Home | History | Annotate | Download | only in gmock
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 
     32 // Google Mock - a framework for writing C++ mock classes.
     33 //
     34 // This file implements some commonly used argument matchers.  More
     35 // matchers can be defined by the user implementing the
     36 // MatcherInterface<T> interface if necessary.
     37 
     38 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
     39 #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
     40 
     41 #include <algorithm>
     42 #include <limits>
     43 #include <ostream>  // NOLINT
     44 #include <sstream>
     45 #include <string>
     46 #include <utility>
     47 #include <vector>
     48 
     49 #include "gmock/internal/gmock-internal-utils.h"
     50 #include "gmock/internal/gmock-port.h"
     51 #include "gtest/gtest.h"
     52 
     53 namespace testing {
     54 
     55 // To implement a matcher Foo for type T, define:
     56 //   1. a class FooMatcherImpl that implements the
     57 //      MatcherInterface<T> interface, and
     58 //   2. a factory function that creates a Matcher<T> object from a
     59 //      FooMatcherImpl*.
     60 //
     61 // The two-level delegation design makes it possible to allow a user
     62 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
     63 // is impossible if we pass matchers by pointers.  It also eases
     64 // ownership management as Matcher objects can now be copied like
     65 // plain values.
     66 
     67 // MatchResultListener is an abstract class.  Its << operator can be
     68 // used by a matcher to explain why a value matches or doesn't match.
     69 //
     70 // TODO(wan (at) google.com): add method
     71 //   bool InterestedInWhy(bool result) const;
     72 // to indicate whether the listener is interested in why the match
     73 // result is 'result'.
     74 class MatchResultListener {
     75  public:
     76   // Creates a listener object with the given underlying ostream.  The
     77   // listener does not own the ostream.
     78   explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
     79   virtual ~MatchResultListener() = 0;  // Makes this class abstract.
     80 
     81   // Streams x to the underlying ostream; does nothing if the ostream
     82   // is NULL.
     83   template <typename T>
     84   MatchResultListener& operator<<(const T& x) {
     85     if (stream_ != NULL)
     86       *stream_ << x;
     87     return *this;
     88   }
     89 
     90   // Returns the underlying ostream.
     91   ::std::ostream* stream() { return stream_; }
     92 
     93   // Returns true iff the listener is interested in an explanation of
     94   // the match result.  A matcher's MatchAndExplain() method can use
     95   // this information to avoid generating the explanation when no one
     96   // intends to hear it.
     97   bool IsInterested() const { return stream_ != NULL; }
     98 
     99  private:
    100   ::std::ostream* const stream_;
    101 
    102   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
    103 };
    104 
    105 inline MatchResultListener::~MatchResultListener() {
    106 }
    107 
    108 // The implementation of a matcher.
    109 template <typename T>
    110 class MatcherInterface {
    111  public:
    112   virtual ~MatcherInterface() {}
    113 
    114   // Returns true iff the matcher matches x; also explains the match
    115   // result to 'listener', in the form of a non-restrictive relative
    116   // clause ("which ...", "whose ...", etc) that describes x.  For
    117   // example, the MatchAndExplain() method of the Pointee(...) matcher
    118   // should generate an explanation like "which points to ...".
    119   //
    120   // You should override this method when defining a new matcher.
    121   //
    122   // It's the responsibility of the caller (Google Mock) to guarantee
    123   // that 'listener' is not NULL.  This helps to simplify a matcher's
    124   // implementation when it doesn't care about the performance, as it
    125   // can talk to 'listener' without checking its validity first.
    126   // However, in order to implement dummy listeners efficiently,
    127   // listener->stream() may be NULL.
    128   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
    129 
    130   // Describes this matcher to an ostream.  The function should print
    131   // a verb phrase that describes the property a value matching this
    132   // matcher should have.  The subject of the verb phrase is the value
    133   // being matched.  For example, the DescribeTo() method of the Gt(7)
    134   // matcher prints "is greater than 7".
    135   virtual void DescribeTo(::std::ostream* os) const = 0;
    136 
    137   // Describes the negation of this matcher to an ostream.  For
    138   // example, if the description of this matcher is "is greater than
    139   // 7", the negated description could be "is not greater than 7".
    140   // You are not required to override this when implementing
    141   // MatcherInterface, but it is highly advised so that your matcher
    142   // can produce good error messages.
    143   virtual void DescribeNegationTo(::std::ostream* os) const {
    144     *os << "not (";
    145     DescribeTo(os);
    146     *os << ")";
    147   }
    148 };
    149 
    150 namespace internal {
    151 
    152 // A match result listener that ignores the explanation.
    153 class DummyMatchResultListener : public MatchResultListener {
    154  public:
    155   DummyMatchResultListener() : MatchResultListener(NULL) {}
    156 
    157  private:
    158   GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
    159 };
    160 
    161 // A match result listener that forwards the explanation to a given
    162 // ostream.  The difference between this and MatchResultListener is
    163 // that the former is concrete.
    164 class StreamMatchResultListener : public MatchResultListener {
    165  public:
    166   explicit StreamMatchResultListener(::std::ostream* os)
    167       : MatchResultListener(os) {}
    168 
    169  private:
    170   GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
    171 };
    172 
    173 // A match result listener that stores the explanation in a string.
    174 class StringMatchResultListener : public MatchResultListener {
    175  public:
    176   StringMatchResultListener() : MatchResultListener(&ss_) {}
    177 
    178   // Returns the explanation heard so far.
    179   internal::string str() const { return ss_.str(); }
    180 
    181  private:
    182   ::std::stringstream ss_;
    183 
    184   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
    185 };
    186 
    187 // An internal class for implementing Matcher<T>, which will derive
    188 // from it.  We put functionalities common to all Matcher<T>
    189 // specializations here to avoid code duplication.
    190 template <typename T>
    191 class MatcherBase {
    192  public:
    193   // Returns true iff the matcher matches x; also explains the match
    194   // result to 'listener'.
    195   bool MatchAndExplain(T x, MatchResultListener* listener) const {
    196     return impl_->MatchAndExplain(x, listener);
    197   }
    198 
    199   // Returns true iff this matcher matches x.
    200   bool Matches(T x) const {
    201     DummyMatchResultListener dummy;
    202     return MatchAndExplain(x, &dummy);
    203   }
    204 
    205   // Describes this matcher to an ostream.
    206   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
    207 
    208   // Describes the negation of this matcher to an ostream.
