1 Compiler-RT
2 ================================
3
4 This directory and its subdirectories contain source code for the compiler
5 support routines.
6
7 Compiler-RT is open source software. You may freely distribute it under the
8 terms of the license agreement found in LICENSE.txt.
9
10 ================================
11
12 This is a replacement library for libgcc. Each function is contained
13 in its own file. Each function has a corresponding unit test under
14 test/Unit.
15
16 A rudimentary script to test each file is in the file called
17 test/Unit/test.
18
19 Here is the specification for this library:
20
21 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23 Here is a synopsis of the contents of this library:
24
25 typedef int si_int;
26 typedef unsigned su_int;
27
28 typedef long long di_int;
29 typedef unsigned long long du_int;
30
31 // Integral bit manipulation
32
33 di_int __ashldi3(di_int a, si_int b); // a << b
34 ti_int __ashlti3(ti_int a, si_int b); // a << b
35
36 di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
37 ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
38 di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
39 ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
40
41 si_int __clzsi2(si_int a); // count leading zeros
42 si_int __clzdi2(di_int a); // count leading zeros
43 si_int __clzti2(ti_int a); // count leading zeros
44 si_int __ctzsi2(si_int a); // count trailing zeros
45 si_int __ctzdi2(di_int a); // count trailing zeros
46 si_int __ctzti2(ti_int a); // count trailing zeros
47
48 si_int __ffsdi2(di_int a); // find least significant 1 bit
49 si_int __ffsti2(ti_int a); // find least significant 1 bit
50
51 si_int __paritysi2(si_int a); // bit parity
52 si_int __paritydi2(di_int a); // bit parity
53 si_int __parityti2(ti_int a); // bit parity
54
55 si_int __popcountsi2(si_int a); // bit population
56 si_int __popcountdi2(di_int a); // bit population
57 si_int __popcountti2(ti_int a); // bit population
58
59 uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
60 uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
61
62 // Integral arithmetic
63
64 di_int __negdi2 (di_int a); // -a
65 ti_int __negti2 (ti_int a); // -a
66 di_int __muldi3 (di_int a, di_int b); // a * b
67 ti_int __multi3 (ti_int a, ti_int b); // a * b
68 si_int __divsi3 (si_int a, si_int b); // a / b signed
69 di_int __divdi3 (di_int a, di_int b); // a / b signed
70 ti_int __divti3 (ti_int a, ti_int b); // a / b signed
71 su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
72 du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
73 tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
74 si_int __modsi3 (si_int a, si_int b); // a % b signed
75 di_int __moddi3 (di_int a, di_int b); // a % b signed
76 ti_int __modti3 (ti_int a, ti_int b); // a % b signed
77 su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
78 du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
79 tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
80 du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
81 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
82 su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
83 si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
84
85
86
87 // Integral arithmetic with trapping overflow
88
89 si_int __absvsi2(si_int a); // abs(a)
90 di_int __absvdi2(di_int a); // abs(a)
91 ti_int __absvti2(ti_int a); // abs(a)
92
93 si_int __negvsi2(si_int a); // -a
94 di_int __negvdi2(di_int a); // -a
95 ti_int __negvti2(ti_int a); // -a
96
97 si_int __addvsi3(si_int a, si_int b); // a + b
98 di_int __addvdi3(di_int a, di_int b); // a + b
99 ti_int __addvti3(ti_int a, ti_int b); // a + b
100
101 si_int __subvsi3(si_int a, si_int b); // a - b
102 di_int __subvdi3(di_int a, di_int b); // a - b
103 ti_int __subvti3(ti_int a, ti_int b); // a - b
104
105 si_int __mulvsi3(si_int a, si_int b); // a * b
106 di_int __mulvdi3(di_int a, di_int b); // a * b
107 ti_int __mulvti3(ti_int a, ti_int b); // a * b
108
109
110 // Integral arithmetic which returns if overflow
111
112 si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
113 di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
114 ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
115 one if result not in signed range
116
117
118 // Integral comparison: a < b -> 0
119 // a == b -> 1
120 // a > b -> 2
121
122 si_int __cmpdi2 (di_int a, di_int b);
