 
    549 /// Visitor which builds a LocalVariableMap
    550 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
    551 public:
    552   LocalVariableMap* VMap;
    553   LocalVariableMap::Context Ctx;
    554 
    555   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
    556     : VMap(VM), Ctx(C) {}
    557 
    558   void VisitDeclStmt(DeclStmt *S);
    559   void VisitBinaryOperator(BinaryOperator *BO);
    560 };
    561 
    562 
    563 // Add new local variables to the variable map
    564 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
    565   bool modifiedCtx = false;
    566   DeclGroupRef DGrp = S->getDeclGroup();
    567   for (const auto *D : DGrp) {
    568     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
    569       const Expr *E = VD->getInit();
    570 
    571       // Add local variables with trivial type to the variable map
    572       QualType T = VD->getType();
    573       if (T.isTrivialType(VD->getASTContext())) {
    574         Ctx = VMap->addDefinition(VD, E, Ctx);
    575         modifiedCtx = true;
    576       }
    577     }
    578   }
    579   if (modifiedCtx)
    580     VMap->saveContext(S, Ctx);
    581 }
    582 
    583 // Update local variable definitions in variable map
    584 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
    585   if (!BO->isAssignmentOp())
    586     return;
    587 
    588   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
    589 
    590   // Update the variable map and current context.
    591   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
    592     ValueDecl *VDec = DRE->getDecl();
    593     if (Ctx.lookup(VDec)) {
    594       if (BO->getOpcode() == BO_Assign)
    595         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
    596       else
    597         // FIXME -- handle compound assignment operators
    598         Ctx = VMap->clearDefinition(VDec, Ctx);
    599       VMap->saveContext(BO, Ctx);
    600     }
    601   }
    602 }
    603 
    604 
    605 // Computes the intersection of two contexts.  The intersection is the
    606 // set of variables which have the same definition in both contexts;
    607 // variables with different definitions are discarded.
    608 LocalVariableMap::Context
    609 LocalVariableMap::intersectContexts(Context C1, Context C2) {
    610   Context Result = C1;
    611   for (const auto &P : C1) {
    612     const NamedDecl *Dec = P.first;
    613     const unsigned *i2 = C2.lookup(Dec);
    614     if (!i2)             // variable doesn't exist on second path
    615       Result = removeDefinition(Dec, Result);
    616     else if (*i2 != P.second)  // variable exists, but has different definition
    617       Result = clearDefinition(Dec, Result);
    618   }
    619   return Result;
    620 }
    621 
    622 // For every variable in C, create a new variable that refers to the
    623 // definition in C.  Return a new context that contains these new variables.
    624 // (We use this for a naive implementation of SSA on loop back-edges.)
    625 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
    626   Context Result = getEmptyContext();
    627   for (const auto &P : C)
    628     Result = addReference(P.first, P.second, Result);
    629   return Result;
    630 }
    631 
    632 // This routine also takes the intersection of C1 and C2, but it does so by
    633 // altering the VarDefinitions.  C1 must be the result of an earlier call to
    634 // createReferenceContext.
    635 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
    636   for (const auto &P : C1) {
    637     unsigned i1 = P.second;
    638     VarDefinition *VDef = &VarDefinitions[i1];
    639     assert(VDef->isReference());
    640 
    641     const unsigned *i2 = C2.lookup(P.first);
    642     if (!i2 || (*i2 != i1))
    643       VDef->Ref = 0;    // Mark this variable as undefined
    644   }
    645 }
    646 
    647 
    648 // Traverse the CFG in topological order, so all predecessors of a block
    649 // (excluding back-edges) are visited before the block itself.  At
    650 // each point in the code, we calculate a Context, which holds the set of
    651 // variable definitions which are visible at that point in execution.
    652 // Visible variables are mapped to their definitions using an array that
    653 // contains all definitions.
    654 //
    655 // At join points in the CFG, the set is computed as the intersection of
    656 // the incoming sets along each edge, E.g.
    657 //
    658 //                       { Context                 | VarDefinitions }
    659 //   int x = 0;          { x -> x1                 | x1 = 0 }
    660 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
    661 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
    662 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
    663 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
    664 //
    665 // This is essentially a simpler and more naive version of the standard SSA
    666 // algorithm.  Those definitions that remain in the intersection are from blocks
    667 // that strictly dominate the current block.  We do not bother to insert proper
    668 // phi nodes, because they are not used in our analysis; instead, wherever
    669 // a phi node would be required, we simply remove that definition from the
    670 // context (E.g. x above).
    671 //
    672 // The initial traversal does not capture back-edges, so those need to be
    673 // handled on a separate pass.  Whenever the first pass encounters an
    674 // incoming back edge, it duplicates the context, creating new definitions
    675 // that refer back to the originals.  (These correspond to places where SSA
    676 // might have to insert a phi node.)  On the second pass, these definitions are
    677 // set to NULL if the variable has changed on the back-edge (i.e. a phi
    678 // node was actually required.)  E.g.
    679 //
    680 //                       { Context           | VarDefinitions }
    681 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
    682 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
    683 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
    684 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
    685 //
    686 void LocalVariableMap::traverseCFG(CFG *CFGraph,
    687                                    const PostOrderCFGView *SortedGraph,
    688                                    std::vector<CFGBlockInfo> &BlockInfo) {
    689   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
    690 
    691   CtxIndices.resize(CFGraph->getNumBlockIDs());
    692 
    693   for (const auto *CurrBlock : *SortedGraph) {
    694     int CurrBlockID = CurrBlock->getBlockID();
    695     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
    696 
    697     VisitedBlocks.insert(CurrBlock);
    698 
    699     // Calculate the entry context for the current block
    700     bool HasBackEdges = false;
    701     bool CtxInit = true;
    702     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
    703          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
    704       // if *PI -> CurrBlock is a back edge, so skip it
    705       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
    706         HasBackEdges = true;
    707         continue;
    708       }
    709 
    710       int PrevBlockID = (*PI)->getBlockID();
    711       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
    712 
    713       if (CtxInit) {
    714         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
    715         CtxInit = false;
    716       }
    717       else {
    718         CurrBlockInfo->EntryContext =
    719           intersectContexts(CurrBlockInfo->EntryContext,
    720                             PrevBlockInfo->ExitContext);
    721       }
    722     }
    723 
    724     // Duplicate the context if we have back-edges, so we can call
    725     // intersectBackEdges later.
    726     if (HasBackEdges)
    727       CurrBlockInfo->EntryContext =
    728         createReferenceContext(CurrBlockInfo->EntryContext);
    729 
    730     // Create a starting context index for the current block
    731     saveContext(nullptr, CurrBlockInfo->EntryContext);
    732     CurrBlockInfo->EntryIndex = getContextIndex();
    733 
    734     // Visit all the statements in the basic block.
    735     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
    736     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
    737          BE = CurrBlock->end(); BI != BE; ++BI) {
    738       switch (BI->getKind()) {
    739         case CFGElement::Statement: {
    740           CFGStmt CS = BI->castAs<CFGStmt>();
    741           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
    742           break;
    743         }
    744         default:
    745           break;
    746       }
    747     }
    748     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
    749 
    750     // Mark variables on back edges as "unknown" if they've been changed.
    751     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
    752          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
    753       // if CurrBlock -> *SI is *not* a back edge
    754       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
    755         continue;
    756 
    757       CFGBlock *FirstLoopBlock = *SI;
    758       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
    759       Context LoopEnd   = CurrBlockInfo->ExitContext;
    760       intersectBackEdge(LoopBegin, LoopEnd);
    761     }
    762   }
    763 
    764   // Put an extra entry at the end of the indexed context array
    765   unsigned exitID = CFGraph->getExit().getBlockID();
    766   saveContext(nullptr, BlockInfo[exitID].ExitContext);
    767 }
    768 
    769 /// Find the appropriate source locations to use when producing diagnostics for
    770 /// each block in the CFG.
