1 /* 2 * fio - the flexible io tester 3 * 4 * Copyright (C) 2005 Jens Axboe <axboe (at) suse.de> 5 * Copyright (C) 2006-2012 Jens Axboe <axboe (at) kernel.dk> 6 * 7 * The license below covers all files distributed with fio unless otherwise 8 * noted in the file itself. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 */ 24 #include <unistd.h> 25 #include <fcntl.h> 26 #include <string.h> 27 #include <limits.h> 28 #include <signal.h> 29 #include <time.h> 30 #include <locale.h> 31 #include <assert.h> 32 #include <time.h> 33 #include <inttypes.h> 34 #include <sys/stat.h> 35 #include <sys/wait.h> 36 #include <sys/ipc.h> 37 #include <sys/mman.h> 38 39 #include "fio.h" 40 #ifndef FIO_NO_HAVE_SHM_H 41 #include <sys/shm.h> 42 #endif 43 #include "hash.h" 44 #include "smalloc.h" 45 #include "verify.h" 46 #include "trim.h" 47 #include "diskutil.h" 48 #include "cgroup.h" 49 #include "profile.h" 50 #include "lib/rand.h" 51 #include "memalign.h" 52 #include "server.h" 53 #include "lib/getrusage.h" 54 #include "idletime.h" 55 #include "err.h" 56 #include "lib/tp.h" 57 58 static pthread_t helper_thread; 59 static pthread_mutex_t helper_lock; 60 pthread_cond_t helper_cond; 61 int helper_do_stat = 0; 62 63 static struct fio_mutex *startup_mutex; 64 static struct flist_head *cgroup_list; 65 static char *cgroup_mnt; 66 static int exit_value; 67 static volatile int fio_abort; 68 static unsigned int nr_process = 0; 69 static unsigned int nr_thread = 0; 70 71 struct io_log *agg_io_log[DDIR_RWDIR_CNT]; 72 73 int groupid = 0; 74 unsigned int thread_number = 0; 75 unsigned int stat_number = 0; 76 int shm_id = 0; 77 int temp_stall_ts; 78 unsigned long done_secs = 0; 79 volatile int helper_exit = 0; 80 81 #define PAGE_ALIGN(buf) \ 82 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask) 83 84 #define JOB_START_TIMEOUT (5 * 1000) 85 86 static void sig_int(int sig) 87 { 88 if (threads) { 89 if (is_backend) 90 fio_server_got_signal(sig); 91 else { 92 log_info("\nfio: terminating on signal %d\n", sig); 93 log_info_flush(); 94 exit_value = 128; 95 } 96 97 fio_terminate_threads(TERMINATE_ALL); 98 } 99 } 100 101 static void sig_show_status(int sig) 102 { 103 show_running_run_stats(); 104 } 105 106 static void set_sig_handlers(void) 107 { 108 struct sigaction act; 109 110 memset(&act, 0, sizeof(act)); 111 act.sa_handler = sig_int; 112 act.sa_flags = SA_RESTART; 113 sigaction(SIGINT, &act, NULL); 114 115 memset(&act, 0, sizeof(act)); 116 act.sa_handler = sig_int; 117 act.sa_flags = SA_RESTART; 118 sigaction(SIGTERM, &act, NULL); 119 120 /* Windows uses SIGBREAK as a quit signal from other applications */ 121 #ifdef WIN32 122 memset(&act, 0, sizeof(act)); 123 act.sa_handler = sig_int; 124 act.sa_flags = SA_RESTART; 125 sigaction(SIGBREAK, &act, NULL); 126 #endif 127 128 memset(&act, 0, sizeof(act)); 129 act.sa_handler = sig_show_status; 130 act.sa_flags = SA_RESTART; 131 sigaction(SIGUSR1, &act, NULL); 132 133 if (is_backend) { 134 memset(&act, 0, sizeof(act)); 135 act.sa_handler = sig_int; 136 act.sa_flags = SA_RESTART; 137 sigaction(SIGPIPE, &act, NULL); 138 } 139 } 140 141 /* 142 * Check if we are above the minimum rate given. 143 */ 144 static int __check_min_rate(struct thread_data *td, struct timeval *now, 145 enum fio_ddir ddir) 146 { 147 unsigned long long bytes = 0; 148 unsigned long iops = 0; 149 unsigned long spent; 150 unsigned long rate; 151 unsigned int ratemin = 0; 152 unsigned int rate_iops = 0; 153 unsigned int rate_iops_min = 0; 154 155 assert(ddir_rw(ddir)); 156 157 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir]) 158 return 0; 159 160 /* 161 * allow a 2 second settle period in the beginning 162 */ 163 if (mtime_since(&td->start, now) < 2000) 164 return 0; 165 166 iops += td->this_io_blocks[ddir]; 167 bytes += td->this_io_bytes[ddir]; 168 ratemin += td->o.ratemin[ddir]; 169 rate_iops += td->o.rate_iops[ddir]; 170 rate_iops_min += td->o.rate_iops_min[ddir]; 171 172 /* 173 * if rate blocks is set, sample is running 174 */ 175 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) { 176 spent = mtime_since(&td->lastrate[ddir], now); 177 if (spent < td->o.ratecycle) 178 return 0; 179 180 if (td->o.rate[ddir]) { 181 /* 182 * check bandwidth specified rate 183 */ 184 if (bytes < td->rate_bytes[ddir]) { 185 log_err("%s: min rate %u not met\n", td->o.name, 186 ratemin); 187 return 1; 188 } else { 189 if (spent) 190 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent; 191 else 192 rate = 0; 193 194 if (rate < ratemin || 195 bytes < td->rate_bytes[ddir]) { 196 log_err("%s: min rate %u not met, got" 197 " %luKB/sec\n", td->o.name, 198 ratemin, rate); 199 return 1; 200 } 201 } 202 } else { 203 /* 204 * checks iops specified rate 205 */ 206 if (iops < rate_iops) { 207 log_err("%s: min iops rate %u not met\n", 208 td->o.name, rate_iops); 209 return 1; 210 } else { 211 if (spent) 212 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent; 213 else 214 rate = 0; 215 216 if (rate < rate_iops_min || 217 iops < td->rate_blocks[ddir]) { 218 log_err("%s: min iops rate %u not met," 219 " got %lu\n", td->o.name, 220 rate_iops_min, rate); 221 } 222 } 223 } 224 } 225 226 td->rate_bytes[ddir] = bytes; 227 td->rate_blocks[ddir] = iops; 228 memcpy(&td->lastrate[ddir], now, sizeof(*now)); 229 return 0; 230 } 231 232 static int check_min_rate(struct thread_data *td, struct timeval *now, 233 uint64_t *bytes_done) 234 { 235 int ret = 0; 236 237 if (bytes_done[DDIR_READ]) 238 ret |= __check_min_rate(td, now, DDIR_READ); 239 if (bytes_done[DDIR_WRITE]) 240 ret |= __check_min_rate(td, now, DDIR_WRITE); 241 if (bytes_done[DDIR_TRIM]) 242 ret |= __check_min_rate(td, now, DDIR_TRIM); 243 244 return ret; 245 } 246 247 /* 248 * When job exits, we can cancel the in-flight IO if we are using async 249 * io. Attempt to do so. 250 */ 251 static void cleanup_pending_aio(struct thread_data *td) 252 { 253 int r; 254 255 /* 256 * get immediately available events, if any 257 */ 258 r = io_u_queued_complete(td, 0, NULL); 259 if (r < 0) 260 return; 261 262 /* 263 * now cancel remaining active events 264 */ 265 if (td->io_ops->cancel) { 266 struct io_u *io_u; 267 int i; 268 269 io_u_qiter(&td->io_u_all, io_u, i) { 270 if (io_u->flags & IO_U_F_FLIGHT) { 271 r = td->io_ops->cancel(td, io_u); 272 if (!r) 273 put_io_u(td, io_u); 274 } 275 } 276 } 277 278 if (td->cur_depth) 279 r = io_u_queued_complete(td, td->cur_depth, NULL); 280 } 281 282 /* 283 * Helper to handle the final sync of a file. Works just like the normal 284 * io path, just does everything sync. 285 */ 286 static int fio_io_sync(struct thread_data *td, struct fio_file *f) 287 { 288 struct io_u *io_u = __get_io_u(td); 289 int ret; 290 291 