Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define TEST_ENABLE_TEMPORARY_TRACKING
     11 
     12 #include "main.h"
     13 
     14 template<typename MatrixType> void product_notemporary(const MatrixType& m)
     15 {
     16   /* This test checks the number of temporaries created
     17    * during the evaluation of a complex expression */
     18   typedef typename MatrixType::Index Index;
     19   typedef typename MatrixType::Scalar Scalar;
     20   typedef typename MatrixType::RealScalar RealScalar;
     21   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
     22   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
     23   typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType;
     24   typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType;
     25 
     26   Index rows = m.rows();
     27   Index cols = m.cols();
     28 
     29   ColMajorMatrixType m1 = MatrixType::Random(rows, cols),
     30                      m2 = MatrixType::Random(rows, cols),
     31                      m3(rows, cols);
     32   RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows);
     33   ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols);
     34   RowMajorMatrixType rm3(rows, cols);
     35 
     36   Scalar s1 = internal::random<Scalar>(),
     37          s2 = internal::random<Scalar>(),
     38          s3 = internal::random<Scalar>();
     39 
     40   Index c0 = internal::random<Index>(4,cols-8),
     41         c1 = internal::random<Index>(8,cols-c0),
     42         r0 = internal::random<Index>(4,cols-8),
     43         r1 = internal::random<Index>(8,rows-r0);
     44 
     45   VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
     46   VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).transpose(), 1);
     47   VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0);
     48 
     49   VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()), 1);
     50 //   VERIFY_EVALUATION_COUNT( m3 = m3 + s1 * (m1 * m2.transpose()), 1);
     51   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0);
     52 
     53   VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()), 1);
     54 
     55   VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()).transpose(), 1);
     56   VERIFY_EVALUATION_COUNT( m3.noalias() = m3 + m1 * m2.transpose(), 0);
     57   VERIFY_EVALUATION_COUNT( m3.noalias() += m3 + m1 * m2.transpose(), 0);
     58   VERIFY_EVALUATION_COUNT( m3.noalias() -= m3 + m1 * m2.transpose(), 0);
     59   VERIFY_EVALUATION_COUNT( m3.noalias() =  m3 - m1 * m2.transpose(), 0);
     60   VERIFY_EVALUATION_COUNT( m3.noalias() += m3 - m1 * m2.transpose(), 0);
     61   VERIFY_EVALUATION_COUNT( m3.noalias() -= m3 - m1 * m2.transpose(), 0);
     62 
     63   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0);
     64   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1);
     65   VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0);
     66   VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0);
     67   VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0);
     68 
     69   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0);
     70   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() -= s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1) ), 0);
     71 
     72   // NOTE this is because the Block expression is not handled yet by our expression analyser
     73   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() = s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1) ), 1);
     74 
     75   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0);
     76   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1);
     77   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0);
     78 
     79   VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() = (m1 * m2.adjoint()), 0);
     80   VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() -= (m1 * m2.adjoint()), 0);
     81 
     82   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products
     83   VERIFY_EVALUATION_COUNT( rm3.col(c0).noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * (s2*m2.row(c0)).adjoint(), 1);
     84 
     85   VERIFY_EVALUATION_COUNT( m1.template triangularView<Lower>().solveInPlace(m3), 0);
     86   VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<Lower>().solveInPlace(m3.transpose()), 0);
     87 
     88   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2*s3).adjoint(), 0);
     89   VERIFY_EVALUATION_COUNT( m3.noalias() = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<Upper>(), 0);
     90   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(), 0);
     91 
     92   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products
     93   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() = (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2.row(c0)*s3).adjoint(), 1);
     94   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() -= (s1 * m1).adjoint().template selfadjointView<Upper>() * (-m2.row(c0)*s3).adjoint(), 1);
     95 
     96   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() += m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * (s1*m2.block(r0,c0,r1,c1)), 0);
     97   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * m2.block(r0,c0,r1,c1), 0);
     98 
     99   VERIFY_EVALUATION_COUNT( m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0);
    100 
    101   // Here we will get 1 temporary for each resize operation of the lhs operator; resize(r1,c1) would lead to zero temporaries
    102   m3.resize(1,1);
    103   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Lower>() * m2.block(r0,c0,r1,c1), 1);
    104   m3.resize(1,1);
    105   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template triangularView<UnitUpper>()  * m2.block(r0,c0,r1,c1), 1);
    106 
    107   // Zero temporaries for lazy products ...