    209   void DescribeNegationTo(::std::ostream* os) const {
    210     impl_->DescribeNegationTo(os);
    211   }
    212 
    213   // Explains why x matches, or doesn't match, the matcher.
    214   void ExplainMatchResultTo(T x, ::std::ostream* os) const {
    215     StreamMatchResultListener listener(os);
    216     MatchAndExplain(x, &listener);
    217   }
    218 
    219  protected:
    220   MatcherBase() {}
    221 
    222   // Constructs a matcher from its implementation.
    223   explicit MatcherBase(const MatcherInterface<T>* impl)
    224       : impl_(impl) {}
    225 
    226   virtual ~MatcherBase() {}
    227 
    228  private:
    229   // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
    230   // interfaces.  The former dynamically allocates a chunk of memory
    231   // to hold the reference count, while the latter tracks all
    232   // references using a circular linked list without allocating
    233   // memory.  It has been observed that linked_ptr performs better in
    234   // typical scenarios.  However, shared_ptr can out-perform
    235   // linked_ptr when there are many more uses of the copy constructor
    236   // than the default constructor.
    237   //
    238   // If performance becomes a problem, we should see if using
    239   // shared_ptr helps.
    240   ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
    241 };
    242 
    243 }  // namespace internal
    244 
    245 // A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
    246 // object that can check whether a value of type T matches.  The
    247 // implementation of Matcher<T> is just a linked_ptr to const
    248 // MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
    249 // from Matcher!
    250 template <typename T>
    251 class Matcher : public internal::MatcherBase<T> {
    252  public:
    253   // Constructs a null matcher.  Needed for storing Matcher objects in STL
    254   // containers.  A default-constructed matcher is not yet initialized.  You
    255   // cannot use it until a valid value has been assigned to it.
    256   Matcher() {}
    257 
    258   // Constructs a matcher from its implementation.
    259   explicit Matcher(const MatcherInterface<T>* impl)
    260       : internal::MatcherBase<T>(impl) {}
    261 
    262   // Implicit constructor here allows people to write
    263   // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
    264   Matcher(T value);  // NOLINT
    265 };
    266 
    267 // The following two specializations allow the user to write str
    268 // instead of Eq(str) and "foo" instead of Eq("foo") when a string
    269 // matcher is expected.
    270 template <>
    271 class GTEST_API_ Matcher<const internal::string&>
    272     : public internal::MatcherBase<const internal::string&> {
    273  public:
    274   Matcher() {}
    275 
    276   explicit Matcher(const MatcherInterface<const internal::string&>* impl)
    277       : internal::MatcherBase<const internal::string&>(impl) {}
    278 
    279   // Allows the user to write str instead of Eq(str) sometimes, where
    280   // str is a string object.
    281   Matcher(const internal::string& s);  // NOLINT
    282 
    283   // Allows the user to write "foo" instead of Eq("foo") sometimes.
    284   Matcher(const char* s);  // NOLINT
    285 };
    286 
    287 template <>
    288 class GTEST_API_ Matcher<internal::string>
    289     : public internal::MatcherBase<internal::string> {
    290  public:
    291   Matcher() {}
    292 
    293   explicit Matcher(const MatcherInterface<internal::string>* impl)
    294       : internal::MatcherBase<internal::string>(impl) {}
    295 
    296   // Allows the user to write str instead of Eq(str) sometimes, where
    297   // str is a string object.
    298   Matcher(const internal::string& s);  // NOLINT
    299 
    300   // Allows the user to write "foo" instead of Eq("foo") sometimes.
    301   Matcher(const char* s);  // NOLINT
    302 };
    303 
    304 // The PolymorphicMatcher class template makes it easy to implement a
    305 // polymorphic matcher (i.e. a matcher that can match values of more
    306 // than one type, e.g. Eq(n) and NotNull()).
    307 //
    308 // To define a polymorphic matcher, a user should provide an Impl
    309 // class that has a DescribeTo() method and a DescribeNegationTo()
    310 // method, and define a member function (or member function template)
    311 //
    312 //   bool MatchAndExplain(const Value& value,
    313 //                        MatchResultListener* listener) const;
    314 //
    315 // See the definition of NotNull() for a complete example.
    316 template <class Impl>
    317 class PolymorphicMatcher {
    318  public:
    319   explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
    320 
    321   // Returns a mutable reference to the underlying matcher
    322   // implementation object.
    323   Impl& mutable_impl() { return impl_; }
    324 
    325   // Returns an immutable reference to the underlying matcher
    326   // implementation object.
    327   const Impl& impl() const { return impl_; }
    328 
    329   template <typename T>
    330   operator Matcher<T>() const {
    331     return Matcher<T>(new MonomorphicImpl<T>(impl_));
    332   }
    333 
    334  private:
    335   template <typename T>
    336   class MonomorphicImpl : public MatcherInterface<T> {
    337    public:
    338     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
    339 
    340     virtual void DescribeTo(::std::ostream* os) const {
    341       impl_.DescribeTo(os);
    342     }
    343 
    344     virtual void DescribeNegationTo(::std::ostream* os) const {
    345       impl_.DescribeNegationTo(os);
    346     }
    347 
    348     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
    349       return impl_.MatchAndExplain(x, listener);
    350     }
    351 
    352    private:
    353     const Impl impl_;
    354 
    355     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
    356   };
    357 
    358   Impl impl_;
    359 
    360   GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
    361 };
    362 
    363 // Creates a matcher from its implementation.  This is easier to use
    364 // than the Matcher<T> constructor as it doesn't require you to
    365 // explicitly write the template argument, e.g.
    366 //
    367 //   MakeMatcher(foo);
    368 // vs
    369 //   Matcher<const string&>(foo);
    370 template <typename T>
    371 inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
    372   return Matcher<T>(impl);
    373 };
    374 
    375 // Creates a polymorphic matcher from its implementation.  This is
    376 // easier to use than the PolymorphicMatcher<Impl> constructor as it
    377 // doesn't require you to explicitly write the template argument, e.g.
    378 //
    379 //   MakePolymorphicMatcher(foo);
    380 // vs
    381 //   PolymorphicMatcher<TypeOfFoo>(foo);
    382 template <class Impl>
    383 inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
    384   return PolymorphicMatcher<Impl>(impl);
    385 }
    386 
    387 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
    388 // and MUST NOT BE USED IN USER CODE!!!
    389 namespace internal {
    390 
    391 // The MatcherCastImpl class template is a helper for implementing
    392 // MatcherCast().  We need this helper in order to partially
    393 // specialize the implementation of MatcherCast() (C++ allows
    394 // class/struct templates to be partially specialized, but not
    395 // function templates.).
