Home | History | Annotate | Download | only in SVD
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_BIDIAGONALIZATION_H
     12 #define EIGEN_BIDIAGONALIZATION_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
     18 // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
     19 
     20 template<typename _MatrixType> class UpperBidiagonalization
     21 {
     22   public:
     23 
     24     typedef _MatrixType MatrixType;
     25     enum {
     26       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     27       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     28       ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
     29     };
     30     typedef typename MatrixType::Scalar Scalar;
     31     typedef typename MatrixType::RealScalar RealScalar;
     32     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     33     typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
     34     typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
     35     typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
     36     typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
     37     typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
     38     typedef HouseholderSequence<
     39               const MatrixType,
     40               const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
     41             > HouseholderUSequenceType;
     42     typedef HouseholderSequence<
     43               const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
     44               Diagonal<const MatrixType,1>,
     45               OnTheRight
     46             > HouseholderVSequenceType;
     47 
     48     /**
     49     * \brief Default Constructor.
     50     *
     51     * The default constructor is useful in cases in which the user intends to
     52     * perform decompositions via Bidiagonalization::compute(const MatrixType&).
     53     */
     54     UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
     55 
     56     explicit UpperBidiagonalization(const MatrixType& matrix)
     57       : m_householder(matrix.rows(), matrix.cols()),
     58         m_bidiagonal(matrix.cols(), matrix.cols()),
     59         m_isInitialized(false)
     60     {
     61       compute(matrix);
     62     }
     63 
     64     UpperBidiagonalization& compute(const MatrixType& matrix);
     65     UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
     66 
     67     const MatrixType& householder() const { return m_householder; }
     68     const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
     69 
     70     const HouseholderUSequenceType householderU() const
     71     {
     72       eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
     73       return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
     74     }
     75 
     76     const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
     77     {
     78       eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
     79       return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
     80              .setLength(m_householder.cols()-1)
     81              .setShift(1);
     82     }
     83 
     84   protected:
     85     MatrixType m_householder;
     86     BidiagonalType m_bidiagonal;
     87     bool m_isInitialized;
     88 };
     89 
     90 // Standard upper bidiagonalization without fancy optimizations
     91 // This version should be faster for small matrix size
     92 template<typename MatrixType>
     93 void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
     94                                               typename MatrixType::RealScalar *diagonal,
     95                                               typename MatrixType::RealScalar *upper_diagonal,
     96                                               typename MatrixType::Scalar* tempData = 0)
     97 {
     98   typedef typename MatrixType::Scalar Scalar;
     99 
    100   Index rows = mat.rows();
    101   Index cols = mat.cols();
    102 
    103   typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
    104   TempType tempVector;
    105   if(tempData==0)
    106   {
    107     tempVector.resize(rows);
    108     tempData = tempVector.data();
    109   }
    110 
    111   for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
    112   {
    113     Index remainingRows = rows - k;
    114     Index remainingCols = cols - k - 1;
    115 
    116     // construct left householder transform in-place in A
    117     mat.col(k).tail(remainingRows)
    118        .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
    119     // apply householder transform to remaining part of A on the left
    120     mat.bottomRightCorner(remainingRows, remainingCols)
    121        .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
    122 
    123     if(k == cols-1) break;
    124 
    125     // construct right householder transform in-place in mat
    126     mat.row(k).tail(remainingCols)
    127        .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
    128     // apply householder transform to remaining part of mat on the left
    129     mat.bottomRightCorner(remainingRows-1, remainingCols)
    130        .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
    131   }
    132 }
    133 
    134 /** \internal
    135   * Helper routine for the block reduction to upper bidiagonal form.
    136   *
    137   * Let's partition the matrix A:
    138   *
    139   *      | A00 A01 |
    140   *  A = |         |
    141   *      | A10 A11 |
    142   *
    143   * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
    144   * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
    145   * is updated using matrix-matrix products:
    146   *   A22 -= V * Y^T - X * U^T
    147   * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
    148   * respectively, and the update matrices X and Y are computed during the reduction.