if (!io_u) 292 return 1; 293 294 io_u->ddir = DDIR_SYNC; 295 io_u->file = f; 296 297 if (td_io_prep(td, io_u)) { 298 put_io_u(td, io_u); 299 return 1; 300 } 301 302 requeue: 303 ret = td_io_queue(td, io_u); 304 if (ret < 0) { 305 td_verror(td, io_u->error, "td_io_queue"); 306 put_io_u(td, io_u); 307 return 1; 308 } else if (ret == FIO_Q_QUEUED) { 309 if (io_u_queued_complete(td, 1, NULL) < 0) 310 return 1; 311 } else if (ret == FIO_Q_COMPLETED) { 312 if (io_u->error) { 313 td_verror(td, io_u->error, "td_io_queue"); 314 return 1; 315 } 316 317 if (io_u_sync_complete(td, io_u, NULL) < 0) 318 return 1; 319 } else if (ret == FIO_Q_BUSY) { 320 if (td_io_commit(td)) 321 return 1; 322 goto requeue; 323 } 324 325 return 0; 326 } 327 328 static int fio_file_fsync(struct thread_data *td, struct fio_file *f) 329 { 330 int ret; 331 332 if (fio_file_open(f)) 333 return fio_io_sync(td, f); 334 335 if (td_io_open_file(td, f)) 336 return 1; 337 338 ret = fio_io_sync(td, f); 339 td_io_close_file(td, f); 340 return ret; 341 } 342 343 static inline void __update_tv_cache(struct thread_data *td) 344 { 345 fio_gettime(&td->tv_cache, NULL); 346 } 347 348 static inline void update_tv_cache(struct thread_data *td) 349 { 350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask) 351 __update_tv_cache(td); 352 } 353 354 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t) 355 { 356 if (in_ramp_time(td)) 357 return 0; 358 if (!td->o.timeout) 359 return 0; 360 if (utime_since(&td->epoch, t) >= td->o.timeout) 361 return 1; 362 363 return 0; 364 } 365 366 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir, 367 int *retptr) 368 { 369 int ret = *retptr; 370 371 if (ret < 0 || td->error) { 372 int err = td->error; 373 enum error_type_bit eb; 374 375 if (ret < 0) 376 err = -ret; 377 378 eb = td_error_type(ddir, err); 379 if (!(td->o.continue_on_error & (1 << eb))) 380 return 1; 381 382 if (td_non_fatal_error(td, eb, err)) { 383 /* 384 * Continue with the I/Os in case of 385 * a non fatal error. 386 */ 387 update_error_count(td, err); 388 td_clear_error(td); 389 *retptr = 0; 390 return 0; 391 } else if (td->o.fill_device && err == ENOSPC) { 392 /* 393 * We expect to hit this error if 394 * fill_device option is set. 395 */ 396 td_clear_error(td); 397 fio_mark_td_terminate(td); 398 return 1; 399 } else { 400 /* 401 * Stop the I/O in case of a fatal 402 * error. 403 */ 404 update_error_count(td, err); 405 return 1; 406 } 407 } 408 409 return 0; 410 } 411 412 static void check_update_rusage(struct thread_data *td) 413 { 414 if (td->update_rusage) { 415 td->update_rusage = 0; 416 update_rusage_stat(td); 417 fio_mutex_up(td->rusage_sem); 418 } 419 } 420 421 static int wait_for_completions(struct thread_data *td, struct timeval *time, 422 uint64_t *bytes_done) 423 { 424 const int full = queue_full(td); 425 int min_evts = 0; 426 int ret; 427 428 /* 429 * if the queue is full, we MUST reap at least 1 event 430 */ 431 min_evts = min(td->o.iodepth_batch_complete, td->cur_depth); 432 if (full && !min_evts) 433 min_evts = 1; 434 435 if (time && (__should_check_rate(td, DDIR_READ) || 436 __should_check_rate(td, DDIR_WRITE) || 437 __should_check_rate(td, DDIR_TRIM))) 438 fio_gettime(time, NULL); 439 440 do { 441 ret = io_u_queued_complete(td, min_evts, bytes_done); 442 if (ret < 0) 443 break; 444 } while (full && (td->cur_depth > td->o.iodepth_low)); 445 446 return ret; 447 } 448 449 /* 450 * The main verify engine. Runs over the writes we previously submitted, 451 * reads the blocks back in, and checks the crc/md5 of the data. 452 */ 453 static void do_verify(struct thread_data *td, uint64_t verify_bytes) 454 { 455 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; 456 struct fio_file *f; 457 struct io_u *io_u; 458 int ret, min_events; 459 unsigned int i; 460 461 dprint(FD_VERIFY, "starting loop\n"); 462 463 /* 464 * sync io first and invalidate cache, to make sure we really 465 * read from disk. 466 */ 467 for_each_file(td, f, i) { 468 if (!fio_file_open(f)) 469 continue; 470 if (fio_io_sync(td, f)) 471 break; 472 if (file_invalidate_cache(td, f)) 473 break; 474 } 475 476 check_update_rusage(td); 477 478 if (td->error) 479 return; 480 481 td_set_runstate(td, TD_VERIFYING); 482 483 io_u = NULL; 484 while (!td->terminate) { 485 enum fio_ddir ddir; 486 int ret2, full; 487 488 update_tv_cache(td); 489 check_update_rusage(td); 490 491 if (runtime_exceeded(td, &td->tv_cache)) { 492 __update_tv_cache(td); 493 if (runtime_exceeded(td, &td->tv_cache)) { 494 fio_mark_td_terminate(td); 495 break; 496 } 497 } 498 499 if (flow_threshold_exceeded(td)) 500 continue; 501 502 if (!td->o.experimental_verify) { 503 io_u = __get_io_u(td); 504 if (!io_u) 505 break; 506 507 if (get_next_verify(td, io_u)) { 508 put_io_u(td, io_u); 509 break; 510 } 511 512 if (td_io_prep(td, io_u)) { 513 put_io_u(td, io_u); 514 break; 515 } 516 } else { 517 if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes) 518 break; 519 520 while ((io_u = get_io_u(td)) != NULL) { 521 if (IS_ERR(io_u)) { 522 io_u = NULL; 523 ret = FIO_Q_BUSY; 524 goto reap; 525 } 526 527 /* 528 * We are only interested in the places where 529 * we wrote or trimmed IOs. Turn those into 530 * reads for verification purposes. 531 */ 532 if (io_u->ddir == DDIR_READ) { 533 /* 534 * Pretend we issued it for rwmix 535 * accounting 536 */ 537 td->io_issues[DDIR_READ]++; 538 put_io_u(td, io_u); 539 continue; 540 } else if (io_u->ddir == DDIR_TRIM) { 541 io_u->ddir = DDIR_READ; 542 io_u->flags |= IO_U_F_TRIMMED; 543 break; 544 } else if (io_u->ddir == DDIR_WRITE) { 545 io_u->ddir = DDIR_READ; 546 break; 547 } else { 548 put_io_u(td, io_u); 549 continue; 550 } 551 } 552 553 if (!io_u) 554 break; 555 } 556 557 if (verify_state_should_stop(td, io_u)) { 558 put_io_u(td, io_u); 559 break; 560 } 561 562 if (td->o.verify_async) 563 io_u->end_io = verify_io_u_async; 564 else 565 io_u->end_io = verify_io_u; 566 567 ddir = io_u->ddir; 568 if (!td->o.disable_slat) 569 fio_gettime(&io_u->start_time, NULL); 570 571 ret = td_io_queue(td, io_u); 572 switch (ret) { 573 case FIO_Q_COMPLETED: 574 if (io_u->error) { 575 ret = -io_u->error; 576 clear_io_u(td, io_u); 577 } else if (io_u->resid) { 578 int bytes = io_u->xfer_buflen - io_u->resid; 579 580 /* 581 * zero read, fail 582 */ 583 if (!bytes) { 584 td_verror(td, EIO, "full resid"); 585 put_io_u(td, io_u); 586 break; 587 } 588 589 io_u->xfer_buflen = io_u->resid; 590 io_u->xfer_buf += bytes; 591 io_u->offset += bytes; 592 593 if (ddir_rw(io_u->ddir)) 594 td->ts.short_io_u[io_u->ddir]++; 595 596 f = io_u->file; 597 if (io_u->offset == f->real_file_size) 598 goto sync_done; 599 600 requeue_io_u(td, &io_u); 601 } else { 602 sync_done: 603 ret = io_u_sync_complete(td, io_u, bytes_done); 604 if (ret < 0) 605 break; 606 } 607 continue; 608 case FIO_Q_QUEUED: 609 break; 610 case FIO_Q_BUSY: 611 requeue_io_u(td, &io_u); 612 ret2 = td_io_commit(td); 613 if (ret2 < 0) 614 ret = ret2; 615 break; 616 default: 617 assert(ret < 0); 618 td_verror(td, -ret, "td_io_queue"); 619 break; 620 } 621 622 if (break_on_this_error(td, ddir, &ret)) 623 break; 624 625 /* 626 * if we can queue more, do so. but check if there are 627 * completed io_u's first. Note that we can get BUSY even 628 * without IO queued, if the system is resource starved. 