    771 static void findBlockLocations(CFG *CFGraph,
    772                                const PostOrderCFGView *SortedGraph,
    773                                std::vector<CFGBlockInfo> &BlockInfo) {
    774   for (const auto *CurrBlock : *SortedGraph) {
    775     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
    776 
    777     // Find the source location of the last statement in the block, if the
    778     // block is not empty.
    779     if (const Stmt *S = CurrBlock->getTerminator()) {
    780       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
    781     } else {
    782       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
    783            BE = CurrBlock->rend(); BI != BE; ++BI) {
    784         // FIXME: Handle other CFGElement kinds.
    785         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
    786           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
    787           break;
    788         }
    789       }
    790     }
    791 
    792     if (CurrBlockInfo->ExitLoc.isValid()) {
    793       // This block contains at least one statement. Find the source location
    794       // of the first statement in the block.
    795       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
    796            BE = CurrBlock->end(); BI != BE; ++BI) {
    797         // FIXME: Handle other CFGElement kinds.
    798         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
    799           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
    800           break;
    801         }
    802       }
    803     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
    804                CurrBlock != &CFGraph->getExit()) {
    805       // The block is empty, and has a single predecessor. Use its exit
    806       // location.
    807       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
    808           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
    809     }
    810   }
    811 }
    812 
    813 class LockableFactEntry : public FactEntry {
    814 private:
    815   bool Managed; ///<  managed by ScopedLockable object
    816 
    817 public:
    818   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
    819                     bool Mng = false, bool Asrt = false)
    820       : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
    821 
    822   void
    823   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    824                                 SourceLocation JoinLoc, LockErrorKind LEK,
    825                                 ThreadSafetyHandler &Handler) const override {
    826     if (!Managed && !asserted() && !negative() && !isUniversal()) {
    827       Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
    828                                         LEK);
    829     }
    830   }
    831 
    832   void handleUnlock(FactSet &FSet, FactManager &FactMan,
    833                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    834                     bool FullyRemove, ThreadSafetyHandler &Handler,
    835                     StringRef DiagKind) const override {
    836     FSet.removeLock(FactMan, Cp);
    837     if (!Cp.negative()) {
    838       FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
    839                                 !Cp, LK_Exclusive, UnlockLoc));
    840     }
    841   }
    842 };
    843 
    844 class ScopedLockableFactEntry : public FactEntry {
    845 private:
    846   SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
    847 
    848 public:
    849   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
    850                           const CapExprSet &Excl, const CapExprSet &Shrd)
    851       : FactEntry(CE, LK_Exclusive, Loc, false) {
    852     for (const auto &M : Excl)
    853       UnderlyingMutexes.push_back(M.sexpr());
    854     for (const auto &M : Shrd)
    855       UnderlyingMutexes.push_back(M.sexpr());
    856   }
    857 
    858   void
    859   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
    860                                 SourceLocation JoinLoc, LockErrorKind LEK,
    861                                 ThreadSafetyHandler &Handler) const override {
    862     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
    863       if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
    864         // If this scoped lock manages another mutex, and if the underlying
    865         // mutex is still held, then warn about the underlying mutex.
    866         Handler.handleMutexHeldEndOfScope(
    867             "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
    868       }
    869     }
    870   }
    871 
    872   void handleUnlock(FactSet &FSet, FactManager &FactMan,
    873                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
    874                     bool FullyRemove, ThreadSafetyHandler &Handler,
    875                     StringRef DiagKind) const override {
    876     assert(!Cp.negative() && "Managing object cannot be negative.");
    877     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
    878       CapabilityExpr UnderCp(UnderlyingMutex, false);
    879       auto UnderEntry = llvm::make_unique<LockableFactEntry>(
    880           !UnderCp, LK_Exclusive, UnlockLoc);
    881 
    882       if (FullyRemove) {
    883         // We're destroying the managing object.
    884         // Remove the underlying mutex if it exists; but don't warn.
    885         if (FSet.findLock(FactMan, UnderCp)) {
    886           FSet.removeLock(FactMan, UnderCp);
    887           FSet.addLock(FactMan, std::move(UnderEntry));
    888         }
    889       } else {
    890         // We're releasing the underlying mutex, but not destroying the
    891         // managing object.  Warn on dual release.
    892         if (!FSet.findLock(FactMan, UnderCp)) {
    893           Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
    894                                         UnlockLoc);
    895         }
    896         FSet.removeLock(FactMan, UnderCp);
    897         FSet.addLock(FactMan, std::move(UnderEntry));
    898       }
    899     }
    900     if (FullyRemove)
    901       FSet.removeLock(FactMan, Cp);
    902   }
    903 };
    904 
    905 /// \brief Class which implements the core thread safety analysis routines.
    906 class ThreadSafetyAnalyzer {
    907   friend class BuildLockset;
    908   friend class threadSafety::BeforeSet;
    909 
    910   llvm::BumpPtrAllocator Bpa;
    911   threadSafety::til::MemRegionRef Arena;
    912   threadSafety::SExprBuilder SxBuilder;
    913 
    914   ThreadSafetyHandler       &Handler;
    915   const CXXMethodDecl       *CurrentMethod;
    916   LocalVariableMap          LocalVarMap;
    917   FactManager               FactMan;
    918   std::vector<CFGBlockInfo> BlockInfo;
    919 
    920   BeforeSet* GlobalBeforeSet;
    921 
    922 public:
    923   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
    924      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
    925 
    926   bool inCurrentScope(const CapabilityExpr &CapE);
    927 
    928   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
    929                StringRef DiagKind, bool ReqAttr = false);
    930   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
    931                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
    932                   StringRef DiagKind);
    933 
    934   template <typename AttrType>
    935   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
    936                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
    937 
    938   template <class AttrType>
    939   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
    940                    const NamedDecl *D,
    941                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
    942                    Expr *BrE, bool Neg);
    943 
    944   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
    945                                      bool &Negate);
    946 
    947   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
    948                       const CFGBlock* PredBlock,
    949                       const CFGBlock *CurrBlock);
    950 
    951   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
    952                         SourceLocation JoinLoc,
    953                         LockErrorKind LEK1, LockErrorKind LEK2,
    954                         bool Modify=true);
    955 
    956   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
    957                         SourceLocation JoinLoc, LockErrorKind LEK1,
    958                         bool Modify=true) {
    959     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
    960   }
    961 
    962   void runAnalysis(AnalysisDeclContext &AC);
    963 };
    964 } // namespace
    965 
    966 /// Process acquired_before and acquired_after attributes on Vd.
    967 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
    968     ThreadSafetyAnalyzer& Analyzer) {
    969   // Create a new entry for Vd.
    970   BeforeInfo *Info = nullptr;
    971   {
    972     // Keep InfoPtr in its own scope in case BMap is modified later and the
    973     // reference becomes invalid.
    974     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
    975     if (!InfoPtr)
    976       InfoPtr.reset(new BeforeInfo());
    977     Info = InfoPtr.get();
    978   }
    979 
    980   for (Attr* At : Vd->attrs()) {
    981     switch (At->getKind()) {
    982       case attr::AcquiredBefore: {
    983         auto *A = cast<AcquiredBeforeAttr>(At);
    984 
    985         // Read exprs from the attribute, and add them to BeforeVect.
    986         for (const auto *Arg : A->args()) {
    987           CapabilityExpr Cp =
    988             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
    989           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
    990             Info->Vect.push_back(Cpvd);
    991             auto It = BMap.find(Cpvd);
    992             if (It == BMap.end())
    993               insertAttrExprs(Cpvd, Analyzer);
    994           }
    995         }
    996         break;
    997       }
    998       case attr::AcquiredAfter: {
    999         auto *A = cast<AcquiredAfterAttr>(At);
   1000 
   1001         // Read exprs from the attribute, and add them to BeforeVect.
