Home | History | Annotate | Download | only in gmock
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 
     32 // Google Mock - a framework for writing C++ mock classes.
     33 //
     34 // This file implements some commonly used actions.
     35 
     36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     38 
     39 #ifndef _WIN32_WCE
     40 # include <errno.h>
     41 #endif
     42 
     43 #include <algorithm>
     44 #include <string>
     45 
     46 #include "gmock/internal/gmock-internal-utils.h"
     47 #include "gmock/internal/gmock-port.h"
     48 
     49 namespace testing {
     50 
     51 // To implement an action Foo, define:
     52 //   1. a class FooAction that implements the ActionInterface interface, and
     53 //   2. a factory function that creates an Action object from a
     54 //      const FooAction*.
     55 //
     56 // The two-level delegation design follows that of Matcher, providing
     57 // consistency for extension developers.  It also eases ownership
     58 // management as Action objects can now be copied like plain values.
     59 
     60 namespace internal {
     61 
     62 template <typename F1, typename F2>
     63 class ActionAdaptor;
     64 
     65 // BuiltInDefaultValue<T>::Get() returns the "built-in" default
     66 // value for type T, which is NULL when T is a pointer type, 0 when T
     67 // is a numeric type, false when T is bool, or "" when T is string or
     68 // std::string.  For any other type T, this value is undefined and the
     69 // function will abort the process.
     70 template <typename T>
     71 class BuiltInDefaultValue {
     72  public:
     73   // This function returns true iff type T has a built-in default value.
     74   static bool Exists() { return false; }
     75   static T Get() {
     76     Assert(false, __FILE__, __LINE__,
     77            "Default action undefined for the function return type.");
     78     return internal::Invalid<T>();
     79     // The above statement will never be reached, but is required in
     80     // order for this function to compile.
     81   }
     82 };
     83 
     84 // This partial specialization says that we use the same built-in
     85 // default value for T and const T.
     86 template <typename T>
     87 class BuiltInDefaultValue<const T> {
     88  public:
     89   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
     90   static T Get() { return BuiltInDefaultValue<T>::Get(); }
     91 };
     92 
     93 // This partial specialization defines the default values for pointer
     94 // types.
     95 template <typename T>
     96 class BuiltInDefaultValue<T*> {
     97  public:
     98   static bool Exists() { return true; }
     99   static T* Get() { return NULL; }
    100 };
    101 
    102 // The following specializations define the default values for
    103 // specific types we care about.
    104 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
    105   template <> \
    106   class BuiltInDefaultValue<type> { \
    107    public: \
    108     static bool Exists() { return true; } \
    109     static type Get() { return value; } \
    110   }
    111 
    112 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
    113 #if GTEST_HAS_GLOBAL_STRING
    114 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
    115 #endif  // GTEST_HAS_GLOBAL_STRING
    116 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
    117 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
    118 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
    119 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
    120 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
    121 
    122 // There's no need for a default action for signed wchar_t, as that
    123 // type is the same as wchar_t for gcc, and invalid for MSVC.
    124 //
    125 // There's also no need for a default action for unsigned wchar_t, as
    126 // that type is the same as unsigned int for gcc, and invalid for
    127 // MSVC.
    128 #if GMOCK_WCHAR_T_IS_NATIVE_
    129 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
    130 #endif
    131 
    132 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
    133 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
    134 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
    135 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
    136 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
    137 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
    138 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
    139 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
    140 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
    141 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
    142 
    143 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
    144 
    145 }  // namespace internal
    146 
    147 // When an unexpected function call is encountered, Google Mock will
    148 // let it return a default value if the user has specified one for its
    149 // return type, or if the return type has a built-in default value;
    150 // otherwise Google Mock won't know what value to return and will have
    151 // to abort the process.
    152 //
    153 // The DefaultValue<T> class allows a user to specify the
    154 // default value for a type T that is both copyable and publicly
    155 // destructible (i.e. anything that can be used as a function return
    156 // type).  The usage is:
    157 //
    158 //   // Sets the default value for type T to be foo.
    159 //   DefaultValue<T>::Set(foo);
    160 template <typename T>
    161 class DefaultValue {
    162  public:
    163   // Sets the default value for type T; requires T to be
    164   // copy-constructable and have a public destructor.
    165   static void Set(T x) {
    166     delete value_;
    167     value_ = new T(x);
    168   }
    169 
    170   // Unsets the default value for type T.