629 */ 630 reap: 631 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); 632 if (full || !td->o.iodepth_batch_complete) 633 ret = wait_for_completions(td, NULL, bytes_done); 634 635 if (ret < 0) 636 break; 637 } 638 639 check_update_rusage(td); 640 641 if (!td->error) { 642 min_events = td->cur_depth; 643 644 if (min_events) 645 ret = io_u_queued_complete(td, min_events, NULL); 646 } else 647 cleanup_pending_aio(td); 648 649 td_set_runstate(td, TD_RUNNING); 650 651 dprint(FD_VERIFY, "exiting loop\n"); 652 } 653 654 static unsigned int exceeds_number_ios(struct thread_data *td) 655 { 656 unsigned long long number_ios; 657 658 if (!td->o.number_ios) 659 return 0; 660 661 number_ios = ddir_rw_sum(td->io_blocks); 662 number_ios += td->io_u_queued + td->io_u_in_flight; 663 664 return number_ios >= (td->o.number_ios * td->loops); 665 } 666 667 static int io_issue_bytes_exceeded(struct thread_data *td) 668 { 669 unsigned long long bytes, limit; 670 671 if (td_rw(td)) 672 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE]; 673 else if (td_write(td)) 674 bytes = td->io_issue_bytes[DDIR_WRITE]; 675 else if (td_read(td)) 676 bytes = td->io_issue_bytes[DDIR_READ]; 677 else 678 bytes = td->io_issue_bytes[DDIR_TRIM]; 679 680 if (td->o.io_limit) 681 limit = td->o.io_limit; 682 else 683 limit = td->o.size; 684 685 limit *= td->loops; 686 return bytes >= limit || exceeds_number_ios(td); 687 } 688 689 static int io_complete_bytes_exceeded(struct thread_data *td) 690 { 691 unsigned long long bytes, limit; 692 693 if (td_rw(td)) 694 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE]; 695 else if (td_write(td)) 696 bytes = td->this_io_bytes[DDIR_WRITE]; 697 else if (td_read(td)) 698 bytes = td->this_io_bytes[DDIR_READ]; 699 else 700 bytes = td->this_io_bytes[DDIR_TRIM]; 701 702 if (td->o.io_limit) 703 limit = td->o.io_limit; 704 else 705 limit = td->o.size; 706 707 limit *= td->loops; 708 return bytes >= limit || exceeds_number_ios(td); 709 } 710 711 /* 712 * Main IO worker function. It retrieves io_u's to process and queues 713 * and reaps them, checking for rate and errors along the way. 714 * 715 * Returns number of bytes written and trimmed. 716 */ 717 static uint64_t do_io(struct thread_data *td) 718 { 719 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; 720 unsigned int i; 721 int ret = 0; 722 uint64_t total_bytes, bytes_issued = 0; 723 724 if (in_ramp_time(td)) 725 td_set_runstate(td, TD_RAMP); 726 else 727 td_set_runstate(td, TD_RUNNING); 728 729 lat_target_init(td); 730 731 total_bytes = td->o.size; 732 /* 733 * Allow random overwrite workloads to write up to io_limit 734 * before starting verification phase as 'size' doesn't apply. 735 */ 736 if (td_write(td) && td_random(td) && td->o.norandommap) 737 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit); 738 /* 739 * If verify_backlog is enabled, we'll run the verify in this 740 * handler as well. For that case, we may need up to twice the 741 * amount of bytes. 742 */ 743 if (td->o.verify != VERIFY_NONE && 744 (td_write(td) && td->o.verify_backlog)) 745 total_bytes += td->o.size; 746 747 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || 748 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) || 749 td->o.time_based) { 750 struct timeval comp_time; 751 struct io_u *io_u; 752 int ret2, full; 753 enum fio_ddir ddir; 754 755 check_update_rusage(td); 756 757 if (td->terminate || td->done) 758 break; 759 760 update_tv_cache(td); 761 762 if (runtime_exceeded(td, &td->tv_cache)) { 763 __update_tv_cache(td); 764 if (runtime_exceeded(td, &td->tv_cache)) { 765 fio_mark_td_terminate(td); 766 break; 767 } 768 } 769 770 if (flow_threshold_exceeded(td)) 771 continue; 772 773 if (bytes_issued >= total_bytes) 774 break; 775 776 io_u = get_io_u(td); 777 if (IS_ERR_OR_NULL(io_u)) { 778 int err = PTR_ERR(io_u); 779 780 io_u = NULL; 781 if (err == -EBUSY) { 782 ret = FIO_Q_BUSY; 783 goto reap; 784 } 785 if (td->o.latency_target) 786 goto reap; 787 break; 788 } 789 790 ddir = io_u->ddir; 791 792 /* 793 * Add verification end_io handler if: 794 * - Asked to verify (!td_rw(td)) 795 * - Or the io_u is from our verify list (mixed write/ver) 796 */ 797 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ && 798 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) { 799 800 if (!td->o.verify_pattern_bytes) { 801 io_u->rand_seed = __rand(&td->verify_state); 802 if (sizeof(int) != sizeof(long *)) 803 io_u->rand_seed *= __rand(&td->verify_state); 804 } 805 806 if (verify_state_should_stop(td, io_u)) { 807 put_io_u(td, io_u); 808 break; 809 } 810 811 if (td->o.verify_async) 812 io_u->end_io = verify_io_u_async; 813 else 814 io_u->end_io = verify_io_u; 815 td_set_runstate(td, TD_VERIFYING); 816 } else if (in_ramp_time(td)) 817 td_set_runstate(td, TD_RAMP); 818 else 819 td_set_runstate(td, TD_RUNNING); 820 821 /* 822 * Always log IO before it's issued, so we know the specific 823 * order of it. The logged unit will track when the IO has 824 * completed. 825 */ 826 if (td_write(td) && io_u->ddir == DDIR_WRITE && 827 td->o.do_verify && 828 td->o.verify != VERIFY_NONE && 829 !td->o.experimental_verify) 830 log_io_piece(td, io_u); 831 832 ret = td_io_queue(td, io_u); 833 switch (ret) { 834 case FIO_Q_COMPLETED: 835 if (io_u->error) { 836 ret = -io_u->error; 837 unlog_io_piece(td, io_u); 838 clear_io_u(td, io_u); 839 } else if (io_u->resid) { 840 int bytes = io_u->xfer_buflen - io_u->resid; 841 struct fio_file *f = io_u->file; 842 843 bytes_issued += bytes; 844 845 trim_io_piece(td, io_u); 846 847 /* 848 * zero read, fail 849 */ 850 if (!bytes) { 851 unlog_io_piece(td, io_u); 852 td_verror(td, EIO, "full resid"); 853 put_io_u(td, io_u); 854 break; 855 } 856 857 io_u->xfer_buflen = io_u->resid; 858 io_u->xfer_buf += bytes; 859 io_u->offset += bytes; 860 861 if (ddir_rw(io_u->ddir)) 862 td->ts.short_io_u[io_u->ddir]++; 863 864 if (io_u->offset == f->real_file_size) 865 goto sync_done; 866 867 requeue_io_u(td, &io_u); 868 } else { 869 sync_done: 870 if (__should_check_rate(td, DDIR_READ) || 871 __should_check_rate(td, DDIR_WRITE) || 872 __should_check_rate(td, DDIR_TRIM)) 873 fio_gettime(&comp_time, NULL); 874 875 ret = io_u_sync_complete(td, io_u, bytes_done); 876 if (ret < 0) 877 break; 878 bytes_issued += io_u->xfer_buflen; 879 } 880 break; 881 case FIO_Q_QUEUED: 882 /* 883 * if the engine doesn't have a commit hook, 884 * the io_u is really queued. if it does have such 885 * a hook, it has to call io_u_queued() itself. 