    396 
    397 // This general version is used when MatcherCast()'s argument is a
    398 // polymorphic matcher (i.e. something that can be converted to a
    399 // Matcher but is not one yet; for example, Eq(value)) or a value (for
    400 // example, "hello").
    401 template <typename T, typename M>
    402 class MatcherCastImpl {
    403  public:
    404   static Matcher<T> Cast(M polymorphic_matcher_or_value) {
    405     // M can be a polymorhic matcher, in which case we want to use
    406     // its conversion operator to create Matcher<T>.  Or it can be a value
    407     // that should be passed to the Matcher<T>'s constructor.
    408     //
    409     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
    410     // polymorphic matcher because it'll be ambiguous if T has an implicit
    411     // constructor from M (this usually happens when T has an implicit
    412     // constructor from any type).
    413     //
    414     // It won't work to unconditionally implict_cast
    415     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
    416     // a user-defined conversion from M to T if one exists (assuming M is
    417     // a value).
    418     return CastImpl(
    419         polymorphic_matcher_or_value,
    420         BooleanConstant<
    421             internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
    422   }
    423 
    424  private:
    425   static Matcher<T> CastImpl(M value, BooleanConstant<false>) {
    426     // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
    427     // matcher.  It must be a value then.  Use direct initialization to create
    428     // a matcher.
    429     return Matcher<T>(ImplicitCast_<T>(value));
    430   }
    431 
    432   static Matcher<T> CastImpl(M polymorphic_matcher_or_value,
    433                              BooleanConstant<true>) {
    434     // M is implicitly convertible to Matcher<T>, which means that either
    435     // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
    436     // from M.  In both cases using the implicit conversion will produce a
    437     // matcher.
    438     //
    439     // Even if T has an implicit constructor from M, it won't be called because
    440     // creating Matcher<T> would require a chain of two user-defined conversions
    441     // (first to create T from M and then to create Matcher<T> from T).
    442     return polymorphic_matcher_or_value;
    443   }
    444 };
    445 
    446 // This more specialized version is used when MatcherCast()'s argument
    447 // is already a Matcher.  This only compiles when type T can be
    448 // statically converted to type U.
    449 template <typename T, typename U>
    450 class MatcherCastImpl<T, Matcher<U> > {
    451  public:
    452   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
    453     return Matcher<T>(new Impl(source_matcher));
    454   }
    455 
    456  private:
    457   class Impl : public MatcherInterface<T> {
    458    public:
    459     explicit Impl(const Matcher<U>& source_matcher)
    460         : source_matcher_(source_matcher) {}
    461 
    462     // We delegate the matching logic to the source matcher.
    463     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
    464       return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
    465     }
    466 
    467     virtual void DescribeTo(::std::ostream* os) const {
    468       source_matcher_.DescribeTo(os);
    469     }
    470 
    471     virtual void DescribeNegationTo(::std::ostream* os) const {
    472       source_matcher_.DescribeNegationTo(os);
    473     }
    474 
    475    private:
    476     const Matcher<U> source_matcher_;
    477 
    478     GTEST_DISALLOW_ASSIGN_(Impl);
    479   };
    480 };
    481 
    482 // This even more specialized version is used for efficiently casting
    483 // a matcher to its own type.
    484 template <typename T>
    485 class MatcherCastImpl<T, Matcher<T> > {
    486  public:
    487   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
    488 };
    489 
    490 }  // namespace internal
    491 
    492 // In order to be safe and clear, casting between different matcher
    493 // types is done explicitly via MatcherCast<T>(m), which takes a
    494 // matcher m and returns a Matcher<T>.  It compiles only when T can be
    495 // statically converted to the argument type of m.
    496 template <typename T, typename M>
    497 inline Matcher<T> MatcherCast(M matcher) {
    498   return internal::MatcherCastImpl<T, M>::Cast(matcher);
    499 }
    500 
    501 // Implements SafeMatcherCast().
    502 //
    503 // We use an intermediate class to do the actual safe casting as Nokia's
    504 // Symbian compiler cannot decide between
    505 // template <T, M> ... (M) and
    506 // template <T, U> ... (const Matcher<U>&)
    507 // for function templates but can for member function templates.
    508 template <typename T>
    509 class SafeMatcherCastImpl {
    510  public:
    511   // This overload handles polymorphic matchers and values only since
    512   // monomorphic matchers are handled by the next one.
    513   template <typename M>
    514   static inline Matcher<T> Cast(M polymorphic_matcher_or_value) {
    515     return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
    516   }
    517 
    518   // This overload handles monomorphic matchers.
    519   //
    520   // In general, if type T can be implicitly converted to type U, we can
    521   // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
    522   // contravariant): just keep a copy of the original Matcher<U>, convert the
    523   // argument from type T to U, and then pass it to the underlying Matcher<U>.
    524   // The only exception is when U is a reference and T is not, as the
    525   // underlying Matcher<U> may be interested in the argument's address, which
    526   // is not preserved in the conversion from T to U.
    527   template <typename U>
    528   static inline Matcher<T> Cast(const Matcher<U>& matcher) {
    529     // Enforce that T can be implicitly converted to U.
    530     GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
    531                           T_must_be_implicitly_convertible_to_U);
    532     // Enforce that we are not converting a non-reference type T to a reference
    533     // type U.
    534     GTEST_COMPILE_ASSERT_(
    535         internal::is_reference<T>::value || !internal::is_reference<U>::value,
    536         cannot_convert_non_referentce_arg_to_reference);
    537     // In case both T and U are arithmetic types, enforce that the
    538     // conversion is not lossy.
    539     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
    540     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
    541     const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
    542     const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
    543     GTEST_COMPILE_ASSERT_(
    544         kTIsOther || kUIsOther ||
    545         (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
    546         conversion_of_arithmetic_types_must_be_lossless);
    547     return MatcherCast<T>(matcher);
    548   }
    549 };
    550 
    551 template <typename T, typename M>
    552 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
    553   return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
    554 }
    555 
    556 // A<T>() returns a matcher that matches any value of type T.
    557 template <typename T>
    558 Matcher<T> A();
    559 
    560 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
    561 // and MUST NOT BE USED IN USER CODE!!!
    562 namespace internal {
    563 
    564 // If the explanation is not empty, prints it to the ostream.