    171   static void Clear() {
    172     delete value_;
    173     value_ = NULL;
    174   }
    175 
    176   // Returns true iff the user has set the default value for type T.
    177   static bool IsSet() { return value_ != NULL; }
    178 
    179   // Returns true if T has a default return value set by the user or there
    180   // exists a built-in default value.
    181   static bool Exists() {
    182     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
    183   }
    184 
    185   // Returns the default value for type T if the user has set one;
    186   // otherwise returns the built-in default value if there is one;
    187   // otherwise aborts the process.
    188   static T Get() {
    189     return value_ == NULL ?
    190         internal::BuiltInDefaultValue<T>::Get() : *value_;
    191   }
    192 
    193  private:
    194   static const T* value_;
    195 };
    196 
    197 // This partial specialization allows a user to set default values for
    198 // reference types.
    199 template <typename T>
    200 class DefaultValue<T&> {
    201  public:
    202   // Sets the default value for type T&.
    203   static void Set(T& x) {  // NOLINT
    204     address_ = &x;
    205   }
    206 
    207   // Unsets the default value for type T&.
    208   static void Clear() {
    209     address_ = NULL;
    210   }
    211 
    212   // Returns true iff the user has set the default value for type T&.
    213   static bool IsSet() { return address_ != NULL; }
    214 
    215   // Returns true if T has a default return value set by the user or there
    216   // exists a built-in default value.
    217   static bool Exists() {
    218     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
    219   }
    220 
    221   // Returns the default value for type T& if the user has set one;
    222   // otherwise returns the built-in default value if there is one;
    223   // otherwise aborts the process.
    224   static T& Get() {
    225     return address_ == NULL ?
    226         internal::BuiltInDefaultValue<T&>::Get() : *address_;
    227   }
    228 
    229  private:
    230   static T* address_;
    231 };
    232 
    233 // This specialization allows DefaultValue<void>::Get() to
    234 // compile.
    235 template <>
    236 class DefaultValue<void> {
    237  public:
    238   static bool Exists() { return true; }
    239   static void Get() {}
    240 };
    241 
    242 // Points to the user-set default value for type T.
    243 template <typename T>
    244 const T* DefaultValue<T>::value_ = NULL;
    245 
    246 // Points to the user-set default value for type T&.
    247 template <typename T>
    248 T* DefaultValue<T&>::address_ = NULL;
    249 
    250 // Implement this interface to define an action for function type F.
    251 template <typename F>
    252 class ActionInterface {
    253  public:
    254   typedef typename internal::Function<F>::Result Result;
    255   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    256 
    257   ActionInterface() {}
    258   virtual ~ActionInterface() {}
    259 
    260   // Performs the action.  This method is not const, as in general an
    261   // action can have side effects and be stateful.  For example, a
    262   // get-the-next-element-from-the-collection action will need to
    263   // remember the current element.
    264   virtual Result Perform(const ArgumentTuple& args) = 0;
    265 
    266  private:
    267   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
    268 };
    269 
    270 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
    271 // object that represents an action to be taken when a mock function
    272 // of type F is called.  The implementation of Action<T> is just a
    273 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
    274 // Don't inherit from Action!
    275 //
    276 // You can view an object implementing ActionInterface<F> as a
    277 // concrete action (including its current state), and an Action<F>
    278 // object as a handle to it.
    279 template <typename F>
    280 class Action {
    281  public:
    282   typedef typename internal::Function<F>::Result Result;
    283   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    284 
    285   // Constructs a null Action.  Needed for storing Action objects in
    286   // STL containers.
    287   Action() : impl_(NULL) {}
    288 
    289   // Constructs an Action from its implementation.  A NULL impl is
    290   // used to represent the "do-default" action.
    291   explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
    292 
    293   // Copy constructor.
    294   Action(const Action& action) : impl_(action.impl_) {}
    295 
    296   // This constructor allows us to turn an Action<Func> object into an
    297   // Action<F>, as long as F's arguments can be implicitly converted
    298   // to Func's and Func's return type can be implicitly converted to
    299   // F's.
    300   template <typename Func>
    301   explicit Action(const Action<Func>& action);
    302 
    303   // Returns true iff this is the DoDefault() action.
    304   bool IsDoDefault() const { return impl_.get() == NULL; }
    305 
    306   // Performs the action.  Note that this method is const even though
    307   // the corresponding method in ActionInterface is not.  The reason
    308   // is that a const Action<F> means that it cannot be re-bound to
    309   // another concrete action, not that the concrete action it binds to
    310   // cannot change state.  (Think of the difference between a const
    311   // pointer and a pointer to const.)