886 */ 887 if (td->io_ops->commit == NULL) 888 io_u_queued(td, io_u); 889 bytes_issued += io_u->xfer_buflen; 890 break; 891 case FIO_Q_BUSY: 892 unlog_io_piece(td, io_u); 893 requeue_io_u(td, &io_u); 894 ret2 = td_io_commit(td); 895 if (ret2 < 0) 896 ret = ret2; 897 break; 898 default: 899 assert(ret < 0); 900 put_io_u(td, io_u); 901 break; 902 } 903 904 if (break_on_this_error(td, ddir, &ret)) 905 break; 906 907 /* 908 * See if we need to complete some commands. Note that we 909 * can get BUSY even without IO queued, if the system is 910 * resource starved. 911 */ 912 reap: 913 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); 914 if (full || !td->o.iodepth_batch_complete) 915 ret = wait_for_completions(td, &comp_time, bytes_done); 916 if (ret < 0) 917 break; 918 if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO)) 919 continue; 920 921 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) { 922 if (check_min_rate(td, &comp_time, bytes_done)) { 923 if (exitall_on_terminate) 924 fio_terminate_threads(td->groupid); 925 td_verror(td, EIO, "check_min_rate"); 926 break; 927 } 928 } 929 if (!in_ramp_time(td) && td->o.latency_target) 930 lat_target_check(td); 931 932 if (td->o.thinktime) { 933 unsigned long long b; 934 935 b = ddir_rw_sum(td->io_blocks); 936 if (!(b % td->o.thinktime_blocks)) { 937 int left; 938 939 io_u_quiesce(td); 940 941 if (td->o.thinktime_spin) 942 usec_spin(td->o.thinktime_spin); 943 944 left = td->o.thinktime - td->o.thinktime_spin; 945 if (left) 946 usec_sleep(td, left); 947 } 948 } 949 } 950 951 check_update_rusage(td); 952 953 if (td->trim_entries) 954 log_err("fio: %lu trim entries leaked?\n", td->trim_entries); 955 956 if (td->o.fill_device && td->error == ENOSPC) { 957 td->error = 0; 958 fio_mark_td_terminate(td); 959 } 960 if (!td->error) { 961 struct fio_file *f; 962 963 i = td->cur_depth; 964 if (i) { 965 ret = io_u_queued_complete(td, i, bytes_done); 966 if (td->o.fill_device && td->error == ENOSPC) 967 td->error = 0; 968 } 969 970 if (should_fsync(td) && td->o.end_fsync) { 971 td_set_runstate(td, TD_FSYNCING); 972 973 for_each_file(td, f, i) { 974 if (!fio_file_fsync(td, f)) 975 continue; 976 977 log_err("fio: end_fsync failed for file %s\n", 978 f->file_name); 979 } 980 } 981 } else 982 cleanup_pending_aio(td); 983 984 /* 985 * stop job if we failed doing any IO 986 */ 987 if (!ddir_rw_sum(td->this_io_bytes)) 988 td->done = 1; 989 990 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; 991 } 992 993 static void cleanup_io_u(struct thread_data *td) 994 { 995 struct io_u *io_u; 996 997 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) { 998 999 if (td->io_ops->io_u_free) 1000 td->io_ops->io_u_free(td, io_u); 1001 1002 fio_memfree(io_u, sizeof(*io_u)); 1003 } 1004 1005 free_io_mem(td); 1006 1007 io_u_rexit(&td->io_u_requeues); 1008 io_u_qexit(&td->io_u_freelist); 1009 io_u_qexit(&td->io_u_all); 1010 1011 if (td->last_write_comp) 1012 sfree(td->last_write_comp); 1013 } 1014 1015 static int init_io_u(struct thread_data *td) 1016 { 1017 struct io_u *io_u; 1018 unsigned int max_bs, min_write; 1019 int cl_align, i, max_units; 1020 int data_xfer = 1, err; 1021 char *p; 1022 1023 max_units = td->o.iodepth; 1024 max_bs = td_max_bs(td); 1025 min_write = td->o.min_bs[DDIR_WRITE]; 1026 td->orig_buffer_size = (unsigned long long) max_bs 1027 * (unsigned long long) max_units; 1028 1029 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td))) 1030 data_xfer = 0; 1031 1032 err = 0; 1033 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth); 1034 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth); 1035 err += io_u_qinit(&td->io_u_all, td->o.iodepth); 1036 1037 if (err) { 1038 log_err("fio: failed setting up IO queues\n"); 1039 return 1; 1040 } 1041 1042 /* 1043 * if we may later need to do address alignment, then add any 1044 * possible adjustment here so that we don't cause a buffer 1045 * overflow later. this adjustment may be too much if we get 1046 * lucky and the allocator gives us an aligned address. 1047 */ 1048 if (td->o.odirect || td->o.mem_align || td->o.oatomic || 1049 (td->io_ops->flags & FIO_RAWIO)) 1050 td->orig_buffer_size += page_mask + td->o.mem_align; 1051 1052 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) { 1053 unsigned long bs; 1054 1055 bs = td->orig_buffer_size + td->o.hugepage_size - 1; 1056 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1); 1057 } 1058 1059 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) { 1060 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n"); 1061 return 1; 1062 } 1063 1064 if (data_xfer && allocate_io_mem(td)) 1065 return 1; 1066 1067 if (td->o.odirect || td->o.mem_align || td->o.oatomic || 1068 (td->io_ops->flags & FIO_RAWIO)) 1069 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align; 1070 else 1071 p = td->orig_buffer; 1072 1073 cl_align = os_cache_line_size(); 1074 1075 for (i = 0; i < max_units; i++) { 1076 void *ptr; 1077 1078 if (td->terminate) 1079 return 1; 1080 1081 ptr = fio_memalign(cl_align, sizeof(*io_u)); 1082 if (!ptr) { 1083 log_err("fio: unable to allocate aligned memory\n"); 1084 break; 1085 } 1086 1087 io_u = ptr; 1088 memset(io_u, 0, sizeof(*io_u)); 1089 INIT_FLIST_HEAD(&io_u->verify_list); 1090 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i); 1091 1092 if (data_xfer) { 1093 io_u->buf = p; 1094 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf); 1095 1096 if (td_write(td)) 1097 io_u_fill_buffer(td, io_u, min_write, max_bs); 1098 if (td_write(td) && td->o.verify_pattern_bytes) { 1099 /* 1100 * Fill the buffer with the pattern if we are 1101 * going to be doing writes. 1102 */ 1103 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0); 1104 } 1105 } 1106 1107 io_u->index = i; 1108 io_u->flags = IO_U_F_FREE; 1109 io_u_qpush(&td->io_u_freelist, io_u); 1110 1111 /* 1112 * io_u never leaves this stack, used for iteration of all 1113 * io_u buffers. 