Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_BICGSTAB_H
     12 #define EIGEN_BICGSTAB_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /** \internal Low-level bi conjugate gradient stabilized algorithm
     19   * \param mat The matrix A
     20   * \param rhs The right hand side vector b
     21   * \param x On input and initial solution, on output the computed solution.
     22   * \param precond A preconditioner being able to efficiently solve for an
     23   *                approximation of Ax=b (regardless of b)
     24   * \param iters On input the max number of iteration, on output the number of performed iterations.
     25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
     27   */
     28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
     30               const Preconditioner& precond, Index& iters,
     31               typename Dest::RealScalar& tol_error)
     32 {
     33   using std::sqrt;
     34   using std::abs;
     35   typedef typename Dest::RealScalar RealScalar;
     36   typedef typename Dest::Scalar Scalar;
     37   typedef Matrix<Scalar,Dynamic,1> VectorType;
     38   RealScalar tol = tol_error;
     39   Index maxIters = iters;
     40 
     41   Index n = mat.cols();
     42   VectorType r  = rhs - mat * x;
     43   VectorType r0 = r;
     44 
     45   RealScalar r0_sqnorm = r0.squaredNorm();
     46   RealScalar rhs_sqnorm = rhs.squaredNorm();
     47   if(rhs_sqnorm == 0)
     48   {
     49     x.setZero();
     50     return true;
     51   }
     52   Scalar rho    = 1;
     53   Scalar alpha  = 1;
     54   Scalar w      = 1;
     55 
     56   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
     57   VectorType y(n),  z(n);
     58   VectorType kt(n), ks(n);
     59 
     60   VectorType s(n), t(n);
     61 
     62   RealScalar tol2 = tol*tol*rhs_sqnorm;
     63   RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
     64   Index i = 0;
     65   Index restarts = 0;
     66 
     67   while ( r.squaredNorm() > tol2 && i<maxIters )
     68   {
     69     Scalar rho_old = rho;
     70 
     71     rho = r0.dot(r);
     72     if (abs(rho) < eps2*r0_sqnorm)
     73     {
     74       // The new residual vector became too orthogonal to the arbitrarily chosen direction r0
     75       // Let's restart with a new r0:
     76       r  = rhs - mat * x;
     77       r0 = r;
     78       rho = r0_sqnorm = r.squaredNorm();
     79       if(restarts++ == 0)
     80         i = 0;
     81     }
     82     Scalar beta = (rho/rho_old) * (alpha / w);
     83     p = r + beta * (p - w * v);
     84 
     85     y = precond.solve(p);
     86 
     87     v.noalias() = mat * y;
     88 
     89     alpha = rho / r0.dot(v);
     90     s = r - alpha * v;
     91 
     92     z = precond.solve(s);
     93     t.noalias() = mat * z;
     94 
     95     RealScalar tmp = t.squaredNorm();
     96     if(tmp>RealScalar(0))
     97       w = t.dot(s) / tmp;
     98     else
     99       w = Scalar(0);
    100     x += alpha * y + w * z;
    101     r = s - w * t;
    102     ++i;
    103   }
    104   tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
    105   iters = i;
    106   return true;
    107 }
    108 
    109 }
    110 
    111 template< typename _MatrixType,
    112           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
    113 class BiCGSTAB;
    114 
    115 namespace internal {
    116 
    117 template< typename _MatrixType, typename _Preconditioner>
    118 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
    119 {
    120   typedef _MatrixType MatrixType;
    121   typedef _Preconditioner Preconditioner;
    122 };
    123 
    124 }
    125 
    126 /** \ingroup IterativeLinearSolvers_Module
    127   * \brief A bi conjugate gradient stabilized solver for sparse square problems
    128   *
    129   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
    130   * stabilized algorithm. The vectors x and b can be either dense or sparse.
    131   *
    132   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    133   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    134   *
    135   * \implsparsesolverconcept
    136   *
    137   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    138   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    139   * and NumTraits<Scalar>::epsilon() for the tolerance.
    140   *
    141   * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
    142   *
    143   * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format.
    144   * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
    145   * See \ref TopicMultiThreading for details.
    146   *
    147   * This class can be used as the direct solver classes. Here is a typical usage example:
    148   * \include BiCGSTAB_simple.cpp
    149   *
    150   * By default the iterations start with x=0 as an initial guess of the solution.
    151   * One can control the start using the solveWithGuess() method.
    152   *
    153   * BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
    154   *
    155   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    156   */
    157 template< typename _MatrixType, typename _Preconditioner>
    158 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
    159 {
    160   typedef IterativeSolverBase<BiCGSTAB> Base;
    161   using Base::matrix;
    162   using Base::m_error;
    163   using Base::m_iterations;
    164   using Base::m_info;
    165   using Base::m_isInitialized;
    166 public:
    167   typedef _MatrixType MatrixType;
    168   typedef typename MatrixType::Scalar Scalar;
    169   typedef typename MatrixType::RealScalar RealScalar;
    170   typedef _Preconditioner Preconditioner;
    171 
    172 public:
    173 
    174   /** Default constructor. */
    175   BiCGSTAB() : Base() {}
    176 
    177   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    178     *
    179     * This constructor is a shortcut for the default constructor followed
    180     * by a call to compute().
    181     *
    182     * \warning this class stores a reference to the matrix A as well as some
    183     * precomputed values that depend on it. Therefore, if \a A is changed
    184     * this class becomes invalid. Call compute() to update it with the new
    185     * matrix A, or modify a copy of A.
    186     */
    187   template<typename MatrixDerived>
    188   explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
    189 
    190   ~BiCGSTAB() {}
    191 
    192   /** \internal */
    193   template<typename Rhs,typename Dest>
    194   void _solve_with_guess_impl(const Rhs& b, Dest& x) const
    195   {
    196     bool failed = false;
    197     for(Index j=0; j<b.cols(); ++j)
    198     {
    199       m_iterations = Base::maxIterations();
    200       m_error = Base::m_tolerance;
    201 
    202       typename Dest::ColXpr xj(x,j);
    203       if(!internal::bicgstab(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
    204         failed = true;
    205     }
    206     m_info = failed ? NumericalIssue
    207            : m_error <= Base::m_tolerance ? Success
    208            : NoConvergence;
    209     m_isInitialized = true;
    210   }
    211 
    212   /** \internal */
    213   using Base::_solve_impl;
    214   template<typename Rhs,typename Dest>
    215   void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
    216   {
    217     x.resize(this->rows(),b.cols());
    218     x.setZero();
    219     _solve_with_guess_impl(b,x);
    220   }
    221 
    222 protected:
    223 
    224 };
    225 
    226 } // end namespace Eigen
    227 
    228 #endif // EIGEN_BICGSTAB_H
    229