    312   Result Perform(const ArgumentTuple& args) const {
    313     internal::Assert(
    314         !IsDoDefault(), __FILE__, __LINE__,
    315         "You are using DoDefault() inside a composite action like "
    316         "DoAll() or WithArgs().  This is not supported for technical "
    317         "reasons.  Please instead spell out the default action, or "
    318         "assign the default action to an Action variable and use "
    319         "the variable in various places.");
    320     return impl_->Perform(args);
    321   }
    322 
    323  private:
    324   template <typename F1, typename F2>
    325   friend class internal::ActionAdaptor;
    326 
    327   internal::linked_ptr<ActionInterface<F> > impl_;
    328 };
    329 
    330 // The PolymorphicAction class template makes it easy to implement a
    331 // polymorphic action (i.e. an action that can be used in mock
    332 // functions of than one type, e.g. Return()).
    333 //
    334 // To define a polymorphic action, a user first provides a COPYABLE
    335 // implementation class that has a Perform() method template:
    336 //
    337 //   class FooAction {
    338 //    public:
    339 //     template <typename Result, typename ArgumentTuple>
    340 //     Result Perform(const ArgumentTuple& args) const {
    341 //       // Processes the arguments and returns a result, using
    342 //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
    343 //     }
    344 //     ...
    345 //   };
    346 //
    347 // Then the user creates the polymorphic action using
    348 // MakePolymorphicAction(object) where object has type FooAction.  See
    349 // the definition of Return(void) and SetArgumentPointee<N>(value) for
    350 // complete examples.
    351 template <typename Impl>
    352 class PolymorphicAction {
    353  public:
    354   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
    355 
    356   template <typename F>
    357   operator Action<F>() const {
    358     return Action<F>(new MonomorphicImpl<F>(impl_));
    359   }
    360 
    361  private:
    362   template <typename F>
    363   class MonomorphicImpl : public ActionInterface<F> {
    364    public:
    365     typedef typename internal::Function<F>::Result Result;
    366     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    367 
    368     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
    369 
    370     virtual Result Perform(const ArgumentTuple& args) {
    371       return impl_.template Perform<Result>(args);
    372     }
    373 
    374    private:
    375     Impl impl_;
    376 
    377     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
    378   };
    379 
    380   Impl impl_;
    381 
    382   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
    383 };
    384 
    385 // Creates an Action from its implementation and returns it.  The
    386 // created Action object owns the implementation.
    387 template <typename F>
    388 Action<F> MakeAction(ActionInterface<F>* impl) {
    389   return Action<F>(impl);
    390 }
    391 
    392 // Creates a polymorphic action from its implementation.  This is
    393 // easier to use than the PolymorphicAction<Impl> constructor as it
    394 // doesn't require you to explicitly write the template argument, e.g.
    395 //
    396 //   MakePolymorphicAction(foo);
    397 // vs
    398 //   PolymorphicAction<TypeOfFoo>(foo);
    399 template <typename Impl>
    400 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
    401   return PolymorphicAction<Impl>(impl);
    402 }
    403 
    404 namespace internal {
    405 
    406 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
    407 // and F1 are compatible.
    408 template <typename F1, typename F2>
    409 class ActionAdaptor : public ActionInterface<F1> {
    410  public:
    411   typedef typename internal::Function<F1>::Result Result;
    412   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
    413 
    414   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
    415 
    416   virtual Result Perform(const ArgumentTuple& args) {
    417     return impl_->Perform(args);
    418   }
    419 
    420  private:
    421   const internal::linked_ptr<ActionInterface<F2> > impl_;
    422 
    423   GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
    424 };
    425 
    426 // Implements the polymorphic Return(x) action, which can be used in
    427 // any function that returns the type of x, regardless of the argument
    428 // types.
    429 //
    430 // Note: The value passed into Return must be converted into
    431 // Function<F>::Result when this action is cast to Action<F> rather than
    432 // when that action is performed. This is important in scenarios like
    433 //
    434 // MOCK_METHOD1(Method, T(U));
    435 // ...