    565 inline void PrintIfNotEmpty(const internal::string& explanation,
    566                             std::ostream* os) {
    567   if (explanation != "" && os != NULL) {
    568     *os << ", " << explanation;
    569   }
    570 }
    571 
    572 // Returns true if the given type name is easy to read by a human.
    573 // This is used to decide whether printing the type of a value might
    574 // be helpful.
    575 inline bool IsReadableTypeName(const string& type_name) {
    576   // We consider a type name readable if it's short or doesn't contain
    577   // a template or function type.
    578   return (type_name.length() <= 20 ||
    579           type_name.find_first_of("<(") == string::npos);
    580 }
    581 
    582 // Matches the value against the given matcher, prints the value and explains
    583 // the match result to the listener. Returns the match result.
    584 // 'listener' must not be NULL.
    585 // Value cannot be passed by const reference, because some matchers take a
    586 // non-const argument.
    587 template <typename Value, typename T>
    588 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
    589                           MatchResultListener* listener) {
    590   if (!listener->IsInterested()) {
    591     // If the listener is not interested, we do not need to construct the
    592     // inner explanation.
    593     return matcher.Matches(value);
    594   }
    595 
    596   StringMatchResultListener inner_listener;
    597   const bool match = matcher.MatchAndExplain(value, &inner_listener);
    598 
    599   UniversalPrint(value, listener->stream());
    600 #if GTEST_HAS_RTTI
    601   const string& type_name = GetTypeName<Value>();
    602   if (IsReadableTypeName(type_name))
    603     *listener->stream() << " (of type " << type_name << ")";
    604 #endif
    605   PrintIfNotEmpty(inner_listener.str(), listener->stream());
    606 
    607   return match;
    608 }
    609 
    610 // An internal helper class for doing compile-time loop on a tuple's
    611 // fields.
    612 template <size_t N>
    613 class TuplePrefix {
    614  public:
    615   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
    616   // iff the first N fields of matcher_tuple matches the first N
    617   // fields of value_tuple, respectively.
    618   template <typename MatcherTuple, typename ValueTuple>
    619   static bool Matches(const MatcherTuple& matcher_tuple,
    620                       const ValueTuple& value_tuple) {
    621     using ::std::tr1::get;
    622     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
    623         && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
    624   }
    625 
    626   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
    627   // describes failures in matching the first N fields of matchers
    628   // against the first N fields of values.  If there is no failure,
    629   // nothing will be streamed to os.
    630   template <typename MatcherTuple, typename ValueTuple>
    631   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
    632                                      const ValueTuple& values,
    633                                      ::std::ostream* os) {
    634     using ::std::tr1::tuple_element;
    635     using ::std::tr1::get;
    636 
    637     // First, describes failures in the first N - 1 fields.
    638     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
    639 
    640     // Then describes the failure (if any) in the (N - 1)-th (0-based)
    641     // field.
    642     typename tuple_element<N - 1, MatcherTuple>::type matcher =
    643         get<N - 1>(matchers);
    644     typedef typename tuple_element<N - 1, ValueTuple>::type Value;
    645     Value value = get<N - 1>(values);
    646     StringMatchResultListener listener;
    647     if (!matcher.MatchAndExplain(value, &listener)) {
    648       // TODO(wan): include in the message the name of the parameter
    649       // as used in MOCK_METHOD*() when possible.
    650       *os << "  Expected arg #" << N - 1 << ": ";
    651       get<N - 1>(matchers).DescribeTo(os);
    652       *os << "\n           Actual: ";
    653       // We remove the reference in type Value to prevent the
    654       // universal printer from printing the address of value, which
    655       // isn't interesting to the user most of the time.  The
    656       // matcher's MatchAndExplain() method handles the case when
    657       // the address is interesting.
    658       internal::UniversalPrint(value, os);
    659       PrintIfNotEmpty(listener.str(), os);
    660       *os << "\n";
    661     }
    662   }
    663 };
    664 
    665 // The base case.
    666 template <>
    667 class TuplePrefix<0> {
    668  public:
    669   template <typename MatcherTuple, typename ValueTuple>
    670   static bool Matches(const MatcherTuple& /* matcher_tuple */,
    671                       const ValueTuple& /* value_tuple */) {
    672     return true;
    673   }
    674 
    675   template <typename MatcherTuple, typename ValueTuple>
    676   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
    677                                      const ValueTuple& /* values */,
    678                                      ::std::ostream* /* os */) {}
    679 };
    680 
    681 // TupleMatches(matcher_tuple, value_tuple) returns true iff all
    682 // matchers in matcher_tuple match the corresponding fields in
    683 // value_tuple.  It is a compiler error if matcher_tuple and
    684 // value_tuple have different number of fields or incompatible field
    685 // types.
    686 template <typename MatcherTuple, typename ValueTuple>
    687 bool TupleMatches(const MatcherTuple& matcher_tuple,
    688                   const ValueTuple& value_tuple) {
    689   using ::std::tr1::tuple_size;
    690   // Makes sure that matcher_tuple and value_tuple have the same
    691   // number of fields.
    692   GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
    693                         tuple_size<ValueTuple>::value,
    694                         matcher_and_value_have_different_numbers_of_fields);
    695   return TuplePrefix<tuple_size<ValueTuple>::value>::
    696       Matches(matcher_tuple, value_tuple);
    697 }
    698 
    699 // Describes failures in matching matchers against values.  If there
    700 // is no failure, nothing will be streamed to os.
    701 template <typename MatcherTuple, typename ValueTuple>
    702 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
    703                                 const ValueTuple& values,
    704                                 ::std::ostream* os) {
    705   using ::std::tr1::tuple_size;
    706   TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
    707       matchers, values, os);
    708 }
    709 
    710 // Implements A<T>().
    711 template <typename T>
    712 class AnyMatcherImpl : public MatcherInterface<T> {
    713  public:
    714   virtual bool MatchAndExplain(
    715       T /* x */, MatchResultListener* /* listener */) const { return true; }
    716   virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
    717   virtual void DescribeNegationTo(::std::ostream* os) const {
    718     // This is mostly for completeness' safe, as it's not very useful
    719     // to write Not(A<bool>()).  However we cannot completely rule out
    720     // such a possibility, and it doesn't hurt to be prepared.
    721     *os << "never matches";
    722   }
    723 };
    724 
    725 // Implements _, a matcher that matches any value of any
    726 // type.  This is a polymorphic matcher, so we need a template type
    727 // conversion operator to make it appearing as a Matcher<T> for any
    728 // type T.