1114 */ 1115 io_u_qpush(&td->io_u_all, io_u); 1116 1117 if (td->io_ops->io_u_init) { 1118 int ret = td->io_ops->io_u_init(td, io_u); 1119 1120 if (ret) { 1121 log_err("fio: failed to init engine data: %d\n", ret); 1122 return 1; 1123 } 1124 } 1125 1126 p += max_bs; 1127 } 1128 1129 if (td->o.verify != VERIFY_NONE) { 1130 td->last_write_comp = scalloc(max_units, sizeof(uint64_t)); 1131 if (!td->last_write_comp) { 1132 log_err("fio: failed to alloc write comp data\n"); 1133 return 1; 1134 } 1135 } 1136 1137 return 0; 1138 } 1139 1140 static int switch_ioscheduler(struct thread_data *td) 1141 { 1142 char tmp[256], tmp2[128]; 1143 FILE *f; 1144 int ret; 1145 1146 if (td->io_ops->flags & FIO_DISKLESSIO) 1147 return 0; 1148 1149 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root); 1150 1151 f = fopen(tmp, "r+"); 1152 if (!f) { 1153 if (errno == ENOENT) { 1154 log_err("fio: os or kernel doesn't support IO scheduler" 1155 " switching\n"); 1156 return 0; 1157 } 1158 td_verror(td, errno, "fopen iosched"); 1159 return 1; 1160 } 1161 1162 /* 1163 * Set io scheduler. 1164 */ 1165 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f); 1166 if (ferror(f) || ret != 1) { 1167 td_verror(td, errno, "fwrite"); 1168 fclose(f); 1169 return 1; 1170 } 1171 1172 rewind(f); 1173 1174 /* 1175 * Read back and check that the selected scheduler is now the default. 1176 */ 1177 ret = fread(tmp, sizeof(tmp), 1, f); 1178 if (ferror(f) || ret < 0) { 1179 td_verror(td, errno, "fread"); 1180 fclose(f); 1181 return 1; 1182 } 1183 tmp[sizeof(tmp) - 1] = '\0'; 1184 1185 1186 sprintf(tmp2, "[%s]", td->o.ioscheduler); 1187 if (!strstr(tmp, tmp2)) { 1188 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler); 1189 td_verror(td, EINVAL, "iosched_switch"); 1190 fclose(f); 1191 return 1; 1192 } 1193 1194 fclose(f); 1195 return 0; 1196 } 1197 1198 static int keep_running(struct thread_data *td) 1199 { 1200 unsigned long long limit; 1201 1202 if (td->done) 1203 return 0; 1204 if (td->o.time_based) 1205 return 1; 1206 if (td->o.loops) { 1207 td->o.loops--; 1208 return 1; 1209 } 1210 if (exceeds_number_ios(td)) 1211 return 0; 1212 1213 if (td->o.io_limit) 1214 limit = td->o.io_limit; 1215 else 1216 limit = td->o.size; 1217 1218 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) { 1219 uint64_t diff; 1220 1221 /* 1222 * If the difference is less than the minimum IO size, we 1223 * are done. 1224 */ 1225 diff = limit - ddir_rw_sum(td->io_bytes); 1226 if (diff < td_max_bs(td)) 1227 return 0; 1228 1229 if (fio_files_done(td)) 1230 return 0; 1231 1232 return 1; 1233 } 1234 1235 return 0; 1236 } 1237 1238 static int exec_string(struct thread_options *o, const char *string, const char *mode) 1239 { 1240 int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1; 1241 char *str; 1242 1243 str = malloc(newlen); 1244 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode); 1245 1246 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode); 1247 ret = system(str); 1248 if (ret == -1) 1249 log_err("fio: exec of cmd <%s> failed\n", str); 1250 1251 free(str); 1252 return ret; 1253 } 1254 1255 /* 1256 * Dry run to compute correct state of numberio for verification. 1257 */ 1258 static uint64_t do_dry_run(struct thread_data *td) 1259 { 1260 uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; 1261 1262 td_set_runstate(td, TD_RUNNING); 1263 1264 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || 1265 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) { 1266 struct io_u *io_u; 1267 int ret; 1268 1269 if (td->terminate || td->done) 1270 break; 1271 1272 io_u = get_io_u(td); 1273 if (!io_u) 1274 break; 1275 1276 io_u->flags |= IO_U_F_FLIGHT; 1277 io_u->error = 0; 1278 io_u->resid = 0; 1279 if (ddir_rw(acct_ddir(io_u))) 1280 td->io_issues[acct_ddir(io_u)]++; 1281 if (ddir_rw(io_u->ddir)) { 1282 io_u_mark_depth(td, 1); 1283 td->ts.total_io_u[io_u->ddir]++; 1284 } 1285 1286 if (td_write(td) && io_u->ddir == DDIR_WRITE && 1287 td->o.do_verify && 1288 td->o.verify != VERIFY_NONE && 1289 !td->o.experimental_verify) 1290 log_io_piece(td, io_u); 1291 1292 ret = io_u_sync_complete(td, io_u, bytes_done); 1293 (void) ret; 1294 } 1295 1296 return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; 1297 } 1298 1299 /* 1300 * Entry point for the thread based jobs. The process based jobs end up 1301 * here as well, after a little setup. 1302 */ 1303 static void *thread_main(void *data) 1304 { 1305 unsigned long long elapsed; 1306 struct thread_data *td = data; 1307 struct thread_options *o = &td->o; 1308 pthread_condattr_t attr; 1309 int clear_state; 1310 int ret; 1311 1312 if (!o->use_thread) { 1313 setsid(); 1314 td->pid = getpid(); 1315 } else 1316 td->pid = gettid(); 1317 1318 fio_local_clock_init(o->use_thread); 1319 1320 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid); 1321 1322 if (is_backend) 1323 fio_server_send_start(td); 1324 1325 INIT_FLIST_HEAD(&td->io_log_list); 1326 INIT_FLIST_HEAD(&td->io_hist_list); 1327 INIT_FLIST_HEAD(&td->verify_list); 1328 INIT_FLIST_HEAD(&td->trim_list); 1329 INIT_FLIST_HEAD(&td->next_rand_list); 1330 pthread_mutex_init(&td->io_u_lock, NULL); 1331 td->io_hist_tree = RB_ROOT; 1332 1333 pthread_condattr_init(&attr); 1334 pthread_cond_init(&td->verify_cond, &attr); 1335 pthread_cond_init(&td->free_cond, &attr); 1336 1337 td_set_runstate(td, TD_INITIALIZED); 1338 dprint(FD_MUTEX, "up startup_mutex\n"); 1339 fio_mutex_up(startup_mutex); 1340 dprint(FD_MUTEX, "wait on td->mutex\n"); 1341 fio_mutex_down(td->mutex); 1342 dprint(FD_MUTEX, "done waiting on td->mutex\n"); 1343 1344 /* 1345 * A new gid requires privilege, so we need to do this before setting 1346 * the uid. 1347 */ 1348 if (o->gid != -1U && setgid(o->gid)) { 1349 td_verror(td, errno, "setgid"); 1350 goto err; 1351 } 1352 if (o->uid != -1U && setuid(o->uid)) { 1353 td_verror(td, errno, "setuid"); 1354 goto err; 1355 } 1356 1357 /* 1358 * If we have a gettimeofday() thread, make sure we exclude that 1359 * thread from this job 1360 */ 1361 if (o->gtod_cpu) 1362 fio_cpu_clear(&o->cpumask, o->gtod_cpu); 1363 1364 /* 1365 * Set affinity first, in case it has an impact on the memory 1366 * allocations. 