Home | History | Annotate | Download | only in fec
      1 /* Reed-Solomon decoder
      2  * Copyright 2002 Phil Karn, KA9Q
      3  * May be used under the terms of the GNU Lesser General Public License (LGPL)
      4  */
      5 
      6 #ifdef DEBUG
      7 #include <stdio.h>
      8 #endif
      9 
     10 #include <string.h>
     11 
     12 #define NULL ((void *)0)
     13 #define	min(a,b)	((a) < (b) ? (a) : (b))
     14 
     15 #ifdef FIXED
     16 #include "fixed.h"
     17 #elif defined(BIGSYM)
     18 #include "int.h"
     19 #else
     20 #include "char.h"
     21 #endif
     22 
     23 int DECODE_RS(
     24 #ifdef FIXED
     25 data_t *data, int *eras_pos, int no_eras,int pad){
     26 #else
     27 void *p,data_t *data, int *eras_pos, int no_eras){
     28   struct rs *rs = (struct rs *)p;
     29 #endif
     30   int deg_lambda, el, deg_omega;
     31   int i, j, r,k;
     32   data_t u,q,tmp,num1,num2,den,discr_r;
     33   data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
     34 					 * and syndrome poly */
     35   data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
     36   data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
     37   int syn_error, count;
     38 
     39 #ifdef FIXED
     40   /* Check pad parameter for validity */
     41   if(pad < 0 || pad >= NN)
     42     return -1;
     43 #endif
     44 
     45   /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
     46   for(i=0;i<NROOTS;i++)
     47     s[i] = data[0];
     48 
     49   for(j=1;j<NN-PAD;j++){
     50     for(i=0;i<NROOTS;i++){
     51       if(s[i] == 0){
     52 	s[i] = data[j];
     53       } else {
     54 	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
     55       }
     56     }
     57   }
     58 
     59   /* Convert syndromes to index form, checking for nonzero condition */
     60   syn_error = 0;
     61   for(i=0;i<NROOTS;i++){
     62     syn_error |= s[i];
     63     s[i] = INDEX_OF[s[i]];
     64   }
     65 
     66   if (!syn_error) {
     67     /* if syndrome is zero, data[] is a codeword and there are no
     68      * errors to correct. So return data[] unmodified
     69      */
     70     count = 0;
     71     goto finish;
     72   }
     73   memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
     74   lambda[0] = 1;
     75 
     76   if (no_eras > 0) {
     77     /* Init lambda to be the erasure locator polynomial */
     78     lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
     79     for (i = 1; i < no_eras; i++) {
     80       u = MODNN(PRIM*(NN-1-eras_pos[i]));
     81       for (j = i+1; j > 0; j--) {
     82 	tmp = INDEX_OF[lambda[j - 1]];
     83 	if(tmp != A0)
     84 	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
     85       }
     86     }
     87 
     88 #if DEBUG >= 1
     89     /* Test code that verifies the erasure locator polynomial just constructed
     90        Needed only for decoder debugging. */
     91 
     92     /* find roots of the erasure location polynomial */
     93     for(i=1;i<=no_eras;i++)
     94       reg[i] = INDEX_OF[lambda[i]];
     95 
     96     count = 0;
     97     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
     98       q = 1;
     99       for (j = 1; j <= no_eras; j++)
    100 	if (reg[j] != A0) {
    101 	  reg[j] = MODNN(reg[j] + j);
    102 	  q ^= ALPHA_TO[reg[j]];
    103 	}
    104       if (q != 0)
    105 	continue;
    106       /* store root and error location number indices */
    107       root[count] = i;
    108       loc[count] = k;
    109       count++;
    110     }
    111     if (count != no_eras) {
    112       printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
    113       count = -1;
    114       goto finish;
    115     }
    116 #if DEBUG >= 2
    117     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
    118     for (i = 0; i < count; i++)
    119       printf("%d ", loc[i]);
    120     printf("\n");
    121 #endif
    122 #endif
    123   }
    124   for(i=0;i<NROOTS+1;i++)
    125     b[i] = INDEX_OF[lambda[i]];
    126 
    127   /*
    128    * Begin Berlekamp-Massey algorithm to determine error+erasure
    129    * locator polynomial
    130    */
    131   r = no_eras;
    132   el = no_eras;
    133   while (++r <= NROOTS) {	/* r is the step number */
    134     /* Compute discrepancy at the r-th step in poly-form */
    135     discr_r = 0;
    136     for (i = 0; i < r; i++){
