Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <unsupported/Eigen/AutoDiff>
     12 
     13 template<typename Scalar>
     14 EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y)
     15 {
     16   using namespace std;
     17 //   return x+std::sin(y);
     18   EIGEN_ASM_COMMENT("mybegin");
     19   // pow(float, int) promotes to pow(double, double)
     20   return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(Scalar(-0.5)*x*x+0);
     21   //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
     22   EIGEN_ASM_COMMENT("myend");
     23 }
     24 
     25 template<typename Vector>
     26 EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p)
     27 {
     28   typedef typename Vector::Scalar Scalar;
     29   return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p);
     30 }
     31 
     32 template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
     33 struct TestFunc1
     34 {
     35   typedef _Scalar Scalar;
     36   enum {
     37     InputsAtCompileTime = NX,
     38     ValuesAtCompileTime = NY
     39   };
     40   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
     41   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
     42   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
     43 
     44   int m_inputs, m_values;
     45 
     46   TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
     47   TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {}
     48 
     49   int inputs() const { return m_inputs; }
     50   int values() const { return m_values; }
     51 
     52   template<typename T>
     53   void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const
     54   {
     55     Matrix<T,ValuesAtCompileTime,1>& v = *_v;
     56 
     57     v[0] = 2 * x[0] * x[0] + x[0] * x[1];
     58     v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
     59     if(inputs()>2)
     60     {
     61       v[0] += 0.5 * x[2];
     62       v[1] += x[2];
     63     }
     64     if(values()>2)
     65     {
     66       v[2] = 3 * x[1] * x[0] * x[0];
     67     }
     68     if (inputs()>2 && values()>2)
     69       v[2] *= x[2];
     70   }
     71 
     72   void operator() (const InputType& x, ValueType* v, JacobianType* _j) const
     73   {
     74     (*this)(x, v);
     75 
     76     if(_j)
     77     {
     78       JacobianType& j = *_j;
     79 
     80       j(0,0) = 4 * x[0] + x[1];
     81       j(1,0) = 3 * x[1];
     82 
     83       j(0,1) = x[0];
     84       j(1,1) = 3 * x[0] + 2 * 0.5 * x[1];
     85 
     86       if (inputs()>2)
     87       {
     88         j(0,2) = 0.5;
     89         j(1,2) = 1;
     90       }
     91       if(values()>2)
     92       {
     93         j(2,0) = 3 * x[1] * 2 * x[0];
     94         j(2,1) = 3 * x[0] * x[0];
     95       }
     96       if (inputs()>2 && values()>2)
     97       {
     98         j(2,0) *= x[2];
     99         j(2,1) *= x[2];
    100 
    101         j(2,2) = 3 * x[1] * x[0] * x[0];
    102         j(2,2) = 3 * x[1] * x[0] * x[0];
    103       }
    104     }
    105   }
    106 };
    107 
    108 
    109 #if EIGEN_HAS_VARIADIC_TEMPLATES
    110 /* Test functor for the C++11 features. */
    111 template <typename Scalar>
    112 struct integratorFunctor
    113 {
    114     typedef Matrix<Scalar, 2, 1> InputType;
    115     typedef Matrix<Scalar, 2, 1> ValueType;
    116 
    117     /*
    118      * Implementation starts here.