   1002         for (const auto *Arg : A->args()) {
   1003           CapabilityExpr Cp =
   1004             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
   1005           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
   1006             // Get entry for mutex listed in attribute
   1007             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
   1008             ArgInfo->Vect.push_back(Vd);
   1009           }
   1010         }
   1011         break;
   1012       }
   1013       default:
   1014         break;
   1015     }
   1016   }
   1017 
   1018   return Info;
   1019 }
   1020 
   1021 BeforeSet::BeforeInfo *
   1022 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
   1023                                 ThreadSafetyAnalyzer &Analyzer) {
   1024   auto It = BMap.find(Vd);
   1025   BeforeInfo *Info = nullptr;
   1026   if (It == BMap.end())
   1027     Info = insertAttrExprs(Vd, Analyzer);
   1028   else
   1029     Info = It->second.get();
   1030   assert(Info && "BMap contained nullptr?");
   1031   return Info;
   1032 }
   1033 
   1034 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
   1035 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
   1036                                  const FactSet& FSet,
   1037                                  ThreadSafetyAnalyzer& Analyzer,
   1038                                  SourceLocation Loc, StringRef CapKind) {
   1039   SmallVector<BeforeInfo*, 8> InfoVect;
   1040 
   1041   // Do a depth-first traversal of Vd.
   1042   // Return true if there are cycles.
   1043   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
   1044     if (!Vd)
   1045       return false;
   1046 
   1047     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
   1048 
   1049     if (Info->Visited == 1)
   1050       return true;
   1051 
   1052     if (Info->Visited == 2)
   1053       return false;
   1054 
   1055     if (Info->Vect.empty())
   1056       return false;
   1057 
   1058     InfoVect.push_back(Info);
   1059     Info->Visited = 1;
   1060     for (auto *Vdb : Info->Vect) {
   1061       // Exclude mutexes in our immediate before set.
   1062       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
   1063         StringRef L1 = StartVd->getName();
   1064         StringRef L2 = Vdb->getName();
   1065         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
   1066       }
   1067       // Transitively search other before sets, and warn on cycles.
   1068       if (traverse(Vdb)) {
   1069         if (CycMap.find(Vd) == CycMap.end()) {
   1070           CycMap.insert(std::make_pair(Vd, true));
   1071           StringRef L1 = Vd->getName();
   1072           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
   1073         }
   1074       }
   1075     }
   1076     Info->Visited = 2;
   1077     return false;
   1078   };
   1079 
   1080   traverse(StartVd);
   1081 
   1082   for (auto* Info : InfoVect)
   1083     Info->Visited = 0;
   1084 }
   1085 
   1086 
   1087 
   1088 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
   1089 static const ValueDecl *getValueDecl(const Expr *Exp) {
   1090   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
   1091     return getValueDecl(CE->getSubExpr());
   1092 
   1093   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
   1094     return DR->getDecl();
   1095 
   1096   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
   1097     return ME->getMemberDecl();
   1098 
   1099   return nullptr;
   1100 }
   1101 
   1102 namespace {
   1103 template <typename Ty>
   1104 class has_arg_iterator_range {
   1105   typedef char yes[1];
   1106   typedef char no[2];
   1107 
   1108   template <typename Inner>
   1109   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
   1110 
   1111   template <typename>
   1112   static no& test(...);
   1113 
   1114 public:
   1115   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
   1116 };
   1117 } // namespace
   1118 
   1119 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
   1120   return A->getName();
   1121 }
   1122 
   1123 static StringRef ClassifyDiagnostic(QualType VDT) {
   1124   // We need to look at the declaration of the type of the value to determine
   1125   // which it is. The type should either be a record or a typedef, or a pointer
   1126   // or reference thereof.
   1127   if (const auto *RT = VDT->getAs<RecordType>()) {
   1128     if (const auto *RD = RT->getDecl())
   1129       if (const auto *CA = RD->getAttr<CapabilityAttr>())
   1130         return ClassifyDiagnostic(CA);
   1131   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
   1132     if (const auto *TD = TT->getDecl())
   1133       if (const auto *CA = TD->getAttr<CapabilityAttr>())
   1134         return ClassifyDiagnostic(CA);
   1135   } else if (VDT->isPointerType() || VDT->isReferenceType())
   1136     return ClassifyDiagnostic(VDT->getPointeeType());
   1137 
   1138   return "mutex";
   1139 }
   1140 
   1141 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
   1142   assert(VD && "No ValueDecl passed");
   1143 
   1144   // The ValueDecl is the declaration of a mutex or role (hopefully).
   1145   return ClassifyDiagnostic(VD->getType());
   1146 }
   1147 
   1148 template <typename AttrTy>
   1149 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
   1150                                StringRef>::type
   1151 ClassifyDiagnostic(const AttrTy *A) {
   1152   if (const ValueDecl *VD = getValueDecl(A->getArg()))
   1153     return ClassifyDiagnostic(VD);
   1154   return "mutex";
   1155 }
   1156 
   1157 template <typename AttrTy>
   1158 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
   1159                                StringRef>::type
   1160 ClassifyDiagnostic(const AttrTy *A) {
   1161   for (const auto *Arg : A->args()) {
   1162     if (const ValueDecl *VD = getValueDecl(Arg))
   1163       return ClassifyDiagnostic(VD);
   1164   }
   1165   return "mutex";
   1166 }
   1167 
   1168 
   1169 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
   1170   if (!CurrentMethod)
   1171       return false;
   1172   if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
   1173     auto *VD = P->clangDecl();
   1174     if (VD)
   1175       return VD->getDeclContext() == CurrentMethod->getDeclContext();
   1176   }
   1177   return false;
   1178 }
   1179 
   1180 
   1181 /// \brief Add a new lock to the lockset, warning if the lock is already there.
   1182 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
   1183 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
   1184                                    std::unique_ptr<FactEntry> Entry,
   1185                                    StringRef DiagKind, bool ReqAttr) {
   1186   if (Entry->shouldIgnore())
   1187     return;
   1188 
   1189   if (!ReqAttr && !Entry->negative()) {
   1190     // look for the negative capability, and remove it from the fact set.
   1191     CapabilityExpr NegC = !*Entry;
   1192     FactEntry *Nen = FSet.findLock(FactMan, NegC);
   1193     if (Nen) {
   1194       FSet.removeLock(FactMan, NegC);
   1195     }
   1196     else {
   1197       if (inCurrentScope(*Entry) && !Entry->asserted())
   1198         Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
   1199                                       NegC.toString(), Entry->loc());
   1200     }
   1201   }
   1202 
   1203   // Check before/after constraints
   1204   if (Handler.issueBetaWarnings() &&
   1205       !Entry->asserted() && !Entry->declared()) {
   1206     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
   1207                                       Entry->loc(), DiagKind);
   1208   }
   1209 
   1210   // FIXME: Don't always warn when we have support for reentrant locks.
   1211   if (FSet.findLock(FactMan, *Entry)) {
   1212     if (!Entry->asserted())
   1213       Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
   1214   } else {
   1215     FSet.addLock(FactMan, std::move(Entry));
   1216   }
   1217 }
   1218 
   1219 
   1220 /// \brief Remove a lock from the lockset, warning if the lock is not there.
   1221 /// \param UnlockLoc The source location of the unlock (only used in error msg)
   1222 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
   1223                                       SourceLocation UnlockLoc,
   1224                                       bool FullyRemove, LockKind ReceivedKind,
   1225                                       StringRef DiagKind) {
   1226   if (Cp.shouldIgnore())
   1227     return;
   1228 
   1229   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
   1230   if (!LDat) {
   1231     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
   1232     return;
   1233   }
   1234 
   1235   // Generic lock removal doesn't care about lock kind mismatches, but
   1236   // otherwise diagnose when the lock kinds are mismatched.
   1237   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
   1238     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
   1239                                       LDat->kind(), ReceivedKind, UnlockLoc);
   1240   }
   1241 
   1242   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
   1243                      DiagKind);
   1244 }
   1245 
   1246 
   1247 /// \brief Extract the list of mutexIDs from the attribute on an expression,
   1248 /// and push them onto Mtxs, discarding any duplicates.