123 si_int __cmpti2 (ti_int a, ti_int b);
124 si_int __ucmpdi2(du_int a, du_int b);
125 si_int __ucmpti2(tu_int a, tu_int b);
126
127 // Integral / floating point conversion
128
129 di_int __fixsfdi( float a);
130 di_int __fixdfdi( double a);
131 di_int __fixxfdi(long double a);
132
133 ti_int __fixsfti( float a);
134 ti_int __fixdfti( double a);
135 ti_int __fixxfti(long double a);
136 uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
137
138 su_int __fixunssfsi( float a);
139 su_int __fixunsdfsi( double a);
140 su_int __fixunsxfsi(long double a);
141
142 du_int __fixunssfdi( float a);
143 du_int __fixunsdfdi( double a);
144 du_int __fixunsxfdi(long double a);
145
146 tu_int __fixunssfti( float a);
147 tu_int __fixunsdfti( double a);
148 tu_int __fixunsxfti(long double a);
149 uint64_t __fixunstfdi(long double input); // ppc only
150
151 float __floatdisf(di_int a);
152 double __floatdidf(di_int a);
153 long double __floatdixf(di_int a);
154 long double __floatditf(int64_t a); // ppc only
155
156 float __floattisf(ti_int a);
157 double __floattidf(ti_int a);
158 long double __floattixf(ti_int a);
159
160 float __floatundisf(du_int a);
161 double __floatundidf(du_int a);
162 long double __floatundixf(du_int a);
163 long double __floatunditf(uint64_t a); // ppc only
164
165 float __floatuntisf(tu_int a);
166 double __floatuntidf(tu_int a);
167 long double __floatuntixf(tu_int a);
168
169 // Floating point raised to integer power
170
171 float __powisf2( float a, si_int b); // a ^ b
172 double __powidf2( double a, si_int b); // a ^ b
173 long double __powixf2(long double a, si_int b); // a ^ b
174 long double __powitf2(long double a, si_int b); // ppc only, a ^ b
175
176 // Complex arithmetic
177
178 // (a + ib) * (c + id)
179
180 float _Complex __mulsc3( float a, float b, float c, float d);
181 double _Complex __muldc3(double a, double b, double c, double d);
182 long double _Complex __mulxc3(long double a, long double b,
183 long double c, long double d);
184 long double _Complex __multc3(long double a, long double b,
185 long double c, long double d); // ppc only
186
187 // (a + ib) / (c + id)
188
189 float _Complex __divsc3( float a, float b, float c, float d);
190 double _Complex __divdc3(double a, double b, double c, double d);
191 long double _Complex __divxc3(long double a, long double b,
192 long double c, long double d);
193 long double _Complex __divtc3(long double a, long double b,
194 long double c, long double d); // ppc only
195
196
197 // Runtime support
198
199 // __clear_cache() is used to tell process that new instructions have been
200 // written to an address range. Necessary on processors that do not have
201 // a unified instruction and data cache.
202 void __clear_cache(void* start, void* end);
203
204 // __enable_execute_stack() is used with nested functions when a trampoline
205 // function is written onto the stack and that page range needs to be made
206 // executable.
207 void __enable_execute_stack(void* addr);
208
209 // __gcc_personality_v0() is normally only called by the system unwinder.
210 // C code (as opposed to C++) normally does not need a personality function
211 // because there are no catch clauses or destructors to be run. But there
212 // is a C language extension __attribute__((cleanup(func))) which marks local
213 // variables as needing the cleanup function "func" to be run when the
214 // variable goes out of scope. That includes when an exception is thrown,
215 // so a personality handler is needed.
216 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
217 uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
218 _Unwind_Context_t context);
219
220 // for use with some implementations of assert() in <assert.h>
221 void __eprintf(const char* format, const char* assertion_expression,
222 const char* line, const char* file);
223
224 // for systems with emulated thread local storage
225 void* __emutls_get_address(struct __emutls_control*);
226
227
228 // Power PC specific functions
229
230 // There is no C interface to the saveFP/restFP functions. They are helper
231 // functions called by the prolog and epilog of functions that need to save
232 // a number of non-volatile float point registers.
233 saveFP
234 restFP
235
236 // PowerPC has a standard template for trampoline functions. This function
237 // generates a custom trampoline function with the specific realFunc
238 // and localsPtr values.