    436 // {
    437 //   Foo foo;
    438 //   X x(&foo);
    439 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
    440 // }
    441 //
    442 // In the example above the variable x holds reference to foo which leaves
    443 // scope and gets destroyed.  If copying X just copies a reference to foo,
    444 // that copy will be left with a hanging reference.  If conversion to T
    445 // makes a copy of foo, the above code is safe. To support that scenario, we
    446 // need to make sure that the type conversion happens inside the EXPECT_CALL
    447 // statement, and conversion of the result of Return to Action<T(U)> is a
    448 // good place for that.
    449 //
    450 template <typename R>
    451 class ReturnAction {
    452  public:
    453   // Constructs a ReturnAction object from the value to be returned.
    454   // 'value' is passed by value instead of by const reference in order
    455   // to allow Return("string literal") to compile.
    456   explicit ReturnAction(R value) : value_(value) {}
    457 
    458   // This template type conversion operator allows Return(x) to be
    459   // used in ANY function that returns x's type.
    460   template <typename F>
    461   operator Action<F>() const {
    462     // Assert statement belongs here because this is the best place to verify
    463     // conditions on F. It produces the clearest error messages
    464     // in most compilers.
    465     // Impl really belongs in this scope as a local class but can't
    466     // because MSVC produces duplicate symbols in different translation units
    467     // in this case. Until MS fixes that bug we put Impl into the class scope
    468     // and put the typedef both here (for use in assert statement) and
    469     // in the Impl class. But both definitions must be the same.
    470     typedef typename Function<F>::Result Result;
    471     GTEST_COMPILE_ASSERT_(
    472         !internal::is_reference<Result>::value,
    473         use_ReturnRef_instead_of_Return_to_return_a_reference);
    474     return Action<F>(new Impl<F>(value_));
    475   }
    476 
    477  private:
    478   // Implements the Return(x) action for a particular function type F.
    479   template <typename F>
    480   class Impl : public ActionInterface<F> {
    481    public:
    482     typedef typename Function<F>::Result Result;
    483     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    484 
    485     // The implicit cast is necessary when Result has more than one
    486     // single-argument constructor (e.g. Result is std::vector<int>) and R
    487     // has a type conversion operator template.  In that case, value_(value)
    488     // won't compile as the compiler doesn't known which constructor of
    489     // Result to call.  ImplicitCast_ forces the compiler to convert R to
    490     // Result without considering explicit constructors, thus resolving the
    491     // ambiguity. value_ is then initialized using its copy constructor.
    492     explicit Impl(R value)
    493         : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
    494 
    495     virtual Result Perform(const ArgumentTuple&) { return value_; }
    496 
    497    private:
    498     GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
    499                           Result_cannot_be_a_reference_type);
    500     Result value_;
    501 
    502     GTEST_DISALLOW_ASSIGN_(Impl);
    503   };
    504 
    505   R value_;
    506 
    507   GTEST_DISALLOW_ASSIGN_(ReturnAction);
    508 };
    509 
    510 // Implements the ReturnNull() action.
    511 class ReturnNullAction {
    512  public:
    513   // Allows ReturnNull() to be used in any pointer-returning function.
    514   template <typename Result, typename ArgumentTuple>
    515   static Result Perform(const ArgumentTuple&) {
    516     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
    517                           ReturnNull_can_be_used_to_return_a_pointer_only);
    518     return NULL;
    519   }
    520 };
    521 
    522 // Implements the Return() action.
    523 class ReturnVoidAction {
    524  public:
    525   // Allows Return() to be used in any void-returning function.
    526   template <typename Result, typename ArgumentTuple>
    527   static void Perform(const ArgumentTuple&) {
    528     CompileAssertTypesEqual<void, Result>();
    529   }
    530 };
    531 
    532 // Implements the polymorphic ReturnRef(x) action, which can be used
    533 // in any function that returns a reference to the type of x,
    534 // regardless of the argument types.
    535 template <typename T>
    536 class ReturnRefAction {
    537  public:
    538   // Constructs a ReturnRefAction object from the reference to be returned.
    539   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
    540 
    541   // This template type conversion operator allows ReturnRef(x) to be
    542   // used in ANY function that returns a reference to x's type.
    543   template <typename F>
    544   operator Action<F>() const {
    545     typedef typename Function<F>::Result Result;
    546     // Asserts that the function return type is a reference.  This
    547     // catches the user error of using ReturnRef(x) when Return(x)
    548     // should be used, and generates some helpful error message.
    549     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
    550                           use_Return_instead_of_ReturnRef_to_return_a_value);
    551     return Action<F>(new Impl<F>(ref_));
    552   }
    553 
    554  private:
    555   // Implements the ReturnRef(x) action for a particular function type F.