    729 class AnythingMatcher {
    730  public:
    731   template <typename T>
    732   operator Matcher<T>() const { return A<T>(); }
    733 };
    734 
    735 // Implements a matcher that compares a given value with a
    736 // pre-supplied value using one of the ==, <=, <, etc, operators.  The
    737 // two values being compared don't have to have the same type.
    738 //
    739 // The matcher defined here is polymorphic (for example, Eq(5) can be
    740 // used to match an int, a short, a double, etc).  Therefore we use
    741 // a template type conversion operator in the implementation.
    742 //
    743 // We define this as a macro in order to eliminate duplicated source
    744 // code.
    745 //
    746 // The following template definition assumes that the Rhs parameter is
    747 // a "bare" type (i.e. neither 'const T' nor 'T&').
    748 #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
    749     name, op, relation, negated_relation) \
    750   template <typename Rhs> class name##Matcher { \
    751    public: \
    752     explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
    753     template <typename Lhs> \
    754     operator Matcher<Lhs>() const { \
    755       return MakeMatcher(new Impl<Lhs>(rhs_)); \
    756     } \
    757    private: \
    758     template <typename Lhs> \
    759     class Impl : public MatcherInterface<Lhs> { \
    760      public: \
    761       explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
    762       virtual bool MatchAndExplain(\
    763           Lhs lhs, MatchResultListener* /* listener */) const { \
    764         return lhs op rhs_; \
    765       } \
    766       virtual void DescribeTo(::std::ostream* os) const { \
    767         *os << relation  " "; \
    768         UniversalPrint(rhs_, os); \
    769       } \
    770       virtual void DescribeNegationTo(::std::ostream* os) const { \
    771         *os << negated_relation  " "; \
    772         UniversalPrint(rhs_, os); \
    773       } \
    774      private: \
    775       Rhs rhs_; \
    776       GTEST_DISALLOW_ASSIGN_(Impl); \
    777     }; \
    778     Rhs rhs_; \
    779     GTEST_DISALLOW_ASSIGN_(name##Matcher); \
    780   }
    781 
    782 // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
    783 // respectively.
    784 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
    785 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
    786 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
    787 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
    788 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
    789 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
    790 
    791 #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
    792 
    793 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
    794 // pointer that is NULL.
    795 class IsNullMatcher {
    796  public:
    797   template <typename Pointer>
    798   bool MatchAndExplain(const Pointer& p,
    799                        MatchResultListener* /* listener */) const {
    800     return GetRawPointer(p) == NULL;
    801   }
    802 
    803   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
    804   void DescribeNegationTo(::std::ostream* os) const {
    805     *os << "isn't NULL";
    806   }
    807 };
    808 
    809 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
    810 // pointer that is not NULL.
    811 class NotNullMatcher {
    812  public:
    813   template <typename Pointer>
    814   bool MatchAndExplain(const Pointer& p,
    815                        MatchResultListener* /* listener */) const {
    816     return GetRawPointer(p) != NULL;
    817   }
    818 
    819   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
    820   void DescribeNegationTo(::std::ostream* os) const {
    821     *os << "is NULL";
    822   }
    823 };
    824 
    825 // Ref(variable) matches any argument that is a reference to
    826 // 'variable'.  This matcher is polymorphic as it can match any
    827 // super type of the type of 'variable'.
    828 //
    829 // The RefMatcher template class implements Ref(variable).  It can
    830 // only be instantiated with a reference type.  This prevents a user
    831 // from mistakenly using Ref(x) to match a non-reference function
    832 // argument.  For example, the following will righteously cause a
    833 // compiler error:
    834 //
    835 //   int n;
    836 //   Matcher<int> m1 = Ref(n);   // This won't compile.
    837 //   Matcher<int&> m2 = Ref(n);  // This will compile.
    838 template <typename T>
    839 class RefMatcher;
    840 
    841 template <typename T>
    842 class RefMatcher<T&> {
    843   // Google Mock is a generic framework and thus needs to support
    844   // mocking any function types, including those that take non-const
    845   // reference arguments.  Therefore the template parameter T (and
    846   // Super below) can be instantiated to either a const type or a
    847   // non-const type.
    848  public:
    849   // RefMatcher() takes a T& instead of const T&, as we want the
    850   // compiler to catch using Ref(const_value) as a matcher for a
    851   // non-const reference.
    852   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
    853 
    854   template <typename Super>
    855   operator Matcher<Super&>() const {
    856     // By passing object_ (type T&) to Impl(), which expects a Super&,
    857     // we make sure that Super is a super type of T.  In particular,
    858     // this catches using Ref(const_value) as a matcher for a
    859     // non-const reference, as you cannot implicitly convert a const
    860     // reference to a non-const reference.
    861     return MakeMatcher(new Impl<Super>(object_));
    862   }
    863 
    864  private:
    865   template <typename Super>
    866   class Impl : public MatcherInterface<Super&> {
    867    public:
    868     explicit Impl(Super& x) : object_(x) {}  // NOLINT
    869 
    870     // MatchAndExplain() takes a Super& (as opposed to const Super&)
    871     // in order to match the interface MatcherInterface<Super&>.
    872     virtual bool MatchAndExplain(
    873         Super& x, MatchResultListener* listener) const {
    874       *listener << "which is located @" << static_cast<const void*>(&x);
    875       return &x == &object_;
    876     }
    877 
    878     virtual void DescribeTo(::std::ostream* os) const {
    879       *os << "references the variable ";
    880       UniversalPrinter<Super&>::Print(object_, os);
    881     }
    882 
    883     virtual void DescribeNegationTo(::std::ostream* os) const {
    884       *os << "does not reference the variable ";
    885       UniversalPrinter<Super&>::Print(object_, os);
    886     }
    887 
    888    private:
    889     const Super& object_;
    890 
    891     GTEST_DISALLOW_ASSIGN_(Impl);
    892   };
    893 
    894   T& object_;
    895 
    896   GTEST_DISALLOW_ASSIGN_(RefMatcher);
    897 };
    898 
    899 // Polymorphic helper functions for narrow and wide string matchers.
    900 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
    901   return String::CaseInsensitiveCStringEquals(lhs, rhs);
    902 }
    903 
    904 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
    905                                          const wchar_t* rhs) {
    906   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
    907 }
    908 
    909 // String comparison for narrow or wide strings that can have embedded NUL
    910 // characters.
    911 template <typename StringType>
    912 bool CaseInsensitiveStringEquals(const StringType& s1,
    913                                  const StringType& s2) {
    914   // Are the heads equal?