1367 */ 1368 if (fio_option_is_set(o, cpumask)) { 1369 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) { 1370 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1); 1371 if (!ret) { 1372 log_err("fio: no CPUs set\n"); 1373 log_err("fio: Try increasing number of available CPUs\n"); 1374 td_verror(td, EINVAL, "cpus_split"); 1375 goto err; 1376 } 1377 } 1378 ret = fio_setaffinity(td->pid, o->cpumask); 1379 if (ret == -1) { 1380 td_verror(td, errno, "cpu_set_affinity"); 1381 goto err; 1382 } 1383 } 1384 1385 #ifdef CONFIG_LIBNUMA 1386 /* numa node setup */ 1387 if (fio_option_is_set(o, numa_cpunodes) || 1388 fio_option_is_set(o, numa_memnodes)) { 1389 struct bitmask *mask; 1390 1391 if (numa_available() < 0) { 1392 td_verror(td, errno, "Does not support NUMA API\n"); 1393 goto err; 1394 } 1395 1396 if (fio_option_is_set(o, numa_cpunodes)) { 1397 mask = numa_parse_nodestring(o->numa_cpunodes); 1398 ret = numa_run_on_node_mask(mask); 1399 numa_free_nodemask(mask); 1400 if (ret == -1) { 1401 td_verror(td, errno, \ 1402 "numa_run_on_node_mask failed\n"); 1403 goto err; 1404 } 1405 } 1406 1407 if (fio_option_is_set(o, numa_memnodes)) { 1408 mask = NULL; 1409 if (o->numa_memnodes) 1410 mask = numa_parse_nodestring(o->numa_memnodes); 1411 1412 switch (o->numa_mem_mode) { 1413 case MPOL_INTERLEAVE: 1414 numa_set_interleave_mask(mask); 1415 break; 1416 case MPOL_BIND: 1417 numa_set_membind(mask); 1418 break; 1419 case MPOL_LOCAL: 1420 numa_set_localalloc(); 1421 break; 1422 case MPOL_PREFERRED: 1423 numa_set_preferred(o->numa_mem_prefer_node); 1424 break; 1425 case MPOL_DEFAULT: 1426 default: 1427 break; 1428 } 1429 1430 if (mask) 1431 numa_free_nodemask(mask); 1432 1433 } 1434 } 1435 #endif 1436 1437 if (fio_pin_memory(td)) 1438 goto err; 1439 1440 /* 1441 * May alter parameters that init_io_u() will use, so we need to 1442 * do this first. 1443 */ 1444 if (init_iolog(td)) 1445 goto err; 1446 1447 if (init_io_u(td)) 1448 goto err; 1449 1450 if (o->verify_async && verify_async_init(td)) 1451 goto err; 1452 1453 if (fio_option_is_set(o, ioprio) || 1454 fio_option_is_set(o, ioprio_class)) { 1455 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio); 1456 if (ret == -1) { 1457 td_verror(td, errno, "ioprio_set"); 1458 goto err; 1459 } 1460 } 1461 1462 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt)) 1463 goto err; 1464 1465 errno = 0; 1466 if (nice(o->nice) == -1 && errno != 0) { 1467 td_verror(td, errno, "nice"); 1468 goto err; 1469 } 1470 1471 if (o->ioscheduler && switch_ioscheduler(td)) 1472 goto err; 1473 1474 if (!o->create_serialize && setup_files(td)) 1475 goto err; 1476 1477 if (td_io_init(td)) 1478 goto err; 1479 1480 if (init_random_map(td)) 1481 goto err; 1482 1483 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun")) 1484 goto err; 1485 1486 if (o->pre_read) { 1487 if (pre_read_files(td) < 0) 1488 goto err; 1489 } 1490 1491 if (td->flags & TD_F_COMPRESS_LOG) 1492 tp_init(&td->tp_data); 1493 1494 fio_verify_init(td); 1495 1496 fio_gettime(&td->epoch, NULL); 1497 fio_getrusage(&td->ru_start); 1498 clear_state = 0; 1499 while (keep_running(td)) { 1500 uint64_t verify_bytes; 1501 1502 fio_gettime(&td->start, NULL); 1503 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start)); 1504 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start)); 1505 memcpy(&td->tv_cache, &td->start, sizeof(td->start)); 1506 1507 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] || 1508 o->ratemin[DDIR_TRIM]) { 1509 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time, 1510 sizeof(td->bw_sample_time)); 1511 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time, 1512 sizeof(td->bw_sample_time)); 1513 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time, 1514 sizeof(td->bw_sample_time)); 1515 } 1516 1517 if (clear_state) 1518 clear_io_state(td); 1519 1520 prune_io_piece_log(td); 1521 1522 if (td->o.verify_only && (td_write(td) || td_rw(td))) 1523 verify_bytes = do_dry_run(td); 1524 else 1525 verify_bytes = do_io(td); 1526 1527 clear_state = 1; 1528 1529 fio_mutex_down(stat_mutex); 1530 if (td_read(td) && td->io_bytes[DDIR_READ]) { 1531 elapsed = mtime_since_now(&td->start); 1532 td->ts.runtime[DDIR_READ] += elapsed; 1533 } 1534 if (td_write(td) && td->io_bytes[DDIR_WRITE]) { 1535 elapsed = mtime_since_now(&td->start); 1536 td->ts.runtime[DDIR_WRITE] += elapsed; 1537 } 1538 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) { 1539 elapsed = mtime_since_now(&td->start); 1540 td->ts.runtime[DDIR_TRIM] += elapsed; 1541 } 1542 fio_gettime(&td->start, NULL); 1543 fio_mutex_up(stat_mutex); 1544 1545 if (td->error || td->terminate) 1546 break; 1547 1548 if (!o->do_verify || 1549 o->verify == VERIFY_NONE || 1550 (td->io_ops->flags & FIO_UNIDIR)) 1551 continue; 1552 1553 clear_io_state(td); 1554 1555 fio_gettime(&td->start, NULL); 1556 1557 do_verify(td, verify_bytes); 1558 1559 fio_mutex_down(stat_mutex); 1560 td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start); 1561 fio_gettime(&td->start, NULL); 1562 fio_mutex_up(stat_mutex); 1563 1564 if (td->error || td->terminate) 1565 break; 1566 } 1567 1568 update_rusage_stat(td); 1569 td->ts.total_run_time = mtime_since_now(&td->epoch); 1570 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; 1571 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; 1572 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; 1573 1574 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) && 1575 (td->o.verify != VERIFY_NONE && td_write(td))) { 1576 struct all_io_list *state; 1577 size_t sz; 1578 1579 state = get_all_io_list(td->thread_number, &sz); 1580 if (state) { 1581 __verify_save_state(state, "local"); 1582 free(state); 1583 } 1584 } 1585 1586 fio_unpin_memory(td); 1587 1588 fio_writeout_logs(td); 1589 1590 if (td->flags & TD_F_COMPRESS_LOG) 1591 tp_exit(&td->tp_data); 1592 1593 if (o->exec_postrun) 1594 exec_string(o, o->exec_postrun, (const char *)"postrun"); 1595 1596 if (exitall_on_terminate) 1597 fio_terminate_threads(td->groupid); 1598 1599 err: 1600 if (td->error) 1601 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, 1602 td->verror); 1603 1604 if (o->verify_async) 1605 verify_async_exit(td); 1606 1607 close_and_free_files(td); 1608 cleanup_io_u(td); 1609 close_ioengine(td); 1610 cgroup_shutdown(td, &cgroup_mnt); 1611 verify_free_state(td); 1612 1613 if (fio_option_is_set(o, cpumask)) { 1614 ret = fio_cpuset_exit(&o->cpumask); 1615 if (ret) 1616 td_verror(td, ret, "fio_cpuset_exit"); 1617 } 1618 1619 /* 1620 * do this very late, it will log file closing as well 1621 */ 1622 if (o->write_iolog_file) 1623 write_iolog_close(td); 1624 1625 fio_mutex_remove(td->mutex); 1626 td->mutex = NULL; 1627 1628 td_set_runstate(td, TD_EXITED); 1629 1630 /* 1631 * Do this last after setting our runstate to exited, so we 1632 * know that the stat thread is signaled. 1633 */ 1634 check_update_rusage(td); 1635 1636 return (void *) (uintptr_t) td->error; 1637 } 1638 1639 1640 /* 1641 * We cannot pass the td data into a forked process, so attach the td and 1642 * pass it to the thread worker. 1643 */ 1644 static int fork_main(int shmid, int offset) 1645 { 1646 struct thread_data *td; 1647 void *data, *ret; 1648 1649 #if !defined(__hpux) && !defined(CONFIG_NO_SHM) 1650 data = shmat(shmid, NULL, 0); 1651 if (data == (void *) -1) { 1652 int __err = errno; 1653 1654 perror("shmat"); 1655 return __err; 1656 } 1657 #else 1658 /* 1659 * HP-UX inherits shm mappings? 