    556   template <typename F>
    557   class Impl : public ActionInterface<F> {
    558    public:
    559     typedef typename Function<F>::Result Result;
    560     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    561 
    562     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
    563 
    564     virtual Result Perform(const ArgumentTuple&) {
    565       return ref_;
    566     }
    567 
    568    private:
    569     T& ref_;
    570 
    571     GTEST_DISALLOW_ASSIGN_(Impl);
    572   };
    573 
    574   T& ref_;
    575 
    576   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
    577 };
    578 
    579 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
    580 // used in any function that returns a reference to the type of x,
    581 // regardless of the argument types.
    582 template <typename T>
    583 class ReturnRefOfCopyAction {
    584  public:
    585   // Constructs a ReturnRefOfCopyAction object from the reference to
    586   // be returned.
    587   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
    588 
    589   // This template type conversion operator allows ReturnRefOfCopy(x) to be
    590   // used in ANY function that returns a reference to x's type.
    591   template <typename F>
    592   operator Action<F>() const {
    593     typedef typename Function<F>::Result Result;
    594     // Asserts that the function return type is a reference.  This
    595     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    596     // should be used, and generates some helpful error message.
    597     GTEST_COMPILE_ASSERT_(
    598         internal::is_reference<Result>::value,
    599         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    600     return Action<F>(new Impl<F>(value_));
    601   }
    602 
    603  private:
    604   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
    605   template <typename F>
    606   class Impl : public ActionInterface<F> {
    607    public:
    608     typedef typename Function<F>::Result Result;
    609     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    610 
    611     explicit Impl(const T& value) : value_(value) {}  // NOLINT
    612 
    613     virtual Result Perform(const ArgumentTuple&) {
    614       return value_;
    615     }
    616 
    617    private:
    618     T value_;
    619 
    620     GTEST_DISALLOW_ASSIGN_(Impl);
    621   };
    622 
    623   const T value_;
    624 
    625   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
    626 };
    627 
    628 // Implements the polymorphic DoDefault() action.
    629 class DoDefaultAction {
    630  public:
    631   // This template type conversion operator allows DoDefault() to be
    632   // used in any function.
    633   template <typename F>
    634   operator Action<F>() const { return Action<F>(NULL); }
    635 };
    636 
    637 // Implements the Assign action to set a given pointer referent to a
    638 // particular value.
    639 template <typename T1, typename T2>
    640 class AssignAction {
    641  public:
    642   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
    643 
    644   template <typename Result, typename ArgumentTuple>
    645   void Perform(const ArgumentTuple& /* args */) const {
    646     *ptr_ = value_;
    647   }
    648 
    649  private:
    650   T1* const ptr_;
    651   const T2 value_;
    652 
    653   GTEST_DISALLOW_ASSIGN_(AssignAction);
    654 };
    655 
    656 #if !GTEST_OS_WINDOWS_MOBILE
    657 
    658 // Implements the SetErrnoAndReturn action to simulate return from
    659 // various system calls and libc functions.
    660 template <typename T>
    661 class SetErrnoAndReturnAction {
    662  public:
    663   SetErrnoAndReturnAction(int errno_value, T result)
    664       : errno_(errno_value),
    665         result_(result) {}
    666   template <typename Result, typename ArgumentTuple>
    667   Result Perform(const ArgumentTuple& /* args */) const {
    668     errno = errno_;
    669     return result_;
    670   }
    671 
    672  private:
    673   const int errno_;
    674   const T result_;
    675 
    676   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
    677 };
    678 
    679 #endif  // !GTEST_OS_WINDOWS_MOBILE
    680 
    681 // Implements the SetArgumentPointee<N>(x) action for any function
    682 // whose N-th argument (0-based) is a pointer to x's type.  The
    683 // template parameter kIsProto is true iff type A is ProtocolMessage,
    684 // proto2::Message, or a sub-class of those.
    685 template <size_t N, typename A, bool kIsProto>
    686 class SetArgumentPointeeAction {
    687  public:
    688   // Constructs an action that sets the variable pointed to by the
    689   // N-th function argument to 'value'.