    137       if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
    138 	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
    139       }
    140     }
    141     discr_r = INDEX_OF[discr_r];	/* Index form */
    142     if (discr_r == A0) {
    143       /* 2 lines below: B(x) <-- x*B(x) */
    144       memmove(&b[1],b,NROOTS*sizeof(b[0]));
    145       b[0] = A0;
    146     } else {
    147       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
    148       t[0] = lambda[0];
    149       for (i = 0 ; i < NROOTS; i++) {
    150 	if(b[i] != A0)
    151 	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
    152 	else
    153 	  t[i+1] = lambda[i+1];
    154       }
    155       if (2 * el <= r + no_eras - 1) {
    156 	el = r + no_eras - el;
    157 	/*
    158 	 * 2 lines below: B(x) <-- inv(discr_r) *
    159 	 * lambda(x)
    160 	 */
    161 	for (i = 0; i <= NROOTS; i++)
    162 	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
    163       } else {
    164 	/* 2 lines below: B(x) <-- x*B(x) */
    165 	memmove(&b[1],b,NROOTS*sizeof(b[0]));
    166 	b[0] = A0;
    167       }
    168       memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
    169     }
    170   }
    171 
    172   /* Convert lambda to index form and compute deg(lambda(x)) */
    173   deg_lambda = 0;
    174   for(i=0;i<NROOTS+1;i++){
    175     lambda[i] = INDEX_OF[lambda[i]];
    176     if(lambda[i] != A0)
    177       deg_lambda = i;
    178   }
    179   /* Find roots of the error+erasure locator polynomial by Chien search */
    180   memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
    181   count = 0;		/* Number of roots of lambda(x) */
    182   for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
    183     q = 1; /* lambda[0] is always 0 */
    184     for (j = deg_lambda; j > 0; j--){
    185       if (reg[j] != A0) {
    186 	reg[j] = MODNN(reg[j] + j);
    187 	q ^= ALPHA_TO[reg[j]];
    188       }
    189     }
    190     if (q != 0)
    191       continue; /* Not a root */
    192     /* store root (index-form) and error location number */
    193 #if DEBUG>=2
    194     printf("count %d root %d loc %d\n",count,i,k);
    195 #endif
    196     root[count] = i;
    197     loc[count] = k;
    198     /* If we've already found max possible roots,
    199      * abort the search to save time
    200      */
    201     if(++count == deg_lambda)
    202       break;
    203   }
    204   if (deg_lambda != count) {
    205     /*
    206      * deg(lambda) unequal to number of roots => uncorrectable
    207      * error detected
    208      */
    209     count = -1;
    210     goto finish;
    211   }
    212   /*
    213    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
    214    * x**NROOTS). in index form. Also find deg(omega).
    215    */
    216   deg_omega = deg_lambda-1;
    217   for (i = 0; i <= deg_omega;i++){
    218     tmp = 0;
    219     for(j=i;j >= 0; j--){
    220       if ((s[i - j] != A0) && (lambda[j] != A0))
    221 	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
    222     }
    223     omega[i] = INDEX_OF[tmp];
    224   }
    225 
    226   /*
    227    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
    228    * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
    229    */
    230   for (j = count-1; j >=0; j--) {
    231     num1 = 0;
    232     for (i = deg_omega; i >= 0; i--) {
    233       if (omega[i] != A0)
    234 	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
    235     }
    236     num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
    237     den = 0;
    238 
    239     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
    240     for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
    241       if(lambda[i+1] != A0)
    242 	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
    243     }
    244 #if DEBUG >= 1
    245     if (den == 0) {
    246       printf("\n ERROR: denominator = 0\n");
    247       count = -1;
    248       goto finish;
    249     }
    250 #endif
    251     /* Apply error to data */
    252     if (num1 != 0 && loc[j] >= PAD) {
    253       data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
    254     }
    255   }
    256  finish:
    257   if(eras_pos != NULL){
    258     for(i=0;i<count;i++)
    259       eras_pos[i] = loc[i];
    260   }
    261   return count;
    262 }
    263