   1249 template <typename AttrType>
   1250 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
   1251                                        Expr *Exp, const NamedDecl *D,
   1252                                        VarDecl *SelfDecl) {
   1253   if (Attr->args_size() == 0) {
   1254     // The mutex held is the "this" object.
   1255     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
   1256     if (Cp.isInvalid()) {
   1257        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
   1258        return;
   1259     }
   1260     //else
   1261     if (!Cp.shouldIgnore())
   1262       Mtxs.push_back_nodup(Cp);
   1263     return;
   1264   }
   1265 
   1266   for (const auto *Arg : Attr->args()) {
   1267     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
   1268     if (Cp.isInvalid()) {
   1269        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
   1270        continue;
   1271     }
   1272     //else
   1273     if (!Cp.shouldIgnore())
   1274       Mtxs.push_back_nodup(Cp);
   1275   }
   1276 }
   1277 
   1278 
   1279 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
   1280 /// trylock applies to the given edge, then push them onto Mtxs, discarding
   1281 /// any duplicates.
   1282 template <class AttrType>
   1283 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
   1284                                        Expr *Exp, const NamedDecl *D,
   1285                                        const CFGBlock *PredBlock,
   1286                                        const CFGBlock *CurrBlock,
   1287                                        Expr *BrE, bool Neg) {
   1288   // Find out which branch has the lock
   1289   bool branch = false;
   1290   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
   1291     branch = BLE->getValue();
   1292   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
   1293     branch = ILE->getValue().getBoolValue();
   1294 
   1295   int branchnum = branch ? 0 : 1;
   1296   if (Neg)
   1297     branchnum = !branchnum;
   1298 
   1299   // If we've taken the trylock branch, then add the lock
   1300   int i = 0;
   1301   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
   1302        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
   1303     if (*SI == CurrBlock && i == branchnum)
   1304       getMutexIDs(Mtxs, Attr, Exp, D);
   1305   }
   1306 }
   1307 
   1308 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
   1309   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
   1310     TCond = false;
   1311     return true;
   1312   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
   1313     TCond = BLE->getValue();
   1314     return true;
   1315   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
   1316     TCond = ILE->getValue().getBoolValue();
   1317     return true;
   1318   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   1319     return getStaticBooleanValue(CE->getSubExpr(), TCond);
   1320   }
   1321   return false;
   1322 }
   1323 
   1324 
   1325 // If Cond can be traced back to a function call, return the call expression.
   1326 // The negate variable should be called with false, and will be set to true
   1327 // if the function call is negated, e.g. if (!mu.tryLock(...))
   1328 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
   1329                                                          LocalVarContext C,
   1330                                                          bool &Negate) {
   1331   if (!Cond)
   1332     return nullptr;
   1333 
   1334   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
   1335     return CallExp;
   1336   }
   1337   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
   1338     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
   1339   }
   1340   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
   1341     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
   1342   }
   1343   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
   1344     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
   1345   }
   1346   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
   1347     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
   1348     return getTrylockCallExpr(E, C, Negate);
   1349   }
   1350   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
   1351     if (UOP->getOpcode() == UO_LNot) {
   1352       Negate = !Negate;
   1353       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
   1354     }
   1355     return nullptr;
   1356   }
   1357   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
   1358     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
   1359       if (BOP->getOpcode() == BO_NE)
   1360         Negate = !Negate;
   1361 
   1362       bool TCond = false;
   1363       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
   1364         if (!TCond) Negate = !Negate;
   1365         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
   1366       }
   1367       TCond = false;
   1368       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
   1369         if (!TCond) Negate = !Negate;
   1370         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1371       }
   1372       return nullptr;
   1373     }
   1374     if (BOP->getOpcode() == BO_LAnd) {
   1375       // LHS must have been evaluated in a different block.
   1376       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1377     }
   1378     if (BOP->getOpcode() == BO_LOr) {
   1379       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1380     }
   1381     return nullptr;
   1382   }
   1383   return nullptr;
   1384 }
   1385 
   1386 
   1387 /// \brief Find the lockset that holds on the edge between PredBlock
   1388 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
   1389 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
   1390 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
   1391                                           const FactSet &ExitSet,
   1392                                           const CFGBlock *PredBlock,
   1393                                           const CFGBlock *CurrBlock) {
   1394   Result = ExitSet;
   1395 
   1396   const Stmt *Cond = PredBlock->getTerminatorCondition();
   1397   if (!Cond)
   1398     return;
   1399 
   1400   bool Negate = false;
   1401   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
   1402   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
   1403   StringRef CapDiagKind = "mutex";
   1404 
   1405   CallExpr *Exp =
   1406     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
   1407   if (!Exp)
   1408     return;
   1409 
   1410   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1411   if(!FunDecl || !FunDecl->hasAttrs())
   1412     return;
   1413 
   1414   CapExprSet ExclusiveLocksToAdd;
   1415   CapExprSet SharedLocksToAdd;
   1416 
   1417   // If the condition is a call to a Trylock function, then grab the attributes
   1418   for (auto *Attr : FunDecl->attrs()) {
   1419     switch (Attr->getKind()) {
   1420       case attr::ExclusiveTrylockFunction: {
   1421         ExclusiveTrylockFunctionAttr *A =
   1422           cast<ExclusiveTrylockFunctionAttr>(Attr);
   1423         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
   1424                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1425         CapDiagKind = ClassifyDiagnostic(A);
   1426         break;
   1427       }
   1428       case attr::SharedTrylockFunction: {
   1429         SharedTrylockFunctionAttr *A =
   1430           cast<SharedTrylockFunctionAttr>(Attr);
   1431         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
   1432                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1433         CapDiagKind = ClassifyDiagnostic(A);
   1434         break;
   1435       }
   1436       default:
   1437         break;
   1438     }
   1439   }
   1440 
   1441   // Add and remove locks.
   1442   SourceLocation Loc = Exp->getExprLoc();
   1443   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
   1444     addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
   1445                                                          LK_Exclusive, Loc),
   1446             CapDiagKind);
   1447   for (const auto &SharedLockToAdd : SharedLocksToAdd)
   1448     addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
   1449                                                          LK_Shared, Loc),
   1450             CapDiagKind);
   1451 }
   1452 
   1453 namespace {
   1454 /// \brief We use this class to visit different types of expressions in
   1455 /// CFGBlocks, and build up the lockset.
   1456 /// An expression may cause us to add or remove locks from the lockset, or else
   1457 /// output error messages related to missing locks.
   1458 /// FIXME: In future, we may be able to not inherit from a visitor.
   1459 class BuildLockset : public StmtVisitor<BuildLockset> {
   1460   friend class ThreadSafetyAnalyzer;
   1461 
   1462   ThreadSafetyAnalyzer *Analyzer;
   1463   FactSet FSet;
   1464   LocalVariableMap::Context LVarCtx;
   1465   unsigned CtxIndex;
   1466 
   1467   // helper functions
   1468   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
   1469                           Expr *MutexExp, ProtectedOperationKind POK,
   1470                           StringRef DiagKind, SourceLocation Loc);
   1471   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
   1472                        StringRef DiagKind);
   1473 
   1474   void checkAccess(const Expr *Exp, AccessKind AK,
   1475                    ProtectedOperationKind POK = POK_VarAccess);
   1476   void checkPtAccess(const Expr *Exp, AccessKind AK,
   1477                      ProtectedOperationKind POK = POK_VarAccess);
   1478 
   1479   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
   1480 
   1481 public:
   1482   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
   1483     : StmtVisitor<BuildLockset>(),
   1484       Analyzer(Anlzr),
   1485       FSet(Info.EntrySet),
   1486       LVarCtx(Info.EntryContext),
   1487       CtxIndex(Info.EntryIndex)
   1488   {}
   1489 
   1490   void VisitUnaryOperator(UnaryOperator *UO);
   1491   void VisitBinaryOperator(BinaryOperator *BO);
   1492   void VisitCastExpr(CastExpr *CE);
   1493   void VisitCallExpr(CallExpr *Exp);
   1494   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
   1495   void VisitDeclStmt(DeclStmt *S);
   1496 };
   1497 } // namespace
   1498 
   1499 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
   1500 /// of at least the passed in AccessKind.