    915   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
    916     return false;
    917   }
    918 
    919   // Skip the equal heads.
    920   const typename StringType::value_type nul = 0;
    921   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
    922 
    923   // Are we at the end of either s1 or s2?
    924   if (i1 == StringType::npos || i2 == StringType::npos) {
    925     return i1 == i2;
    926   }
    927 
    928   // Are the tails equal?
    929   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
    930 }
    931 
    932 // String matchers.
    933 
    934 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
    935 template <typename StringType>
    936 class StrEqualityMatcher {
    937  public:
    938   typedef typename StringType::const_pointer ConstCharPointer;
    939 
    940   StrEqualityMatcher(const StringType& str, bool expect_eq,
    941                      bool case_sensitive)
    942       : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
    943 
    944   // When expect_eq_ is true, returns true iff s is equal to string_;
    945   // otherwise returns true iff s is not equal to string_.
    946   bool MatchAndExplain(ConstCharPointer s,
    947                        MatchResultListener* listener) const {
    948     if (s == NULL) {
    949       return !expect_eq_;
    950     }
    951     return MatchAndExplain(StringType(s), listener);
    952   }
    953 
    954   bool MatchAndExplain(const StringType& s,
    955                        MatchResultListener* /* listener */) const {
    956     const bool eq = case_sensitive_ ? s == string_ :
    957         CaseInsensitiveStringEquals(s, string_);
    958     return expect_eq_ == eq;
    959   }
    960 
    961   void DescribeTo(::std::ostream* os) const {
    962     DescribeToHelper(expect_eq_, os);
    963   }
    964 
    965   void DescribeNegationTo(::std::ostream* os) const {
    966     DescribeToHelper(!expect_eq_, os);
    967   }
    968 
    969  private:
    970   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
    971     *os << (expect_eq ? "is " : "isn't ");
    972     *os << "equal to ";
    973     if (!case_sensitive_) {
    974       *os << "(ignoring case) ";
    975     }
    976     UniversalPrint(string_, os);
    977   }
    978 
    979   const StringType string_;
    980   const bool expect_eq_;
    981   const bool case_sensitive_;
    982 
    983   GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
    984 };
    985 
    986 // Implements the polymorphic HasSubstr(substring) matcher, which
    987 // can be used as a Matcher<T> as long as T can be converted to a
    988 // string.
    989 template <typename StringType>
    990 class HasSubstrMatcher {
    991  public:
    992   typedef typename StringType::const_pointer ConstCharPointer;
    993 
    994   explicit HasSubstrMatcher(const StringType& substring)
    995       : substring_(substring) {}
    996 
    997   // These overloaded methods allow HasSubstr(substring) to be used as a
    998   // Matcher<T> as long as T can be converted to string.  Returns true
    999   // iff s contains substring_ as a substring.
   1000   bool MatchAndExplain(ConstCharPointer s,
   1001                        MatchResultListener* listener) const {
   1002     return s != NULL && MatchAndExplain(StringType(s), listener);
   1003   }
   1004 
   1005   bool MatchAndExplain(const StringType& s,
   1006                        MatchResultListener* /* listener */) const {
   1007     return s.find(substring_) != StringType::npos;
   1008   }
   1009 
   1010   // Describes what this matcher matches.
   1011   void DescribeTo(::std::ostream* os) const {
   1012     *os << "has substring ";
   1013     UniversalPrint(substring_, os);
   1014   }
   1015 
   1016   void DescribeNegationTo(::std::ostream* os) const {
   1017     *os << "has no substring ";
   1018     UniversalPrint(substring_, os);
   1019   }
   1020 
   1021  private:
   1022   const StringType substring_;
   1023 
   1024   GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
   1025 };
   1026 
   1027 // Implements the polymorphic StartsWith(substring) matcher, which
   1028 // can be used as a Matcher<T> as long as T can be converted to a
   1029 // string.
   1030 template <typename StringType>
   1031 class StartsWithMatcher {
   1032  public:
   1033   typedef typename StringType::const_pointer ConstCharPointer;
   1034 
   1035   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
   1036   }
   1037 
   1038   // These overloaded methods allow StartsWith(prefix) to be used as a
   1039   // Matcher<T> as long as T can be converted to string.  Returns true
   1040   // iff s starts with prefix_.
   1041   bool MatchAndExplain(ConstCharPointer s,
   1042                        MatchResultListener* listener) const {
   1043     return s != NULL && MatchAndExplain(StringType(s), listener);
   1044   }
   1045 
   1046   bool MatchAndExplain(const StringType& s,
   1047                        MatchResultListener* /* listener */) const {
   1048     return s.length() >= prefix_.length() &&
   1049         s.substr(0, prefix_.length()) == prefix_;
   1050   }
   1051 
   1052   void DescribeTo(::std::ostream* os) const {
   1053     *os << "starts with ";
   1054     UniversalPrint(prefix_, os);
   1055   }
   1056 
   1057   void DescribeNegationTo(::std::ostream* os) const {
   1058     *os << "doesn't start with ";
   1059     UniversalPrint(prefix_, os);
   1060   }
   1061 
   1062  private:
   1063   const StringType prefix_;
   1064 
   1065   GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
   1066 };
   1067 
   1068 // Implements the polymorphic EndsWith(substring) matcher, which
   1069 // can be used as a Matcher<T> as long as T can be converted to a
   1070 // string.
   1071 template <typename StringType>
   1072 class EndsWithMatcher {
   1073  public:
   1074   typedef typename StringType::const_pointer ConstCharPointer;
   1075 
   1076   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
   1077 
   1078   // These overloaded methods allow EndsWith(suffix) to be used as a
   1079   // Matcher<T> as long as T can be converted to string.  Returns true
   1080   // iff s ends with suffix_.
   1081   bool MatchAndExplain(ConstCharPointer s,
   1082                        MatchResultListener* listener) const {
   1083     return s != NULL && MatchAndExplain(StringType(s), listener);
   1084   }
   1085 
   1086   bool MatchAndExplain(const StringType& s,
   1087                        MatchResultListener* /* listener */) const {
   1088     return s.length() >= suffix_.length() &&
   1089         s.substr(s.length() - suffix_.length()) == suffix_;
   1090   }
   1091 
   1092   void DescribeTo(::std::ostream* os) const {
   1093     *os << "ends with ";
   1094     UniversalPrint(suffix_, os);
   1095   }
   1096 
   1097   void DescribeNegationTo(::std::ostream* os) const {
   1098     *os << "doesn't end with ";
   1099     UniversalPrint(suffix_, os);
   1100   }
   1101 
   1102  private:
   1103   const StringType suffix_;
   1104 
   1105   GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
   1106 };
   1107 
   1108 // Implements polymorphic matchers MatchesRegex(regex) and
   1109 // ContainsRegex(regex), which can be used as a Matcher<T> as long as
   1110 // T can be converted to a string.