    108   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose().lazyProduct(m3)).diagonal().sum(), 0 );
    109 
    110   // ... and even no temporary for even deeply (>=2) nested products
    111   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().sum(), 0 );
    112   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().array().abs().sum(), 0 );
    113 
    114   // Zero temporaries for ... CoeffBasedProductMode
    115   VERIFY_EVALUATION_COUNT( m3.col(0).template head<5>() * m3.col(0).transpose() + m3.col(0).template head<5>() * m3.col(0).transpose(), 0 );
    116 
    117   // Check matrix * vectors
    118   VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 );
    119   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * cv1, 0 );
    120   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.col(0), 0 );
    121   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * rv1.adjoint(), 0 );
    122   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.row(0).transpose(), 0 );
    123 
    124   VERIFY_EVALUATION_COUNT( cvres.noalias() = (m1+m1) * cv1, 0 );
    125   VERIFY_EVALUATION_COUNT( cvres.noalias() = (rm3+rm3) * cv1, 0 );
    126   VERIFY_EVALUATION_COUNT( cvres.noalias() = (m1+m1) * (m1*cv1), 1 );
    127   VERIFY_EVALUATION_COUNT( cvres.noalias() = (rm3+rm3) * (m1*cv1), 1 );
    128 
    129   // Check outer products
    130   m3 = cv1 * rv1;
    131   VERIFY_EVALUATION_COUNT( m3.noalias() = cv1 * rv1, 0 );
    132   VERIFY_EVALUATION_COUNT( m3.noalias() = (cv1+cv1) * (rv1+rv1), 1 );
    133   VERIFY_EVALUATION_COUNT( m3.noalias() = (m1*cv1) * (rv1), 1 );
    134   VERIFY_EVALUATION_COUNT( m3.noalias() += (m1*cv1) * (rv1), 1 );
    135   VERIFY_EVALUATION_COUNT( rm3.noalias() = (cv1) * (rv1 * m1), 1 );
    136   VERIFY_EVALUATION_COUNT( rm3.noalias() -= (cv1) * (rv1 * m1), 1 );
    137   VERIFY_EVALUATION_COUNT( rm3.noalias() = (m1*cv1) * (rv1 * m1), 2 );
    138   VERIFY_EVALUATION_COUNT( rm3.noalias() += (m1*cv1) * (rv1 * m1), 2 );
    139 
    140   // Check nested products
    141   VERIFY_EVALUATION_COUNT( cvres.noalias() = m1.adjoint() * m1 * cv1, 1 );
    142   VERIFY_EVALUATION_COUNT( rvres.noalias() = rv1 * (m1 * m2.adjoint()), 1 );
    143 }
    144 
    145 void test_product_notemporary()
    146 {
    147   int s;
    148   for(int i = 0; i < g_repeat; i++) {
    149     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE);
    150     CALL_SUBTEST_1( product_notemporary(MatrixXf(s, s)) );
    151     CALL_SUBTEST_2( product_notemporary(MatrixXd(s, s)) );
    152     TEST_SET_BUT_UNUSED_VARIABLE(s)
    153 
    154     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2);
    155     CALL_SUBTEST_3( product_notemporary(MatrixXcf(s,s)) );
    156     CALL_SUBTEST_4( product_notemporary(MatrixXcd(s,s)) );
    157     TEST_SET_BUT_UNUSED_VARIABLE(s)
    158   }
    159 }
    160