   1501 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
   1502                                       AccessKind AK, Expr *MutexExp,
   1503                                       ProtectedOperationKind POK,
   1504                                       StringRef DiagKind, SourceLocation Loc) {
   1505   LockKind LK = getLockKindFromAccessKind(AK);
   1506 
   1507   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
   1508   if (Cp.isInvalid()) {
   1509     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
   1510     return;
   1511   } else if (Cp.shouldIgnore()) {
   1512     return;
   1513   }
   1514 
   1515   if (Cp.negative()) {
   1516     // Negative capabilities act like locks excluded
   1517     FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
   1518     if (LDat) {
   1519       Analyzer->Handler.handleFunExcludesLock(
   1520           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
   1521       return;
   1522     }
   1523 
   1524     // If this does not refer to a negative capability in the same class,
   1525     // then stop here.
   1526     if (!Analyzer->inCurrentScope(Cp))
   1527       return;
   1528 
   1529     // Otherwise the negative requirement must be propagated to the caller.
   1530     LDat = FSet.findLock(Analyzer->FactMan, Cp);
   1531     if (!LDat) {
   1532       Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
   1533                                            LK_Shared, Loc);
   1534     }
   1535     return;
   1536   }
   1537 
   1538   FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
   1539   bool NoError = true;
   1540   if (!LDat) {
   1541     // No exact match found.  Look for a partial match.
   1542     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
   1543     if (LDat) {
   1544       // Warn that there's no precise match.
   1545       std::string PartMatchStr = LDat->toString();
   1546       StringRef   PartMatchName(PartMatchStr);
   1547       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1548                                            LK, Loc, &PartMatchName);
   1549     } else {
   1550       // Warn that there's no match at all.
   1551       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1552                                            LK, Loc);
   1553     }
   1554     NoError = false;
   1555   }
   1556   // Make sure the mutex we found is the right kind.
   1557   if (NoError && LDat && !LDat->isAtLeast(LK)) {
   1558     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
   1559                                          LK, Loc);
   1560   }
   1561 }
   1562 
   1563 /// \brief Warn if the LSet contains the given lock.
   1564 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
   1565                                    Expr *MutexExp, StringRef DiagKind) {
   1566   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
   1567   if (Cp.isInvalid()) {
   1568     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
   1569     return;
   1570   } else if (Cp.shouldIgnore()) {
   1571     return;
   1572   }
   1573 
   1574   FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
   1575   if (LDat) {
   1576     Analyzer->Handler.handleFunExcludesLock(
   1577         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
   1578   }
   1579 }
   1580 
   1581 /// \brief Checks guarded_by and pt_guarded_by attributes.
   1582 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
   1583 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
   1584 /// Similarly, we check if the access is to an expression that dereferences
   1585 /// a pointer marked with pt_guarded_by.
   1586 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
   1587                                ProtectedOperationKind POK) {
   1588   Exp = Exp->IgnoreParenCasts();
   1589 
   1590   SourceLocation Loc = Exp->getExprLoc();
   1591 
   1592   // Local variables of reference type cannot be re-assigned;
   1593   // map them to their initializer.
   1594   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
   1595     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
   1596     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
   1597       if (const auto *E = VD->getInit()) {
   1598         Exp = E;
   1599         continue;
   1600       }
   1601     }
   1602     break;
   1603   }
   1604 
   1605   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
   1606     // For dereferences
   1607     if (UO->getOpcode() == clang::UO_Deref)
   1608       checkPtAccess(UO->getSubExpr(), AK, POK);
   1609     return;
   1610   }
   1611 
   1612   if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
   1613     checkPtAccess(AE->getLHS(), AK, POK);
   1614     return;
   1615   }
   1616 
   1617   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
   1618     if (ME->isArrow())
   1619       checkPtAccess(ME->getBase(), AK, POK);
   1620     else
   1621       checkAccess(ME->getBase(), AK, POK);
   1622   }
   1623 
   1624   const ValueDecl *D = getValueDecl(Exp);
   1625   if (!D || !D->hasAttrs())
   1626     return;
   1627 
   1628   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
   1629     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
   1630   }
   1631 
   1632   for (const auto *I : D->specific_attrs<GuardedByAttr>())
   1633     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
   1634                        ClassifyDiagnostic(I), Loc);
   1635 }
   1636 
   1637 
   1638 /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
   1639 /// POK is the same  operationKind that was passed to checkAccess.
   1640 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
   1641                                  ProtectedOperationKind POK) {
   1642   while (true) {
   1643     if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
   1644       Exp = PE->getSubExpr();
   1645       continue;
   1646     }
   1647     if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
   1648       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
   1649         // If it's an actual array, and not a pointer, then it's elements
   1650         // are protected by GUARDED_BY, not PT_GUARDED_BY;
   1651         checkAccess(CE->getSubExpr(), AK, POK);
   1652         return;
   1653       }
   1654       Exp = CE->getSubExpr();
   1655       continue;
   1656     }
   1657     break;
   1658   }
   1659 
   1660   // Pass by reference warnings are under a different flag.
   1661   ProtectedOperationKind PtPOK = POK_VarDereference;
   1662   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
   1663 
   1664   const ValueDecl *D = getValueDecl(Exp);
   1665   if (!D || !D->hasAttrs())
   1666     return;
   1667 
   1668   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
   1669     Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
   1670                                         Exp->getExprLoc());
   1671 
   1672   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
   1673     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
   1674                        ClassifyDiagnostic(I), Exp->getExprLoc());
   1675 }
   1676 
   1677 /// \brief Process a function call, method call, constructor call,
   1678 /// or destructor call.  This involves looking at the attributes on the
   1679 /// corresponding function/method/constructor/destructor, issuing warnings,
   1680 /// and updating the locksets accordingly.
   1681 ///
   1682 /// FIXME: For classes annotated with one of the guarded annotations, we need
   1683 /// to treat const method calls as reads and non-const method calls as writes,
   1684 /// and check that the appropriate locks are held. Non-const method calls with
   1685 /// the same signature as const method calls can be also treated as reads.
   1686 ///
   1687 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
   1688   SourceLocation Loc = Exp->getExprLoc();
   1689   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
   1690   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
   1691   CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
   1692   StringRef CapDiagKind = "mutex";
   1693 
   1694   // Figure out if we're calling the constructor of scoped lockable class
   1695   bool isScopedVar = false;
   1696   if (VD) {
   1697     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
   1698       const CXXRecordDecl* PD = CD->getParent();
   1699       if (PD && PD->hasAttr<ScopedLockableAttr>())
   1700         isScopedVar = true;
   1701     }
   1702   }
   1703 
   1704   for(Attr *Atconst : D->attrs()) {
   1705     Attr* At = const_cast<Attr*>(Atconst);
   1706     switch (At->getKind()) {
   1707       // When we encounter a lock function, we need to add the lock to our
   1708       // lockset.
   1709       case attr::AcquireCapability: {
   1710         auto *A = cast<AcquireCapabilityAttr>(At);
   1711         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
   1712                                             : ExclusiveLocksToAdd,
   1713                               A, Exp, D, VD);
   1714 
   1715         CapDiagKind = ClassifyDiagnostic(A);
   1716         break;
   1717       }
   1718 
   1719       // An assert will add a lock to the lockset, but will not generate
   1720       // a warning if it is already there, and will not generate a warning
   1721       // if it is not removed.