   1111 class MatchesRegexMatcher {
   1112  public:
   1113   MatchesRegexMatcher(const RE* regex, bool full_match)
   1114       : regex_(regex), full_match_(full_match) {}
   1115 
   1116   // These overloaded methods allow MatchesRegex(regex) to be used as
   1117   // a Matcher<T> as long as T can be converted to string.  Returns
   1118   // true iff s matches regular expression regex.  When full_match_ is
   1119   // true, a full match is done; otherwise a partial match is done.
   1120   bool MatchAndExplain(const char* s,
   1121                        MatchResultListener* listener) const {
   1122     return s != NULL && MatchAndExplain(internal::string(s), listener);
   1123   }
   1124 
   1125   bool MatchAndExplain(const internal::string& s,
   1126                        MatchResultListener* /* listener */) const {
   1127     return full_match_ ? RE::FullMatch(s, *regex_) :
   1128         RE::PartialMatch(s, *regex_);
   1129   }
   1130 
   1131   void DescribeTo(::std::ostream* os) const {
   1132     *os << (full_match_ ? "matches" : "contains")
   1133         << " regular expression ";
   1134     UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
   1135   }
   1136 
   1137   void DescribeNegationTo(::std::ostream* os) const {
   1138     *os << "doesn't " << (full_match_ ? "match" : "contain")
   1139         << " regular expression ";
   1140     UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
   1141   }
   1142 
   1143  private:
   1144   const internal::linked_ptr<const RE> regex_;
   1145   const bool full_match_;
   1146 
   1147   GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
   1148 };
   1149 
   1150 // Implements a matcher that compares the two fields of a 2-tuple
   1151 // using one of the ==, <=, <, etc, operators.  The two fields being
   1152 // compared don't have to have the same type.
   1153 //
   1154 // The matcher defined here is polymorphic (for example, Eq() can be
   1155 // used to match a tuple<int, short>, a tuple<const long&, double>,
   1156 // etc).  Therefore we use a template type conversion operator in the
   1157 // implementation.
   1158 //
   1159 // We define this as a macro in order to eliminate duplicated source
   1160 // code.
   1161 #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
   1162   class name##2Matcher { \
   1163    public: \
   1164     template <typename T1, typename T2> \
   1165     operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \
   1166       return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \
   1167     } \
   1168     template <typename T1, typename T2> \
   1169     operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
   1170       return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \
   1171     } \
   1172    private: \
   1173     template <typename Tuple> \
   1174     class Impl : public MatcherInterface<Tuple> { \
   1175      public: \
   1176       virtual bool MatchAndExplain( \
   1177           Tuple args, \
   1178           MatchResultListener* /* listener */) const { \
   1179         return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
   1180       } \
   1181       virtual void DescribeTo(::std::ostream* os) const { \
   1182         *os << "are " relation;                                 \
   1183       } \
   1184       virtual void DescribeNegationTo(::std::ostream* os) const { \
   1185         *os << "aren't " relation; \
   1186       } \
   1187     }; \
   1188   }
   1189 
   1190 // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
   1191 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair");
   1192 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
   1193     Ge, >=, "a pair where the first >= the second");
   1194 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
   1195     Gt, >, "a pair where the first > the second");
   1196 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
   1197     Le, <=, "a pair where the first <= the second");
   1198 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
   1199     Lt, <, "a pair where the first < the second");
   1200 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair");
   1201 
   1202 #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
   1203 
   1204 // Implements the Not(...) matcher for a particular argument type T.
   1205 // We do not nest it inside the NotMatcher class template, as that
   1206 // will prevent different instantiations of NotMatcher from sharing
   1207 // the same NotMatcherImpl<T> class.
   1208 template <typename T>
   1209 class NotMatcherImpl : public MatcherInterface<T> {
   1210  public:
   1211   explicit NotMatcherImpl(const Matcher<T>& matcher)
   1212       : matcher_(matcher) {}
   1213 
   1214   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
   1215     return !matcher_.MatchAndExplain(x, listener);
   1216   }
   1217 
   1218   virtual void DescribeTo(::std::ostream* os) const {
   1219     matcher_.DescribeNegationTo(os);
   1220   }
   1221 
   1222   virtual void DescribeNegationTo(::std::ostream* os) const {
   1223     matcher_.DescribeTo(os);
   1224   }
   1225 
   1226  private:
   1227   const Matcher<T> matcher_;
   1228 
   1229   GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
   1230 };
   1231 
   1232 // Implements the Not(m) matcher, which matches a value that doesn't
   1233 // match matcher m.
   1234 template <typename InnerMatcher>
   1235 class NotMatcher {
   1236  public:
   1237   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
   1238 
   1239   // This template type conversion operator allows Not(m) to be used
   1240   // to match any type m can match.
   1241   template <typename T>
   1242   operator Matcher<T>() const {
   1243     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
   1244   }
   1245 
   1246  private:
   1247   InnerMatcher matcher_;
   1248 
   1249   GTEST_DISALLOW_ASSIGN_(NotMatcher);
   1250 };
   1251 
   1252 // Implements the AllOf(m1, m2) matcher for a particular argument type
   1253 // T. We do not nest it inside the BothOfMatcher class template, as
   1254 // that will prevent different instantiations of BothOfMatcher from
   1255 // sharing the same BothOfMatcherImpl<T> class.
   1256 template <typename T>
   1257 class BothOfMatcherImpl : public MatcherInterface<T> {
   1258  public:
   1259   BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
   1260       : matcher1_(matcher1), matcher2_(matcher2) {}
   1261 
   1262   virtual void DescribeTo(::std::ostream* os) const {
   1263     *os << "(";
   1264     matcher1_.DescribeTo(os);
   1265     *os << ") and (";
   1266     matcher2_.DescribeTo(os);
   1267     *os << ")";
   1268   }
   1269 
   1270   virtual void DescribeNegationTo(::std::ostream* os) const {
   1271     *os << "(";
   1272     matcher1_.DescribeNegationTo(os);
   1273     *os << ") or (";
   1274     matcher2_.DescribeNegationTo(os);
   1275     *os << ")";
   1276   }
   1277 
   1278   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
   1279     // If either matcher1_ or matcher2_ doesn't match x, we only need
   1280     // to explain why one of them fails.