    149   *
    150   */
    151 template<typename MatrixType>
    152 void upperbidiagonalization_blocked_helper(MatrixType& A,
    153                                            typename MatrixType::RealScalar *diagonal,
    154                                            typename MatrixType::RealScalar *upper_diagonal,
    155                                            Index bs,
    156                                            Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
    157                                                       traits<MatrixType>::Flags & RowMajorBit> > X,
    158                                            Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
    159                                                       traits<MatrixType>::Flags & RowMajorBit> > Y)
    160 {
    161   typedef typename MatrixType::Scalar Scalar;
    162   enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
    163   typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
    164   typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
    165   typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride>    SubColumnType;
    166   typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride>    SubRowType;
    167   typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
    168 
    169   Index brows = A.rows();
    170   Index bcols = A.cols();
    171 
    172   Scalar tau_u, tau_u_prev(0), tau_v;
    173 
    174   for(Index k = 0; k < bs; ++k)
    175   {
    176     Index remainingRows = brows - k;
    177     Index remainingCols = bcols - k - 1;
    178 
    179     SubMatType X_k1( X.block(k,0, remainingRows,k) );
    180     SubMatType V_k1( A.block(k,0, remainingRows,k) );
    181 
    182     // 1 - update the k-th column of A
    183     SubColumnType v_k = A.col(k).tail(remainingRows);
    184           v_k -= V_k1 * Y.row(k).head(k).adjoint();
    185     if(k) v_k -= X_k1 * A.col(k).head(k);
    186 
    187     // 2 - construct left Householder transform in-place
    188     v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
    189 
    190     if(k+1<bcols)
    191     {
    192       SubMatType Y_k  ( Y.block(k+1,0, remainingCols, k+1) );
    193       SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
    194 
    195       // this eases the application of Householder transforAions
    196       // A(k,k) will store tau_v later
    197       A(k,k) = Scalar(1);
    198 
    199       // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
    200       {
    201         SubColumnType y_k( Y.col(k).tail(remainingCols) );
    202 
    203         // let's use the begining of column k of Y as a temporary vector
    204         SubColumnType tmp( Y.col(k).head(k) );
    205         y_k.noalias()  = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
    206         tmp.noalias()  = V_k1.adjoint()  * v_k;
    207         y_k.noalias() -= Y_k.leftCols(k) * tmp;
    208         tmp.noalias()  = X_k1.adjoint()  * v_k;
    209         y_k.noalias() -= U_k1.adjoint()  * tmp;
    210         y_k *= numext::conj(tau_v);
    211       }
    212 
    213       // 4 - update k-th row of A (it will become u_k)
    214       SubRowType u_k( A.row(k).tail(remainingCols) );
    215       u_k = u_k.conjugate();
    216       {
    217         u_k -= Y_k * A.row(k).head(k+1).adjoint();
    218         if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
    219       }
    220 
    221       // 5 - construct right Householder transform in-place
    222       u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
    223 
    224       // this eases the application of Householder transformations
    225       // A(k,k+1) will store tau_u later
    226       A(k,k+1) = Scalar(1);
    227 
    228       // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
    229       {
    230         SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
    231 
    232         // let's use the begining of column k of X as a temporary vectors
    233         // note that tmp0 and tmp1 overlaps
    234         SubColumnType tmp0 ( X.col(k).head(k) ),
    235                       tmp1 ( X.col(k).head(k+1) );
    236 
    237         x_k.noalias()   = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
    238         tmp0.noalias()  = U_k1 * u_k.transpose();
    239         x_k.noalias()  -= X_k1.bottomRows(remainingRows-1) * tmp0;
    240         tmp1.noalias()  = Y_k.adjoint() * u_k.transpose();
    241         x_k.noalias()  -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
    242         x_k *= numext::conj(tau_u);
    243         tau_u = numext::conj(tau_u);
    244         u_k = u_k.conjugate();
    245       }
    246 
    247       if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
    248       tau_u_prev = tau_u;
    249     }
    250     else
    251       A.coeffRef(k-1,k) = tau_u_prev;
    252 
    253     A.coeffRef(k,k) = tau_v;
    254   }
    255 
    256   if(bs<bcols)
    257     A.coeffRef(bs-1,bs) = tau_u_prev;
    258 
    259   // update A22
    260   if(bcols>bs && brows>bs)
    261   {
    262     SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
    263     SubMatType A10( A.block(bs,0, brows-bs,bs) );
    264     SubMatType A01( A.block(0,bs, bs,bcols-bs) );
    265     Scalar tmp = A01(bs-1,0);
    266     A01(bs-1,0) = 1;
    267     A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
    268     A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
    269     A01(bs-1,0) = tmp;
    270   }
    271 }
    272 
    273 /** \internal
    274   *
    275   * Implementation of a block-bidiagonal reduction.