   1722       case attr::AssertExclusiveLock: {
   1723         AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
   1724 
   1725         CapExprSet AssertLocks;
   1726         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1727         for (const auto &AssertLock : AssertLocks)
   1728           Analyzer->addLock(FSet,
   1729                             llvm::make_unique<LockableFactEntry>(
   1730                                 AssertLock, LK_Exclusive, Loc, false, true),
   1731                             ClassifyDiagnostic(A));
   1732         break;
   1733       }
   1734       case attr::AssertSharedLock: {
   1735         AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
   1736 
   1737         CapExprSet AssertLocks;
   1738         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
   1739         for (const auto &AssertLock : AssertLocks)
   1740           Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1741                                       AssertLock, LK_Shared, Loc, false, true),
   1742                             ClassifyDiagnostic(A));
   1743         break;
   1744       }
   1745 
   1746       // When we encounter an unlock function, we need to remove unlocked
   1747       // mutexes from the lockset, and flag a warning if they are not there.
   1748       case attr::ReleaseCapability: {
   1749         auto *A = cast<ReleaseCapabilityAttr>(At);
   1750         if (A->isGeneric())
   1751           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
   1752         else if (A->isShared())
   1753           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
   1754         else
   1755           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
   1756 
   1757         CapDiagKind = ClassifyDiagnostic(A);
   1758         break;
   1759       }
   1760 
   1761       case attr::RequiresCapability: {
   1762         RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
   1763         for (auto *Arg : A->args()) {
   1764           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
   1765                              POK_FunctionCall, ClassifyDiagnostic(A),
   1766                              Exp->getExprLoc());
   1767           // use for adopting a lock
   1768           if (isScopedVar) {
   1769             Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
   1770                                                 : ScopedExclusiveReqs,
   1771                                   A, Exp, D, VD);
   1772           }
   1773         }
   1774         break;
   1775       }
   1776 
   1777       case attr::LocksExcluded: {
   1778         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
   1779         for (auto *Arg : A->args())
   1780           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
   1781         break;
   1782       }
   1783 
   1784       // Ignore attributes unrelated to thread-safety
   1785       default:
   1786         break;
   1787     }
   1788   }
   1789 
   1790   // Add locks.
   1791   for (const auto &M : ExclusiveLocksToAdd)
   1792     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1793                                 M, LK_Exclusive, Loc, isScopedVar),
   1794                       CapDiagKind);
   1795   for (const auto &M : SharedLocksToAdd)
   1796     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
   1797                                 M, LK_Shared, Loc, isScopedVar),
   1798                       CapDiagKind);
   1799 
   1800   if (isScopedVar) {
   1801     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
   1802     SourceLocation MLoc = VD->getLocation();
   1803     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
   1804     // FIXME: does this store a pointer to DRE?
   1805     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
   1806 
   1807     std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
   1808               std::back_inserter(ExclusiveLocksToAdd));
   1809     std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
   1810               std::back_inserter(SharedLocksToAdd));
   1811     Analyzer->addLock(FSet,
   1812                       llvm::make_unique<ScopedLockableFactEntry>(
   1813                           Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
   1814                       CapDiagKind);
   1815   }
   1816 
   1817   // Remove locks.
   1818   // FIXME -- should only fully remove if the attribute refers to 'this'.
   1819   bool Dtor = isa<CXXDestructorDecl>(D);
   1820   for (const auto &M : ExclusiveLocksToRemove)
   1821     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
   1822   for (const auto &M : SharedLocksToRemove)
   1823     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
   1824   for (const auto &M : GenericLocksToRemove)
   1825     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
   1826 }
   1827 
   1828 
   1829 /// \brief For unary operations which read and write a variable, we need to
   1830 /// check whether we hold any required mutexes. Reads are checked in
   1831 /// VisitCastExpr.
   1832 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
   1833   switch (UO->getOpcode()) {
   1834     case clang::UO_PostDec:
   1835     case clang::UO_PostInc:
   1836     case clang::UO_PreDec:
   1837     case clang::UO_PreInc: {
   1838       checkAccess(UO->getSubExpr(), AK_Written);
   1839       break;
   1840     }
   1841     default:
   1842       break;
   1843   }
   1844 }
   1845 
   1846 /// For binary operations which assign to a variable (writes), we need to check
   1847 /// whether we hold any required mutexes.
   1848 /// FIXME: Deal with non-primitive types.
   1849 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
   1850   if (!BO->isAssignmentOp())
   1851     return;
   1852 
   1853   // adjust the context
   1854   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
   1855 
   1856   checkAccess(BO->getLHS(), AK_Written);
   1857 }
   1858 
   1859 
   1860 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
   1861 /// need to ensure we hold any required mutexes.
   1862 /// FIXME: Deal with non-primitive types.
   1863 void BuildLockset::VisitCastExpr(CastExpr *CE) {
   1864   if (CE->getCastKind() != CK_LValueToRValue)
   1865     return;
   1866   checkAccess(CE->getSubExpr(), AK_Read);
   1867 }
   1868 
   1869 
   1870 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
   1871   bool ExamineArgs = true;
   1872   bool OperatorFun = false;
   1873 
   1874   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
   1875     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
   1876     // ME can be null when calling a method pointer
   1877     CXXMethodDecl *MD = CE->getMethodDecl();
   1878 
   1879     if (ME && MD) {
   1880       if (ME->isArrow()) {
   1881         if (MD->isConst()) {
   1882           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   1883         } else {  // FIXME -- should be AK_Written
   1884           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
   1885         }
   1886       } else {
   1887         if (MD->isConst())
   1888           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   1889         else     // FIXME -- should be AK_Written
   1890           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
   1891       }
   1892     }
   1893   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
   1894     OperatorFun = true;
   1895 
   1896     auto OEop = OE->getOperator();
   1897     switch (OEop) {
   1898       case OO_Equal: {
   1899         ExamineArgs = false;
   1900         const Expr *Target = OE->getArg(0);
   1901         const Expr *Source = OE->getArg(1);
   1902         checkAccess(Target, AK_Written);
   1903         checkAccess(Source, AK_Read);
   1904         break;
   1905       }
   1906       case OO_Star:
   1907       case OO_Arrow:
   1908       case OO_Subscript: {
   1909         const Expr *Obj = OE->getArg(0);
   1910         checkAccess(Obj, AK_Read);
   1911         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
   1912           // Grrr.  operator* can be multiplication...
   1913           checkPtAccess(Obj, AK_Read);
   1914         }
   1915         break;
   1916       }
   1917       default: {
   1918         // TODO: get rid of this, and rely on pass-by-ref instead.
   1919         const Expr *Obj = OE->getArg(0);
   1920         checkAccess(Obj, AK_Read);
   1921         break;
   1922       }
   1923     }
   1924   }
   1925 
   1926   if (ExamineArgs) {
   1927     if (FunctionDecl *FD = Exp->getDirectCallee()) {
   1928 
   1929       // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
   1930       // only turns off checking within the body of a function, but we also
   1931       // use it to turn off checking in arguments to the function.  This
   1932       // could result in some false negatives, but the alternative is to
   1933       // create yet another attribute.
   1934       //
   1935       if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) {
   1936         unsigned Fn = FD->getNumParams();
   1937         unsigned Cn = Exp->getNumArgs();
   1938         unsigned Skip = 0;
   1939 
   1940         unsigned i = 0;
   1941         if (OperatorFun) {
   1942           if (isa<CXXMethodDecl>(FD)) {
   1943             // First arg in operator call is implicit self argument,
   1944             // and doesn't appear in the FunctionDecl.
   1945             Skip = 1;
   1946             Cn--;
   1947           } else {
   1948             // Ignore the first argument of operators; it's been checked above.