239 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
240 const void* realFunc, void* localsPtr);
241
242 // adds two 128-bit double-double precision values ( x + y )
243 long double __gcc_qadd(long double x, long double y);
244
245 // subtracts two 128-bit double-double precision values ( x - y )
246 long double __gcc_qsub(long double x, long double y);
247
248 // multiples two 128-bit double-double precision values ( x * y )
249 long double __gcc_qmul(long double x, long double y);
250
251 // divides two 128-bit double-double precision values ( x / y )
252 long double __gcc_qdiv(long double a, long double b);
253
254
255 // ARM specific functions
256
257 // There is no C interface to the switch* functions. These helper functions
258 // are only needed by Thumb1 code for efficient switch table generation.
259 switch16
260 switch32
261 switch8
262 switchu8
263
264 // There is no C interface to the *_vfp_d8_d15_regs functions. There are
265 // called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
266 // SJLJ for exceptions, each function with a catch clause or destuctors needs
267 // to save and restore all registers in it prolog and epliog. But there is
268 // no way to access vector and high float registers from thumb1 code, so the
269 // compiler must add call outs to these helper functions in the prolog and
270 // epilog.
271 restore_vfp_d8_d15_regs
272 save_vfp_d8_d15_regs
273
274
275 // Note: long ago ARM processors did not have floating point hardware support.
276 // Floating point was done in software and floating point parameters were
277 // passed in integer registers. When hardware support was added for floating
278 // point, new *vfp functions were added to do the same operations but with
279 // floating point parameters in floating point registers.
280
281 // Undocumented functions
282
283 float __addsf3vfp(float a, float b); // Appears to return a + b
284 double __adddf3vfp(double a, double b); // Appears to return a + b
285 float __divsf3vfp(float a, float b); // Appears to return a / b
286 double __divdf3vfp(double a, double b); // Appears to return a / b
287 int __eqsf2vfp(float a, float b); // Appears to return one
288 // iff a == b and neither is NaN.
289 int __eqdf2vfp(double a, double b); // Appears to return one
290 // iff a == b and neither is NaN.
291 double __extendsfdf2vfp(float a); // Appears to convert from
292 // float to double.
293 int __fixdfsivfp(double a); // Appears to convert from
294 // double to int.
295 int __fixsfsivfp(float a); // Appears to convert from
296 // float to int.
297 unsigned int __fixunssfsivfp(float a); // Appears to convert from
298 // float to unsigned int.
299 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
300 // double to unsigned int.
301 double __floatsidfvfp(int a); // Appears to convert from
302 // int to double.
303 float __floatsisfvfp(int a); // Appears to convert from
304 // int to float.
305 double __floatunssidfvfp(unsigned int a); // Appears to convert from
306 // unisgned int to double.
307 float __floatunssisfvfp(unsigned int a); // Appears to convert from
308 // unisgned int to float.
309 int __gedf2vfp(double a, double b); // Appears to return __gedf2
310 // (a >= b)
311 int __gesf2vfp(float a, float b); // Appears to return __gesf2
312 // (a >= b)
313 int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
314 // (a > b)
315 int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
316 // (a > b)
317 int __ledf2vfp(double a, double b); // Appears to return __ledf2
318 // (a <= b)
319 int __lesf2vfp(float a, float b); // Appears to return __lesf2
320 // (a <= b)
321 int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
322 // (a < b)
323 int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
324 // (a < b)
325 double __muldf3vfp(double a, double b); // Appears to return a * b
326 float __mulsf3vfp(float a, float b); // Appears to return a * b
327 int __nedf2vfp(double a, double b); // Appears to return __nedf2
328 // (a != b)
329 double __negdf2vfp(double a); // Appears to return -a
330 float __negsf2vfp(float a); // Appears to return -a
331 float __negsf2vfp(float a); // Appears to return -a
332 double __subdf3vfp(double a, double b); // Appears to return a - b
333 float __subsf3vfp(float a, float b); // Appears to return a - b
334 float __truncdfsf2vfp(double a); // Appears to convert from
335 // double to float.
336 int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
337 int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
338
339
340 Preconditions are listed for each function at the definition when there are any.
341 Any preconditions reflect the specification at
342 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
343
344 Assumptions are listed in "int_lib.h", and in individual files. Where possible
345 assumptions are checked at compile time.
346