    119      */
    120     integratorFunctor(const Scalar gain) : _gain(gain) {}
    121     integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {}
    122     const Scalar _gain;
    123 
    124     template <typename T1, typename T2>
    125     void operator() (const T1 &input, T2 *output, const Scalar dt) const
    126     {
    127         T2 &o = *output;
    128 
    129         /* Integrator to test the AD. */
    130         o[0] = input[0] + input[1] * dt * _gain;
    131         o[1] = input[1] * _gain;
    132     }
    133 
    134     /* Only needed for the test */
    135     template <typename T1, typename T2, typename T3>
    136     void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const
    137     {
    138         T2 &o = *output;
    139 
    140         /* Integrator to test the AD. */
    141         o[0] = input[0] + input[1] * dt * _gain;
    142         o[1] = input[1] * _gain;
    143 
    144         if (jacobian)
    145         {
    146             T3 &j = *jacobian;
    147 
    148             j(0, 0) = 1;
    149             j(0, 1) = dt * _gain;
    150             j(1, 0) = 0;
    151             j(1, 1) = _gain;
    152         }
    153     }
    154 
    155 };
    156 
    157 template<typename Func> void forward_jacobian_cpp11(const Func& f)
    158 {
    159     typedef typename Func::ValueType::Scalar Scalar;
    160     typedef typename Func::ValueType ValueType;
    161     typedef typename Func::InputType InputType;
    162     typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType;
    163 
    164     InputType x = InputType::Random(InputType::RowsAtCompileTime);
    165     ValueType y, yref;
    166     JacobianType j, jref;
    167 
    168     const Scalar dt = internal::random<double>();
    169 
    170     jref.setZero();
    171     yref.setZero();
    172     f(x, &yref, &jref, dt);
    173 
    174     //std::cerr << "y, yref, jref: " << "\n";
    175     //std::cerr << y.transpose() << "\n\n";
    176     //std::cerr << yref << "\n\n";
    177     //std::cerr << jref << "\n\n";
    178 
    179     AutoDiffJacobian<Func> autoj(f);
    180     autoj(x, &y, &j, dt);
    181 
    182     //std::cerr << "y j (via autodiff): " << "\n";
    183     //std::cerr << y.transpose() << "\n\n";
    184     //std::cerr << j << "\n\n";
    185 
    186     VERIFY_IS_APPROX(y, yref);
    187     VERIFY_IS_APPROX(j, jref);
    188 }
    189 #endif
    190 
    191 template<typename Func> void forward_jacobian(const Func& f)
    192 {
    193     typename Func::InputType x = Func::InputType::Random(f.inputs());
    194     typename Func::ValueType y(f.values()), yref(f.values());
    195     typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs());
    196 
    197     jref.setZero();
    198     yref.setZero();
    199     f(x,&yref,&jref);
    200 //     std::cerr << y.transpose() << "\n\n";;
    201 //     std::cerr << j << "\n\n";;
    202 
    203     j.setZero();
    204     y.setZero();
    205     AutoDiffJacobian<Func> autoj(f);
    206     autoj(x, &y, &j);
    207 //     std::cerr << y.transpose() << "\n\n";;
    208 //     std::cerr << j << "\n\n";;
    209 
    210     VERIFY_IS_APPROX(y, yref);
    211     VERIFY_IS_APPROX(j, jref);
    212 }
    213 
    214 // TODO also check actual derivatives!
    215 template <int>
    216 void test_autodiff_scalar()
    217 {
    218   Vector2f p = Vector2f::Random();
    219   typedef AutoDiffScalar<Vector2f> AD;
    220   AD ax(p.x(),Vector2f::UnitX());
    221   AD ay(p.y(),Vector2f::UnitY());
    222   AD res = foo<AD>(ax,ay);
    223   VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
    224 }
    225 
    226 
    227 // TODO also check actual derivatives!