   1949             i = 1;
   1950           }
   1951         }
   1952         // Ignore default arguments
   1953         unsigned n = (Fn < Cn) ? Fn : Cn;
   1954 
   1955         for (; i < n; ++i) {
   1956           ParmVarDecl* Pvd = FD->getParamDecl(i);
   1957           Expr* Arg = Exp->getArg(i+Skip);
   1958           QualType Qt = Pvd->getType();
   1959           if (Qt->isReferenceType())
   1960             checkAccess(Arg, AK_Read, POK_PassByRef);
   1961         }
   1962       }
   1963     }
   1964   }
   1965 
   1966   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1967   if(!D || !D->hasAttrs())
   1968     return;
   1969   handleCall(Exp, D);
   1970 }
   1971 
   1972 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
   1973   const CXXConstructorDecl *D = Exp->getConstructor();
   1974   if (D && D->isCopyConstructor()) {
   1975     const Expr* Source = Exp->getArg(0);
   1976     checkAccess(Source, AK_Read);
   1977   }
   1978   // FIXME -- only handles constructors in DeclStmt below.
   1979 }
   1980 
   1981 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
   1982   // adjust the context
   1983   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
   1984 
   1985   for (auto *D : S->getDeclGroup()) {
   1986     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
   1987       Expr *E = VD->getInit();
   1988       // handle constructors that involve temporaries
   1989       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
   1990         E = EWC->getSubExpr();
   1991 
   1992       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
   1993         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
   1994         if (!CtorD || !CtorD->hasAttrs())
   1995           return;
   1996         handleCall(CE, CtorD, VD);
   1997       }
   1998     }
   1999   }
   2000 }
   2001 
   2002 
   2003 
   2004 /// \brief Compute the intersection of two locksets and issue warnings for any
   2005 /// locks in the symmetric difference.
   2006 ///
   2007 /// This function is used at a merge point in the CFG when comparing the lockset
   2008 /// of each branch being merged. For example, given the following sequence:
   2009 /// A; if () then B; else C; D; we need to check that the lockset after B and C
   2010 /// are the same. In the event of a difference, we use the intersection of these
   2011 /// two locksets at the start of D.
   2012 ///
   2013 /// \param FSet1 The first lockset.
   2014 /// \param FSet2 The second lockset.
   2015 /// \param JoinLoc The location of the join point for error reporting
   2016 /// \param LEK1 The error message to report if a mutex is missing from LSet1
   2017 /// \param LEK2 The error message to report if a mutex is missing from Lset2
   2018 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
   2019                                             const FactSet &FSet2,
   2020                                             SourceLocation JoinLoc,
   2021                                             LockErrorKind LEK1,
   2022                                             LockErrorKind LEK2,
   2023                                             bool Modify) {
   2024   FactSet FSet1Orig = FSet1;
   2025 
   2026   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
   2027   for (const auto &Fact : FSet2) {
   2028     const FactEntry *LDat1 = nullptr;
   2029     const FactEntry *LDat2 = &FactMan[Fact];
   2030     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
   2031     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
   2032 
   2033     if (LDat1) {
   2034       if (LDat1->kind() != LDat2->kind()) {
   2035         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
   2036                                          LDat2->loc(), LDat1->loc());
   2037         if (Modify && LDat1->kind() != LK_Exclusive) {
   2038           // Take the exclusive lock, which is the one in FSet2.
   2039           *Iter1 = Fact;
   2040         }
   2041       }
   2042       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
   2043         // The non-asserted lock in FSet2 is the one we want to track.
   2044         *Iter1 = Fact;
   2045       }
   2046     } else {
   2047       LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
   2048                                            Handler);
   2049     }
   2050   }
   2051 
   2052   // Find locks in FSet1 that are not in FSet2, and remove them.
   2053   for (const auto &Fact : FSet1Orig) {
   2054     const FactEntry *LDat1 = &FactMan[Fact];
   2055     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
   2056 
   2057     if (!LDat2) {
   2058       LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
   2059                                            Handler);
   2060       if (Modify)
   2061         FSet1.removeLock(FactMan, *LDat1);
   2062     }
   2063   }
   2064 }
   2065 
   2066 
   2067 // Return true if block B never continues to its successors.
   2068 static bool neverReturns(const CFGBlock *B) {
   2069   if (B->hasNoReturnElement())
   2070     return true;
   2071   if (B->empty())
   2072     return false;
   2073 
   2074   CFGElement Last = B->back();
   2075   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
   2076     if (isa<CXXThrowExpr>(S->getStmt()))
   2077       return true;
   2078   }
   2079   return false;
   2080 }
   2081 
   2082 
   2083 /// \brief Check a function's CFG for thread-safety violations.
   2084 ///
   2085 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2086 /// at the end of each block, and issue warnings for thread safety violations.
   2087 /// Each block in the CFG is traversed exactly once.
   2088 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
   2089   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
   2090   // For now, we just use the walker to set things up.
   2091   threadSafety::CFGWalker walker;
   2092   if (!walker.init(AC))
   2093     return;
   2094 
   2095   // AC.dumpCFG(true);
   2096   // threadSafety::printSCFG(walker);
   2097 
   2098   CFG *CFGraph = walker.getGraph();
   2099   const NamedDecl *D = walker.getDecl();
   2100   const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
   2101   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
   2102 
   2103   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
   2104     return;
   2105 
   2106   // FIXME: Do something a bit more intelligent inside constructor and
   2107   // destructor code.  Constructors and destructors must assume unique access
   2108   // to 'this', so checks on member variable access is disabled, but we should
   2109   // still enable checks on other objects.
   2110   if (isa<CXXConstructorDecl>(D))
   2111     return;  // Don't check inside constructors.
   2112   if (isa<CXXDestructorDecl>(D))
   2113     return;  // Don't check inside destructors.
   2114 
   2115   Handler.enterFunction(CurrentFunction);
   2116 
   2117   BlockInfo.resize(CFGraph->getNumBlockIDs(),
   2118     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
   2119 
   2120   // We need to explore the CFG via a "topological" ordering.
   2121   // That way, we will be guaranteed to have information about required
   2122   // predecessor locksets when exploring a new block.
   2123   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
   2124   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   2125 
   2126   // Mark entry block as reachable
   2127   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
   2128 
   2129   // Compute SSA names for local variables
   2130   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
   2131 
   2132   // Fill in source locations for all CFGBlocks.
   2133   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
   2134 
   2135   CapExprSet ExclusiveLocksAcquired;
   2136   CapExprSet SharedLocksAcquired;
   2137   CapExprSet LocksReleased;
   2138 
   2139   // Add locks from exclusive_locks_required and shared_locks_required
   2140   // to initial lockset. Also turn off checking for lock and unlock functions.
   2141   // FIXME: is there a more intelligent way to check lock/unlock functions?
   2142   if (!SortedGraph->empty() && D->hasAttrs()) {
   2143     const CFGBlock *FirstBlock = *SortedGraph->begin();
   2144     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
   2145 
   2146     CapExprSet ExclusiveLocksToAdd;
   2147     CapExprSet SharedLocksToAdd;
   2148     StringRef CapDiagKind = "mutex";
   2149 
   2150     SourceLocation Loc = D->getLocation();
   2151     for (const auto *Attr : D->attrs()) {
   2152       Loc = Attr->getLocation();
   2153       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
   2154         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
   2155                     nullptr, D);
   2156         CapDiagKind = ClassifyDiagnostic(A);
   2157       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
   2158         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
   2159         // We must ignore such methods.
   2160         if (A->args_size() == 0)
   2161           return;
   2162         // FIXME -- deal with exclusive vs. shared unlock functions?
   2163         getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
   2164         getMutexIDs(LocksReleased, A, nullptr, D);
   2165         CapDiagKind = ClassifyDiagnostic(A);
   2166       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
   2167         if (A->args_size() == 0)
   2168           return;
   2169         getMutexIDs(A->isShared() ? SharedLocksAcquired
   2170                                   : ExclusiveLocksAcquired,
   2171                     A, nullptr, D);
   2172         CapDiagKind = ClassifyDiagnostic(A);
   2173       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
   2174         // Don't try to check trylock functions for now
   2175         return;
   2176       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
   2177         // Don't try to check trylock functions for now
   2178         return;
   2179       }
   2180     }
   2181 
   2182     // FIXME -- Loc can be wrong here.