1660 */ 1661 data = threads; 1662 #endif 1663 1664 td = data + offset * sizeof(struct thread_data); 1665 ret = thread_main(td); 1666 shmdt(data); 1667 return (int) (uintptr_t) ret; 1668 } 1669 1670 static void dump_td_info(struct thread_data *td) 1671 { 1672 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to " 1673 "be stuck. Doing forceful exit of this job.\n", td->o.name, 1674 (unsigned long) time_since_now(&td->terminate_time)); 1675 } 1676 1677 /* 1678 * Run over the job map and reap the threads that have exited, if any. 1679 */ 1680 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate, 1681 unsigned int *m_rate) 1682 { 1683 struct thread_data *td; 1684 unsigned int cputhreads, realthreads, pending; 1685 int i, status, ret; 1686 1687 /* 1688 * reap exited threads (TD_EXITED -> TD_REAPED) 1689 */ 1690 realthreads = pending = cputhreads = 0; 1691 for_each_td(td, i) { 1692 int flags = 0; 1693 1694 /* 1695 * ->io_ops is NULL for a thread that has closed its 1696 * io engine 1697 */ 1698 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio")) 1699 cputhreads++; 1700 else 1701 realthreads++; 1702 1703 if (!td->pid) { 1704 pending++; 1705 continue; 1706 } 1707 if (td->runstate == TD_REAPED) 1708 continue; 1709 if (td->o.use_thread) { 1710 if (td->runstate == TD_EXITED) { 1711 td_set_runstate(td, TD_REAPED); 1712 goto reaped; 1713 } 1714 continue; 1715 } 1716 1717 flags = WNOHANG; 1718 if (td->runstate == TD_EXITED) 1719 flags = 0; 1720 1721 /* 1722 * check if someone quit or got killed in an unusual way 1723 */ 1724 ret = waitpid(td->pid, &status, flags); 1725 if (ret < 0) { 1726 if (errno == ECHILD) { 1727 log_err("fio: pid=%d disappeared %d\n", 1728 (int) td->pid, td->runstate); 1729 td->sig = ECHILD; 1730 td_set_runstate(td, TD_REAPED); 1731 goto reaped; 1732 } 1733 perror("waitpid"); 1734 } else if (ret == td->pid) { 1735 if (WIFSIGNALED(status)) { 1736 int sig = WTERMSIG(status); 1737 1738 if (sig != SIGTERM && sig != SIGUSR2) 1739 log_err("fio: pid=%d, got signal=%d\n", 1740 (int) td->pid, sig); 1741 td->sig = sig; 1742 td_set_runstate(td, TD_REAPED); 1743 goto reaped; 1744 } 1745 if (WIFEXITED(status)) { 1746 if (WEXITSTATUS(status) && !td->error) 1747 td->error = WEXITSTATUS(status); 1748 1749 td_set_runstate(td, TD_REAPED); 1750 goto reaped; 1751 } 1752 } 1753 1754 /* 1755 * If the job is stuck, do a forceful timeout of it and 1756 * move on. 1757 */ 1758 if (td->terminate && 1759 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) { 1760 dump_td_info(td); 1761 td_set_runstate(td, TD_REAPED); 1762 goto reaped; 1763 } 1764 1765 /* 1766 * thread is not dead, continue 1767 */ 1768 pending++; 1769 continue; 1770 reaped: 1771 (*nr_running)--; 1772 (*m_rate) -= ddir_rw_sum(td->o.ratemin); 1773 (*t_rate) -= ddir_rw_sum(td->o.rate); 1774 if (!td->pid) 1775 pending--; 1776 1777 if (td->error) 1778 exit_value++; 1779 1780 done_secs += mtime_since_now(&td->epoch) / 1000; 1781 profile_td_exit(td); 1782 } 1783 1784 if (*nr_running == cputhreads && !pending && realthreads) 1785 fio_terminate_threads(TERMINATE_ALL); 1786 } 1787 1788 static int __check_trigger_file(void) 1789 { 1790 struct stat sb; 1791 1792 if (!trigger_file) 1793 return 0; 1794 1795 if (stat(trigger_file, &sb)) 1796 return 0; 1797 1798 if (unlink(trigger_file) < 0) 1799 log_err("fio: failed to unlink %s: %s\n", trigger_file, 1800 strerror(errno)); 1801 1802 return 1; 1803 } 1804 1805 static int trigger_timedout(void) 1806 { 1807 if (trigger_timeout) 1808 return time_since_genesis() >= trigger_timeout; 1809 1810 return 0; 1811 } 1812 1813 void exec_trigger(const char *cmd) 1814 { 1815 int ret; 1816 1817 if (!cmd) 1818 return; 1819 1820 ret = system(cmd); 1821 if (ret == -1) 1822 log_err("fio: failed executing %s trigger\n", cmd); 1823 } 1824 1825 void check_trigger_file(void) 1826 { 1827 if (__check_trigger_file() || trigger_timedout()) { 1828 if (nr_clients) 1829 fio_clients_send_trigger(trigger_remote_cmd); 1830 else { 1831 verify_save_state(); 1832 fio_terminate_threads(TERMINATE_ALL); 1833 exec_trigger(trigger_cmd); 1834 } 1835 } 1836 } 1837 1838 static int fio_verify_load_state(struct thread_data *td) 1839 { 1840 int ret; 1841 1842 if (!td->o.verify_state) 1843 return 0; 1844 1845 if (is_backend) { 1846 void *data; 1847 1848 ret = fio_server_get_verify_state(td->o.name, 1849 td->thread_number - 1, &data); 1850 if (!ret) 1851 verify_convert_assign_state(td, data); 1852 } else 1853 ret = verify_load_state(td, "local"); 1854 1855 return ret; 1856 } 1857 1858 static void do_usleep(unsigned int usecs) 1859 { 1860 check_for_running_stats(); 1861 check_trigger_file(); 1862 usleep(usecs); 1863 } 1864 1865 /* 1866 * Main function for kicking off and reaping jobs, as needed. 1867 */ 1868 static void run_threads(void) 1869 { 1870 struct thread_data *td; 1871 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started; 1872 uint64_t spent; 1873 1874 if (fio_gtod_offload && fio_start_gtod_thread()) 1875 return; 1876 1877 fio_idle_prof_init(); 1878 1879 set_sig_handlers(); 1880 1881 nr_thread = nr_process = 0; 1882 for_each_td(td, i) { 1883 if (td->o.use_thread) 1884 nr_thread++; 1885 else 1886 nr_process++; 1887 } 1888 1889 if (output_format == FIO_OUTPUT_NORMAL) { 1890 log_info("Starting "); 1891 if (nr_thread) 1892 log_info("%d thread%s", nr_thread, 1893 nr_thread > 1 ? "s" : ""); 1894 if (nr_process) { 1895 if (nr_thread) 1896 log_info(" and "); 1897 log_info("%d process%s", nr_process, 1898 nr_process > 1 ? "es" : ""); 1899 } 1900 log_info("\n"); 1901 log_info_flush(); 1902 } 1903 1904 todo = thread_number; 1905 nr_running = 0; 1906 nr_started = 0; 1907 m_rate = t_rate = 0; 1908 1909 for_each_td(td, i) { 1910 print_status_init(td->thread_number - 1); 1911 1912 if (!td->o.create_serialize) 1913 continue; 1914 1915 if (fio_verify_load_state(td)) 1916 goto reap; 1917 1918 /* 1919 * do file setup here so it happens sequentially, 1920 * we don't want X number of threads getting their 1921 * client data interspersed on disk 1922 */ 1923 if (setup_files(td)) { 1924 reap: 1925 exit_value++; 1926 if (td->error) 1927 log_err("fio: pid=%d, err=%d/%s\n", 1928 (int) td->pid, td->error, td->verror); 1929 td_set_runstate(td, TD_REAPED); 1930 todo--; 1931 } else { 1932 struct fio_file *f; 1933 unsigned int j; 1934 1935 /* 1936 * for sharing to work, each job must always open 1937 * its own files. so close them, if we opened them 1938 * for creation 1939 */ 1940 for_each_file(td, f, j) { 1941 if (fio_file_open(f)) 1942 td_io_close_file(td, f); 1943 } 1944 } 1945 } 1946 1947 /* start idle threads before io threads start to run */ 1948 fio_idle_prof_start(); 1949 1950 set_genesis_time(); 1951 1952 while (todo) { 1953 struct thread_data *map[REAL_MAX_JOBS]; 1954 struct timeval this_start; 1955 int this_jobs = 0, left; 1956 1957 /* 1958 * create threads (TD_NOT_CREATED -> TD_CREATED) 1959 */ 1960 for_each_td(td, i) { 1961 if (td->runstate != TD_NOT_CREATED) 1962 continue; 1963 1964 /* 1965 * never got a chance to start, killed by other 1966 * thread for some reason 1967 */ 1968 if (td->terminate) { 1969 todo--; 1970 continue; 1971 } 1972 1973 if (td->o.start_delay) { 1974 spent = utime_since_genesis(); 1975 1976 if (td->o.start_delay > spent) 1977 continue; 1978 } 1979 1980 if (td->o.stonewall && (nr_started || nr_running)) { 1981 dprint(FD_PROCESS, "%s: stonewall wait\n", 1982 td->o.name); 1983 break; 1984 } 1985 1986 init_disk_util(td); 1987 1988 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED); 1989 td->update_rusage = 0; 1990 1991 /* 1992 * Set state to created. Thread will transition 1993 * to TD_INITIALIZED when it's done setting up. 1994 */ 1995 td_set_runstate(td, TD_CREATED); 1996 map[this_jobs++] = td; 1997 nr_started++; 1998 1999 if (td->o.use_thread) { 2000 int ret; 2001 2002 dprint(FD_PROCESS, "will pthread_create\n"); 2003 ret = pthread_create(&td->thread, NULL, 2004 thread_main, td); 2005 if (ret) { 2006 log_err("pthread_create: %s\n", 2007 strerror(ret)); 2008 nr_started--; 2009 break; 2010 } 2011 ret = pthread_detach(td->thread); 2012 if (ret) 2013 log_err("pthread_detach: %s", 2014 strerror(ret)); 2015 } else { 2016 pid_t pid; 2017 dprint(FD_PROCESS, "will fork\n"); 2018 pid = fork(); 2019 if (!pid) { 2020 int ret = fork_main(shm_id, i); 2021 2022 _exit(ret); 2023 } else if (i == fio_debug_jobno) 2024 *fio_debug_jobp = pid; 2025 } 2026 dprint(FD_MUTEX, "wait on startup_mutex\n"); 2027 if (fio_mutex_down_timeout(startup_mutex, 10)) { 2028 log_err("fio: job startup hung? exiting.\n"); 2029 fio_terminate_threads(TERMINATE_ALL); 2030 fio_abort = 1; 2031 nr_started--; 2032 break; 2033 } 2034 dprint(FD_MUTEX, "done waiting on startup_mutex\n"); 2035 } 2036 2037 /* 2038 * Wait for the started threads to transition to 2039 * TD_INITIALIZED. 2040 */ 2041 fio_gettime(&this_start, NULL); 2042 left = this_jobs; 2043 while (left && !fio_abort) { 2044 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT) 2045 break; 2046 2047 do_usleep(100000); 2048 2049 for (i = 0; i < this_jobs; i++) { 2050 td = map[i]; 2051 if (!td) 2052 continue; 2053 if (td->runstate == TD_INITIALIZED) { 2054 map[i] = NULL; 2055 left--; 2056 } else if (td->runstate >= TD_EXITED) { 2057 map[i] = NULL; 2058 left--; 2059 todo--; 2060 nr_running++; /* work-around... */ 2061 } 2062 } 2063 } 2064 2065 if (left) { 2066 log_err("fio: %d job%s failed to start\n", left, 2067 left > 1 ? "s" : ""); 2068 for (i = 0; i < this_jobs; i++) { 2069 td = map[i]; 2070 if (!td) 2071 continue; 2072 kill(td->pid, SIGTERM); 2073 } 2074 break; 2075 } 2076 2077 /* 2078 * start created threads (TD_INITIALIZED -> TD_RUNNING). 2079 */ 2080 for_each_td(td, i) { 2081 if (td->runstate != TD_INITIALIZED) 2082 continue; 2083 2084 if (in_ramp_time(td)) 2085 td_set_runstate(td, TD_RAMP); 2086 else 2087 td_set_runstate(td, TD_RUNNING); 2088 nr_running++; 2089 nr_started--; 2090 m_rate += ddir_rw_sum(td->o.ratemin); 2091 t_rate += ddir_rw_sum(td->o.rate); 2092 todo--; 2093 fio_mutex_up(td->mutex); 2094 } 2095 2096 reap_threads(&nr_running, &t_rate, &m_rate); 2097 2098 if (todo) 2099 do_usleep(100000); 2100 } 2101 2102 while (nr_running) { 2103 reap_threads(&nr_running, &t_rate, &m_rate); 2104 do_usleep(10000); 2105 } 2106 2107 fio_idle_prof_stop(); 2108 2109 update_io_ticks(); 2110 } 2111 2112 static void wait_for_helper_thread_exit(void) 2113 { 2114 void *ret; 2115 2116 helper_exit = 1; 2117 pthread_cond_signal(&helper_cond); 2118 pthread_join(helper_thread, &ret); 2119 } 2120 2121 static void free_disk_util(void) 2122 { 2123 disk_util_prune_entries(); 2124 2125 pthread_cond_destroy(&helper_cond); 2126 } 2127 2128 static void *helper_thread_main(void *data) 2129 { 2130 int ret = 0; 2131 2132 fio_mutex_up(startup_mutex); 2133 2134 while (!ret) { 2135 uint64_t sec = DISK_UTIL_MSEC / 1000; 2136 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000; 2137 struct timespec ts; 2138 struct timeval tv; 2139 2140 gettimeofday(&tv, NULL); 2141 ts.tv_sec = tv.tv_sec + sec; 2142 ts.tv_nsec = (tv.tv_usec * 1000) + nsec; 2143 2144 if (ts.tv_nsec >= 1000000000ULL) { 2145 ts.tv_nsec -= 1000000000ULL; 2146 ts.tv_sec++; 2147 } 2148 2149 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts); 2150 2151 ret = update_io_ticks(); 2152 2153 if (helper_do_stat) { 2154 helper_do_stat = 0; 2155 __show_running_run_stats(); 2156 } 2157 2158 if (!is_backend) 2159 print_thread_status(); 2160 } 2161 2162 return NULL; 2163 } 2164 2165 static int create_helper_thread(void) 2166 { 2167 int ret; 2168 2169 setup_disk_util(); 2170 2171 pthread_cond_init(&helper_cond, NULL); 2172 pthread_mutex_init(&helper_lock, NULL); 2173 2174 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL); 2175 if (ret) { 2176 log_err("Can't create helper thread: %s\n", strerror(ret)); 2177 return 1; 2178 } 2179 2180 dprint(FD_MUTEX, "wait on startup_mutex\n"); 2181 fio_mutex_down(startup_mutex); 2182 dprint(FD_MUTEX, "done waiting on startup_mutex\n"); 2183 return 0; 2184 } 2185 2186 int fio_backend(void) 2187 { 2188 struct thread_data *td; 2189 int i; 2190 2191 if (exec_profile) { 2192 if (load_profile(exec_profile)) 2193 return 1; 2194 free(exec_profile); 2195 exec_profile = NULL; 2196 } 2197 if (!thread_number) 2198 return 0; 2199 2200 if (write_bw_log) { 2201 struct log_params p = { 2202 .log_type = IO_LOG_TYPE_BW, 2203 }; 2204 2205 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log"); 2206 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log"); 2207 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log"); 2208 } 2209 2210 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED); 2211 if (startup_mutex == NULL) 2212 return 1; 2213 2214 set_genesis_time(); 2215 stat_init(); 2216 create_helper_thread(); 2217 2218 cgroup_list = smalloc(sizeof(*cgroup_list)); 2219 INIT_FLIST_HEAD(cgroup_list); 2220 2221 run_threads(); 2222 2223 wait_for_helper_thread_exit(); 2224 2225 if (!fio_abort) { 2226 __show_run_stats(); 2227 if (write_bw_log) { 2228 for (i = 0; i < DDIR_RWDIR_CNT; i++) { 2229 struct io_log *log = agg_io_log[i]; 2230 2231 flush_log(log); 2232 free_log(log); 2233 } 2234 } 2235 } 2236 2237 for_each_td(td, i) { 2238 fio_options_free(td); 2239 if (td->rusage_sem) { 2240 fio_mutex_remove(td->rusage_sem); 2241 td->rusage_sem = NULL; 2242 } 2243 } 2244 2245 free_disk_util(); 2246 cgroup_kill(cgroup_list); 2247 sfree(cgroup_list); 2248 sfree(cgroup_mnt); 2249 2250 fio_mutex_remove(startup_mutex); 2251 stat_exit(); 2252 return exit_value; 2253 } 2254