    276   * It is based on the following paper:
    277   *   The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
    278   *   by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
    279   *   section 3.3
    280   */
    281 template<typename MatrixType, typename BidiagType>
    282 void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
    283                                             Index maxBlockSize=32,
    284                                             typename MatrixType::Scalar* /*tempData*/ = 0)
    285 {
    286   typedef typename MatrixType::Scalar Scalar;
    287   typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
    288 
    289   Index rows = A.rows();
    290   Index cols = A.cols();
    291   Index size = (std::min)(rows, cols);
    292 
    293   // X and Y are work space
    294   enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
    295   Matrix<Scalar,
    296          MatrixType::RowsAtCompileTime,
    297          Dynamic,
    298          StorageOrder,
    299          MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
    300   Matrix<Scalar,
    301          MatrixType::ColsAtCompileTime,
    302          Dynamic,
    303          StorageOrder,
    304          MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
    305   Index blockSize = (std::min)(maxBlockSize,size);
    306 
    307   Index k = 0;
    308   for(k = 0; k < size; k += blockSize)
    309   {
    310     Index bs = (std::min)(size-k,blockSize);  // actual size of the block
    311     Index brows = rows - k;                   // rows of the block
    312     Index bcols = cols - k;                   // columns of the block
    313 
    314     // partition the matrix A:
    315     //
    316     //      | A00 A01 A02 |
    317     //      |             |
    318     // A  = | A10 A11 A12 |
    319     //      |             |
    320     //      | A20 A21 A22 |
    321     //
    322     // where A11 is a bs x bs diagonal block,
    323     // and let:
    324     //      | A11 A12 |
    325     //  B = |         |
    326     //      | A21 A22 |
    327 
    328     BlockType B = A.block(k,k,brows,bcols);
    329 
    330     // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
    331     // Finally, the algorithm continue on the updated A22.
    332     //
    333     // However, if B is too small, or A22 empty, then let's use an unblocked strategy
    334     if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
    335     {
    336       upperbidiagonalization_inplace_unblocked(B,
    337                                                &(bidiagonal.template diagonal<0>().coeffRef(k)),
    338                                                &(bidiagonal.template diagonal<1>().coeffRef(k)),
    339                                                X.data()
    340                                               );
    341       break; // We're done
    342     }
    343     else
    344     {
    345       upperbidiagonalization_blocked_helper<BlockType>( B,
    346                                                         &(bidiagonal.template diagonal<0>().coeffRef(k)),
    347                                                         &(bidiagonal.template diagonal<1>().coeffRef(k)),
    348                                                         bs,
    349                                                         X.topLeftCorner(brows,bs),
    350                                                         Y.topLeftCorner(bcols,bs)
    351                                                       );
    352     }
    353   }
    354 }
    355 
    356 template<typename _MatrixType>
    357 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
    358 {
    359   Index rows = matrix.rows();
    360   Index cols = matrix.cols();
    361   EIGEN_ONLY_USED_FOR_DEBUG(cols);
    362 
    363   eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
    364 
    365   m_householder = matrix;
    366 
    367   ColVectorType temp(rows);
    368 
    369   upperbidiagonalization_inplace_unblocked(m_householder,
    370                                            &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
    371                                            &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
    372                                            temp.data());
    373 
    374   m_isInitialized = true;
    375   return *this;
    376 }
    377 
    378 template<typename _MatrixType>
    379 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
    380 {
    381   Index rows = matrix.rows();
    382   Index cols = matrix.cols();
    383   EIGEN_ONLY_USED_FOR_DEBUG(rows);
    384   EIGEN_ONLY_USED_FOR_DEBUG(cols);
    385 
    386   eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
    387 
    388   m_householder = matrix;
    389   upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
    390 
    391   m_isInitialized = true;
    392   return *this;
    393 }
    394 
    395 #if 0
    396 /** \return the Householder QR decomposition of \c *this.
    397   *
    398   * \sa class Bidiagonalization
    399   */
    400 template<typename Derived>
    401 const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
    402 MatrixBase<Derived>::bidiagonalization() const
    403 {
    404   return UpperBidiagonalization<PlainObject>(eval());
    405 }
    406 #endif
    407 
    408 } // end namespace internal
    409 
    410 } // end namespace Eigen
    411 
    412 #endif // EIGEN_BIDIAGONALIZATION_H
    413