    690   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
    691 
    692   template <typename Result, typename ArgumentTuple>
    693   void Perform(const ArgumentTuple& args) const {
    694     CompileAssertTypesEqual<void, Result>();
    695     *::std::tr1::get<N>(args) = value_;
    696   }
    697 
    698  private:
    699   const A value_;
    700 
    701   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    702 };
    703 
    704 template <size_t N, typename Proto>
    705 class SetArgumentPointeeAction<N, Proto, true> {
    706  public:
    707   // Constructs an action that sets the variable pointed to by the
    708   // N-th function argument to 'proto'.  Both ProtocolMessage and
    709   // proto2::Message have the CopyFrom() method, so the same
    710   // implementation works for both.
    711   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    712     proto_->CopyFrom(proto);
    713   }
    714 
    715   template <typename Result, typename ArgumentTuple>
    716   void Perform(const ArgumentTuple& args) const {
    717     CompileAssertTypesEqual<void, Result>();
    718     ::std::tr1::get<N>(args)->CopyFrom(*proto_);
    719   }
    720 
    721  private:
    722   const internal::linked_ptr<Proto> proto_;
    723 
    724   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    725 };
    726 
    727 // Implements the InvokeWithoutArgs(f) action.  The template argument
    728 // FunctionImpl is the implementation type of f, which can be either a
    729 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
    730 // Action<F> as long as f's type is compatible with F (i.e. f can be
    731 // assigned to a tr1::function<F>).
    732 template <typename FunctionImpl>
    733 class InvokeWithoutArgsAction {
    734  public:
    735   // The c'tor makes a copy of function_impl (either a function
    736   // pointer or a functor).
    737   explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
    738       : function_impl_(function_impl) {}
    739 
    740   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
    741   // compatible with f.
    742   template <typename Result, typename ArgumentTuple>
    743   Result Perform(const ArgumentTuple&) { return function_impl_(); }
    744 
    745  private:
    746   FunctionImpl function_impl_;
    747 
    748   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
    749 };
    750 
    751 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
    752 template <class Class, typename MethodPtr>
    753 class InvokeMethodWithoutArgsAction {
    754  public:
    755   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
    756       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
    757 
    758   template <typename Result, typename ArgumentTuple>
    759   Result Perform(const ArgumentTuple&) const {
    760     return (obj_ptr_->*method_ptr_)();
    761   }
    762 
    763  private:
    764   Class* const obj_ptr_;
    765   const MethodPtr method_ptr_;
    766 
    767   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
    768 };
    769 
    770 // Implements the IgnoreResult(action) action.
    771 template <typename A>
    772 class IgnoreResultAction {
    773  public:
    774   explicit IgnoreResultAction(const A& action) : action_(action) {}
    775 
    776   template <typename F>
    777   operator Action<F>() const {
    778     // Assert statement belongs here because this is the best place to verify
    779     // conditions on F. It produces the clearest error messages
    780     // in most compilers.
    781     // Impl really belongs in this scope as a local class but can't
    782     // because MSVC produces duplicate symbols in different translation units
    783     // in this case. Until MS fixes that bug we put Impl into the class scope
    784     // and put the typedef both here (for use in assert statement) and
    785     // in the Impl class. But both definitions must be the same.
    786     typedef typename internal::Function<F>::Result Result;
    787 
    788     // Asserts at compile time that F returns void.
    789     CompileAssertTypesEqual<void, Result>();
    790 
    791     return Action<F>(new Impl<F>(action_));
    792   }
    793 
    794  private:
    795   template <typename F>
    796   class Impl : public ActionInterface<F> {
    797    public:
    798     typedef typename internal::Function<F>::Result Result;
    799     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    800 
    801     explicit Impl(const A& action) : action_(action) {}
    802 
    803     virtual void Perform(const ArgumentTuple& args) {
    804       // Performs the action and ignores its result.
    805       action_.Perform(args);
    806     }
    807 
    808    private:
    809     // Type OriginalFunction is the same as F except that its return
    810     // type is IgnoredValue.
    811     typedef typename internal::Function<F>::MakeResultIgnoredValue
    812         OriginalFunction;
    813 
    814     const Action<OriginalFunction> action_;
    815 
    816     GTEST_DISALLOW_ASSIGN_(Impl);
    817   };
    818 
    819   const A action_;
    820 
    821   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
    822 };
    823 
    824 // A ReferenceWrapper<T> object represents a reference to type T,
    825 // which can be either const or not.  It can be explicitly converted
    826 // from, and implicitly converted to, a T&.  Unlike a reference,
    827 // ReferenceWrapper<T> can be copied and can survive template type
    828 // inference.  This is used to support by-reference arguments in the
    829 // InvokeArgument<N>(...) action.  The idea was from "reference
    830 // wrappers" in tr1, which we don't have in our source tree yet.