   2183     for (const auto &Mu : ExclusiveLocksToAdd) {
   2184       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
   2185       Entry->setDeclared(true);
   2186       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
   2187     }
   2188     for (const auto &Mu : SharedLocksToAdd) {
   2189       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
   2190       Entry->setDeclared(true);
   2191       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
   2192     }
   2193   }
   2194 
   2195   for (const auto *CurrBlock : *SortedGraph) {
   2196     int CurrBlockID = CurrBlock->getBlockID();
   2197     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   2198 
   2199     // Use the default initial lockset in case there are no predecessors.
   2200     VisitedBlocks.insert(CurrBlock);
   2201 
   2202     // Iterate through the predecessor blocks and warn if the lockset for all
   2203     // predecessors is not the same. We take the entry lockset of the current
   2204     // block to be the intersection of all previous locksets.
   2205     // FIXME: By keeping the intersection, we may output more errors in future
   2206     // for a lock which is not in the intersection, but was in the union. We
   2207     // may want to also keep the union in future. As an example, let's say
   2208     // the intersection contains Mutex L, and the union contains L and M.
   2209     // Later we unlock M. At this point, we would output an error because we
   2210     // never locked M; although the real error is probably that we forgot to
   2211     // lock M on all code paths. Conversely, let's say that later we lock M.
   2212     // In this case, we should compare against the intersection instead of the
   2213     // union because the real error is probably that we forgot to unlock M on
   2214     // all code paths.
   2215     bool LocksetInitialized = false;
   2216     SmallVector<CFGBlock *, 8> SpecialBlocks;
   2217     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   2218          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   2219 
   2220       // if *PI -> CurrBlock is a back edge
   2221       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
   2222         continue;
   2223 
   2224       int PrevBlockID = (*PI)->getBlockID();
   2225       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2226 
   2227       // Ignore edges from blocks that can't return.
   2228       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
   2229         continue;
   2230 
   2231       // Okay, we can reach this block from the entry.
   2232       CurrBlockInfo->Reachable = true;
   2233 
   2234       // If the previous block ended in a 'continue' or 'break' statement, then
   2235       // a difference in locksets is probably due to a bug in that block, rather
   2236       // than in some other predecessor. In that case, keep the other
   2237       // predecessor's lockset.
   2238       if (const Stmt *Terminator = (*PI)->getTerminator()) {
   2239         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
   2240           SpecialBlocks.push_back(*PI);
   2241           continue;
   2242         }
   2243       }
   2244 
   2245       FactSet PrevLockset;
   2246       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
   2247 
   2248       if (!LocksetInitialized) {
   2249         CurrBlockInfo->EntrySet = PrevLockset;
   2250         LocksetInitialized = true;
   2251       } else {
   2252         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2253                          CurrBlockInfo->EntryLoc,
   2254                          LEK_LockedSomePredecessors);
   2255       }
   2256     }
   2257 
   2258     // Skip rest of block if it's not reachable.
   2259     if (!CurrBlockInfo->Reachable)
   2260       continue;
   2261 
   2262     // Process continue and break blocks. Assume that the lockset for the
   2263     // resulting block is unaffected by any discrepancies in them.
   2264     for (const auto *PrevBlock : SpecialBlocks) {
   2265       int PrevBlockID = PrevBlock->getBlockID();
   2266       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2267 
   2268       if (!LocksetInitialized) {
   2269         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
   2270         LocksetInitialized = true;
   2271       } else {
   2272         // Determine whether this edge is a loop terminator for diagnostic
   2273         // purposes. FIXME: A 'break' statement might be a loop terminator, but
   2274         // it might also be part of a switch. Also, a subsequent destructor
   2275         // might add to the lockset, in which case the real issue might be a
   2276         // double lock on the other path.
   2277         const Stmt *Terminator = PrevBlock->getTerminator();
   2278         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
   2279 
   2280         FactSet PrevLockset;
   2281         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
   2282                        PrevBlock, CurrBlock);
   2283 
   2284         // Do not update EntrySet.
   2285         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2286                          PrevBlockInfo->ExitLoc,
   2287                          IsLoop ? LEK_LockedSomeLoopIterations
   2288                                 : LEK_LockedSomePredecessors,
   2289                          false);
   2290       }
   2291     }
   2292 
   2293     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
   2294 
   2295     // Visit all the statements in the basic block.
   2296     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   2297          BE = CurrBlock->end(); BI != BE; ++BI) {
   2298       switch (BI->getKind()) {
   2299         case CFGElement::Statement: {
   2300           CFGStmt CS = BI->castAs<CFGStmt>();
   2301           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
   2302           break;
   2303         }
   2304         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
   2305         case CFGElement::AutomaticObjectDtor: {
   2306           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
   2307           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
   2308               AD.getDestructorDecl(AC.getASTContext()));
   2309           if (!DD->hasAttrs())
   2310             break;
   2311 
   2312           // Create a dummy expression,
   2313           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
   2314           DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
   2315                           VK_LValue, AD.getTriggerStmt()->getLocEnd());
   2316           LocksetBuilder.handleCall(&DRE, DD);
   2317           break;
   2318         }
   2319         default:
   2320           break;
   2321       }
   2322     }
   2323     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
   2324 
   2325     // For every back edge from CurrBlock (the end of the loop) to another block
   2326     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
   2327     // the one held at the beginning of FirstLoopBlock. We can look up the
   2328     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
   2329     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   2330          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   2331 
   2332       // if CurrBlock -> *SI is *not* a back edge
   2333       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
   2334         continue;
   2335 
   2336       CFGBlock *FirstLoopBlock = *SI;
   2337       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
   2338       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
   2339       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
   2340                        PreLoop->EntryLoc,
   2341                        LEK_LockedSomeLoopIterations,
   2342                        false);
   2343     }
   2344   }
   2345 
   2346   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
   2347   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
   2348 
   2349   // Skip the final check if the exit block is unreachable.
   2350   if (!Final->Reachable)
   2351     return;
   2352 
   2353   // By default, we expect all locks held on entry to be held on exit.
   2354   FactSet ExpectedExitSet = Initial->EntrySet;
   2355 
   2356   // Adjust the expected exit set by adding or removing locks, as declared
   2357   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
   2358   // issue the appropriate warning.
   2359   // FIXME: the location here is not quite right.
   2360   for (const auto &Lock : ExclusiveLocksAcquired)
   2361     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
   2362                                          Lock, LK_Exclusive, D->getLocation()));
   2363   for (const auto &Lock : SharedLocksAcquired)
   2364     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
   2365                                          Lock, LK_Shared, D->getLocation()));
   2366   for (const auto &Lock : LocksReleased)
   2367     ExpectedExitSet.removeLock(FactMan, Lock);
   2368 
   2369   // FIXME: Should we call this function for all blocks which exit the function?
   2370   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
   2371                    Final->ExitLoc,
   2372                    LEK_LockedAtEndOfFunction,
   2373                    LEK_NotLockedAtEndOfFunction,
   2374                    false);
   2375 
   2376   Handler.leaveFunction(CurrentFunction);
   2377 }
   2378 
   2379 
   2380 /// \brief Check a function's CFG for thread-safety violations.
   2381 ///
   2382 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2383 /// at the end of each block, and issue warnings for thread safety violations.
   2384 /// Each block in the CFG is traversed exactly once.
   2385 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
   2386                                            ThreadSafetyHandler &Handler,
   2387                                            BeforeSet **BSet) {
   2388   if (!*BSet)
   2389     *BSet = new BeforeSet;
   2390   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
   2391   Analyzer.runAnalysis(AC);
   2392 }
   2393 
   2394 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
   2395 
   2396 /// \brief Helper function that returns a LockKind required for the given level
   2397 /// of access.
   2398 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
   2399   switch (AK) {
   2400     case AK_Read :
   2401       return LK_Shared;
   2402     case AK_Written :
   2403       return LK_Exclusive;
   2404   }
   2405   llvm_unreachable("Unknown AccessKind");
   2406 }
   2407