    228 template <int>
    229 void test_autodiff_vector()
    230 {
    231   Vector2f p = Vector2f::Random();
    232   typedef AutoDiffScalar<Vector2f> AD;
    233   typedef Matrix<AD,2,1> VectorAD;
    234   VectorAD ap = p.cast<AD>();
    235   ap.x().derivatives() = Vector2f::UnitX();
    236   ap.y().derivatives() = Vector2f::UnitY();
    237 
    238   AD res = foo<VectorAD>(ap);
    239   VERIFY_IS_APPROX(res.value(), foo(p));
    240 }
    241 
    242 template <int>
    243 void test_autodiff_jacobian()
    244 {
    245   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
    246   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
    247   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
    248   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
    249   CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
    250 #if EIGEN_HAS_VARIADIC_TEMPLATES
    251   CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) ));
    252 #endif
    253 }
    254 
    255 
    256 template <int>
    257 void test_autodiff_hessian()
    258 {
    259   typedef AutoDiffScalar<VectorXd> AD;
    260   typedef Matrix<AD,Eigen::Dynamic,1> VectorAD;
    261   typedef AutoDiffScalar<VectorAD> ADD;
    262   typedef Matrix<ADD,Eigen::Dynamic,1> VectorADD;
    263   VectorADD x(2);
    264   double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), s4 = internal::random<double>();
    265   x(0).value()=s1;
    266   x(1).value()=s2;
    267 
    268   //set unit vectors for the derivative directions (partial derivatives of the input vector)
    269   x(0).derivatives().resize(2);
    270   x(0).derivatives().setZero();
    271   x(0).derivatives()(0)= 1;
    272   x(1).derivatives().resize(2);
    273   x(1).derivatives().setZero();
    274   x(1).derivatives()(1)=1;
    275 
    276   //repeat partial derivatives for the inner AutoDiffScalar
    277   x(0).value().derivatives() = VectorXd::Unit(2,0);
    278   x(1).value().derivatives() = VectorXd::Unit(2,1);
    279 
    280   //set the hessian matrix to zero
    281   for(int idx=0; idx<2; idx++) {
    282       x(0).derivatives()(idx).derivatives()  = VectorXd::Zero(2);
    283       x(1).derivatives()(idx).derivatives()  = VectorXd::Zero(2);
    284   }
    285 
    286   ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1));
    287 
    288   VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value());
    289   VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value());
    290   VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4));
    291   VERIFY_IS_APPROX(y.value().derivatives()(1), s4*std::cos(s1*s3+s2*s4));
    292   VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3));
    293   VERIFY_IS_APPROX(y.derivatives()(1).derivatives(),  -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4));
    294 
    295   ADD z = x(0)*x(1);
    296   VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1));
    297   VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0));
    298 }
    299 
    300 double bug_1222() {
    301   typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
    302   const double _cv1_3 = 1.0;
    303   const AD chi_3 = 1.0;
    304   // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType>
    305   const AD denom = chi_3 + _cv1_3;
    306   return denom.value();
    307 }
    308 
    309 double bug_1223() {
    310   using std::min;
    311   typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
    312 
    313   const double _cv1_3 = 1.0;
    314   const AD chi_3 = 1.0;
    315   const AD denom = 1.0;
    316 
    317   // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& value)
    318   // without initializing m_derivatives (which is a reference in this case)
    319   #define EIGEN_TEST_SPACE
    320   const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0);
    321 
    322   const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0);
    323 
    324   return t.value() + t2.value();
    325 }
    326 
    327 // regression test for some compilation issues with specializations of ScalarBinaryOpTraits
    328 void bug_1260() {
    329   Matrix4d A;
    330   Vector4d v;
    331   A*v;
    332 }
    333 
    334 // check a compilation issue with numext::max
    335 double bug_1261() {
    336   typedef AutoDiffScalar<Matrix2d> AD;
    337   typedef Matrix<AD,2,1> VectorAD;
    338 
    339   VectorAD v;
    340   const AD maxVal = v.maxCoeff();
    341   const AD minVal = v.minCoeff();
    342   return maxVal.value() + minVal.value();
    343 }
    344 
    345 double bug_1264() {
    346   typedef AutoDiffScalar<Vector2d> AD;
    347   const AD s;
    348   const Matrix<AD, 3, 1> v1;
    349   const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1;
    350   return v2(0).value();
    351 }
    352 
    353 void test_autodiff()
    354 {
    355   for(int i = 0; i < g_repeat; i++) {
    356     CALL_SUBTEST_1( test_autodiff_scalar<1>() );
    357     CALL_SUBTEST_2( test_autodiff_vector<1>() );
    358     CALL_SUBTEST_3( test_autodiff_jacobian<1>() );
    359     CALL_SUBTEST_4( test_autodiff_hessian<1>() );
    360   }
    361 
    362   bug_1222();
    363   bug_1223();
    364   bug_1260();
    365   bug_1261();
    366 }
    367 
    368