    831 template <typename T>
    832 class ReferenceWrapper {
    833  public:
    834   // Constructs a ReferenceWrapper<T> object from a T&.
    835   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
    836 
    837   // Allows a ReferenceWrapper<T> object to be implicitly converted to
    838   // a T&.
    839   operator T&() const { return *pointer_; }
    840  private:
    841   T* pointer_;
    842 };
    843 
    844 // Allows the expression ByRef(x) to be printed as a reference to x.
    845 template <typename T>
    846 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
    847   T& value = ref;
    848   UniversalPrinter<T&>::Print(value, os);
    849 }
    850 
    851 // Does two actions sequentially.  Used for implementing the DoAll(a1,
    852 // a2, ...) action.
    853 template <typename Action1, typename Action2>
    854 class DoBothAction {
    855  public:
    856   DoBothAction(Action1 action1, Action2 action2)
    857       : action1_(action1), action2_(action2) {}
    858 
    859   // This template type conversion operator allows DoAll(a1, ..., a_n)
    860   // to be used in ANY function of compatible type.
    861   template <typename F>
    862   operator Action<F>() const {
    863     return Action<F>(new Impl<F>(action1_, action2_));
    864   }
    865 
    866  private:
    867   // Implements the DoAll(...) action for a particular function type F.
    868   template <typename F>
    869   class Impl : public ActionInterface<F> {
    870    public:
    871     typedef typename Function<F>::Result Result;
    872     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    873     typedef typename Function<F>::MakeResultVoid VoidResult;
    874 
    875     Impl(const Action<VoidResult>& action1, const Action<F>& action2)
    876         : action1_(action1), action2_(action2) {}
    877 
    878     virtual Result Perform(const ArgumentTuple& args) {
    879       action1_.Perform(args);
    880       return action2_.Perform(args);
    881     }
    882 
    883    private:
    884     const Action<VoidResult> action1_;
    885     const Action<F> action2_;
    886 
    887     GTEST_DISALLOW_ASSIGN_(Impl);
    888   };
    889 
    890   Action1 action1_;
    891   Action2 action2_;
    892 
    893   GTEST_DISALLOW_ASSIGN_(DoBothAction);
    894 };
    895 
    896 }  // namespace internal
    897 
    898 // An Unused object can be implicitly constructed from ANY value.
    899 // This is handy when defining actions that ignore some or all of the
    900 // mock function arguments.  For example, given
    901 //
    902 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
    903 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
    904 //
    905 // instead of
    906 //
    907 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
    908 //     return sqrt(x*x + y*y);
    909 //   }
    910 //   double DistanceToOriginWithIndex(int index, double x, double y) {
    911 //     return sqrt(x*x + y*y);
    912 //   }
    913 //   ...
    914 //   EXEPCT_CALL(mock, Foo("abc", _, _))
    915 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
    916 //   EXEPCT_CALL(mock, Bar(5, _, _))
    917 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
    918 //
    919 // you could write
    920 //
    921 //   // We can declare any uninteresting argument as Unused.
    922 //   double DistanceToOrigin(Unused, double x, double y) {
    923 //     return sqrt(x*x + y*y);
    924 //   }
    925 //   ...
    926 //   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
    927 //   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
    928 typedef internal::IgnoredValue Unused;
    929 
    930 // This constructor allows us to turn an Action<From> object into an
    931 // Action<To>, as long as To's arguments can be implicitly converted
    932 // to From's and From's return type cann be implicitly converted to
    933 // To's.
    934 template <typename To>
    935 template <typename From>
    936 Action<To>::Action(const Action<From>& from)
    937     : impl_(new internal::ActionAdaptor<To, From>(from)) {}
    938 
    939 // Creates an action that returns 'value'.  'value' is passed by value
    940 // instead of const reference - otherwise Return("string literal")
    941 // will trigger a compiler error about using array as initializer.
    942 template <typename R>
    943 internal::ReturnAction<R> Return(R value) {
    944   return internal::ReturnAction<R>(value);
    945 }
    946 
    947 // Creates an action that returns NULL.
    948 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
    949   return MakePolymorphicAction(internal::ReturnNullAction());
    950 }
    951 
    952 // Creates an action that returns from a void function.
    953 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
    954   return MakePolymorphicAction(internal::ReturnVoidAction());
    955 }
    956 
    957 // Creates an action that returns the reference to a variable.
    958 template <typename R>
    959 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
    960   return internal::ReturnRefAction<R>(x);
    961 }
    962 
    963 // Creates an action that returns the reference to a copy of the
    964 // argument.  The copy is created when the action is constructed and
    965 // lives as long as the action.
    966 template <typename R>
    967 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
    968   return internal::ReturnRefOfCopyAction<R>(x);
    969 }
    970 
    971 // Creates an action that does the default action for the give mock function.
    972 inline internal::DoDefaultAction DoDefault() {
    973   return internal::DoDefaultAction();
    974 }
    975 
    976 // Creates an action that sets the variable pointed by the N-th
    977 // (0-based) function argument to 'value'.
    978 template <size_t N, typename T>
    979 PolymorphicAction<
    980   internal::SetArgumentPointeeAction<
    981     N, T, internal::IsAProtocolMessage<T>::value> >
    982 SetArgPointee(const T& x) {
    983   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
    984       N, T, internal::IsAProtocolMessage<T>::value>(x));
    985 }
    986 
    987 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
    988 // This overload allows SetArgPointee() to accept a string literal.
    989 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
    990 // this overload from the templated version and emit a compile error.
    991 template <size_t N>
    992 PolymorphicAction<
    993   internal::SetArgumentPointeeAction<N, const char*, false> >
    994 SetArgPointee(const char* p) {
    995   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
    996       N, const char*, false>(p));
    997 }
    998 
    999 template <size_t N>
   1000 PolymorphicAction<
   1001   internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
   1002 SetArgPointee(const wchar_t* p) {
   1003   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1004       N, const wchar_t*, false>(p));
   1005 }
   1006 #endif
   1007 
   1008 // The following version is DEPRECATED.
   1009 template <size_t N, typename T>
   1010 PolymorphicAction<
   1011   internal::SetArgumentPointeeAction<
   1012     N, T, internal::IsAProtocolMessage<T>::value> >
   1013 SetArgumentPointee(const T& x) {
   1014   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1015       N, T, internal::IsAProtocolMessage<T>::value>(x));
   1016 }
   1017 
   1018 // Creates an action that sets a pointer referent to a given value.
   1019 template <typename T1, typename T2>
   1020 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
   1021   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
   1022 }
   1023 
   1024 #if !GTEST_OS_WINDOWS_MOBILE
   1025 
   1026 // Creates an action that sets errno and returns the appropriate error.
   1027 template <typename T>
   1028 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
   1029 SetErrnoAndReturn(int errval, T result) {
   1030   return MakePolymorphicAction(
   1031       internal::SetErrnoAndReturnAction<T>(errval, result));
   1032 }
   1033 
   1034 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1035 
   1036 // Various overloads for InvokeWithoutArgs().
   1037 
   1038 // Creates an action that invokes 'function_impl' with no argument.
   1039 template <typename FunctionImpl>
   1040 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
   1041 InvokeWithoutArgs(FunctionImpl function_impl) {
   1042   return MakePolymorphicAction(
   1043       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
   1044 }
   1045 
   1046 // Creates an action that invokes the given method on the given object
   1047 // with no argument.
   1048 template <class Class, typename MethodPtr>
   1049 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
   1050 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
   1051   return MakePolymorphicAction(
   1052       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
   1053           obj_ptr, method_ptr));
   1054 }
   1055 
   1056 // Creates an action that performs an_action and throws away its
   1057 // result.  In other words, it changes the return type of an_action to
   1058 // void.  an_action MUST NOT return void, or the code won't compile.
   1059 template <typename A>
   1060 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
   1061   return internal::IgnoreResultAction<A>(an_action);
   1062 }
   1063 
   1064 // Creates a reference wrapper for the given L-value.  If necessary,
   1065 // you can explicitly specify the type of the reference.  For example,
   1066 // suppose 'derived' is an object of type Derived, ByRef(derived)
   1067 // would wrap a Derived&.  If you want to wrap a const Base& instead,
   1068 // where Base is a base class of Derived, just write:
   1069 //
   1070 //   ByRef<const Base>(derived)
   1071 template <typename T>
   1072 inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
   1073   return internal::ReferenceWrapper<T>(l_value);
   1074 }
   1075 
   1076 }  // namespace testing
   1077 
   1078 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
   1079