   1281     StringMatchResultListener listener1;
   1282     if (!matcher1_.MatchAndExplain(x, &listener1)) {
   1283       *listener << listener1.str();
   1284       return false;
   1285     }
   1286 
   1287     StringMatchResultListener listener2;
   1288     if (!matcher2_.MatchAndExplain(x, &listener2)) {
   1289       *listener << listener2.str();
   1290       return false;
   1291     }
   1292 
   1293     // Otherwise we need to explain why *both* of them match.
   1294     const internal::string s1 = listener1.str();
   1295     const internal::string s2 = listener2.str();
   1296 
   1297     if (s1 == "") {
   1298       *listener << s2;
   1299     } else {
   1300       *listener << s1;
   1301       if (s2 != "") {
   1302         *listener << ", and " << s2;
   1303       }
   1304     }
   1305     return true;
   1306   }
   1307 
   1308  private:
   1309   const Matcher<T> matcher1_;
   1310   const Matcher<T> matcher2_;
   1311 
   1312   GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
   1313 };
   1314 
   1315 // Used for implementing the AllOf(m_1, ..., m_n) matcher, which
   1316 // matches a value that matches all of the matchers m_1, ..., and m_n.
   1317 template <typename Matcher1, typename Matcher2>
   1318 class BothOfMatcher {
   1319  public:
   1320   BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
   1321       : matcher1_(matcher1), matcher2_(matcher2) {}
   1322 
   1323   // This template type conversion operator allows a
   1324   // BothOfMatcher<Matcher1, Matcher2> object to match any type that
   1325   // both Matcher1 and Matcher2 can match.
   1326   template <typename T>
   1327   operator Matcher<T>() const {
   1328     return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
   1329                                                SafeMatcherCast<T>(matcher2_)));
   1330   }
   1331 
   1332  private:
   1333   Matcher1 matcher1_;
   1334   Matcher2 matcher2_;
   1335 
   1336   GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
   1337 };
   1338 
   1339 // Implements the AnyOf(m1, m2) matcher for a particular argument type
   1340 // T.  We do not nest it inside the AnyOfMatcher class template, as
   1341 // that will prevent different instantiations of AnyOfMatcher from
   1342 // sharing the same EitherOfMatcherImpl<T> class.
   1343 template <typename T>
   1344 class EitherOfMatcherImpl : public MatcherInterface<T> {
   1345  public:
   1346   EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
   1347       : matcher1_(matcher1), matcher2_(matcher2) {}
   1348 
   1349   virtual void DescribeTo(::std::ostream* os) const {
   1350     *os << "(";
   1351     matcher1_.DescribeTo(os);
   1352     *os << ") or (";
   1353     matcher2_.DescribeTo(os);
   1354     *os << ")";
   1355   }
   1356 
   1357   virtual void DescribeNegationTo(::std::ostream* os) const {
   1358     *os << "(";
   1359     matcher1_.DescribeNegationTo(os);
   1360     *os << ") and (";
   1361     matcher2_.DescribeNegationTo(os);
   1362     *os << ")";
   1363   }
   1364 
   1365   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
   1366     // If either matcher1_ or matcher2_ matches x, we just need to
   1367     // explain why *one* of them matches.
   1368     StringMatchResultListener listener1;
   1369     if (matcher1_.MatchAndExplain(x, &listener1)) {
   1370       *listener << listener1.str();
   1371       return true;
   1372     }
   1373 
   1374     StringMatchResultListener listener2;
   1375     if (matcher2_.MatchAndExplain(x, &listener2)) {
   1376       *listener << listener2.str();
   1377       return true;
   1378     }
   1379 
   1380     // Otherwise we need to explain why *both* of them fail.
   1381     const internal::string s1 = listener1.str();
   1382     const internal::string s2 = listener2.str();
   1383 
   1384     if (s1 == "") {
   1385       *listener << s2;
   1386     } else {
   1387       *listener << s1;
   1388       if (s2 != "") {
   1389         *listener << ", and " << s2;
   1390       }
   1391     }
   1392     return false;
   1393   }
   1394 
   1395  private:
   1396   const Matcher<T> matcher1_;
   1397   const Matcher<T> matcher2_;
   1398 
   1399   GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
   1400 };
   1401 
   1402 // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
   1403 // matches a value that matches at least one of the matchers m_1, ...,
   1404 // and m_n.
   1405 template <typename Matcher1, typename Matcher2>
   1406 class EitherOfMatcher {
   1407  public:
   1408   EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
   1409       : matcher1_(matcher1), matcher2_(matcher2) {}
   1410 
   1411   // This template type conversion operator allows a
   1412   // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
   1413   // both Matcher1 and Matcher2 can match.
   1414   template <typename T>
   1415   operator Matcher<T>() const {
   1416     return Matcher<T>(new EitherOfMatcherImpl<T>(
   1417         SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
   1418   }
   1419 
   1420  private:
   1421   Matcher1 matcher1_;
   1422   Matcher2 matcher2_;
   1423 
   1424   GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
   1425 };
   1426 
   1427 // Used for implementing Truly(pred), which turns a predicate into a
   1428 // matcher.
   1429 template <typename Predicate>
   1430 class TrulyMatcher {
   1431  public:
   1432   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
   1433 
   1434   // This method template allows Truly(pred) to be used as a matcher
   1435   // for type T where T is the argument type of predicate 'pred'.  The
   1436   // argument is passed by reference as the predicate may be
   1437   // interested in the address of the argument.
   1438   template <typename T>
   1439   bool MatchAndExplain(T& x,  // NOLINT
   1440                        MatchResultListener* /* listener */) const {
   1441     // Without the if-statement, MSVC sometimes warns about converting
   1442     // a value to bool (warning 4800).
   1443     //
   1444     // We cannot write 'return !!predicate_(x);' as that doesn't work
   1445     // when predicate_(x) returns a class convertible to bool but
   1446     // having no operator!().
   1447     if (predicate_(x))
   1448       return true;
   1449     return false;
   1450   }
   1451 
   1452   void DescribeTo(::std::ostream* os) const {
   1453     *os << "satisfies the given predicate";
   1454   }
   1455 
   1456   void DescribeNegationTo(::std::ostream* os) const {
   1457     *os << "doesn't satisfy the given predicate";
   1458   }
   1459 
   1460  private:
   1461   Predicate predicate_;
   1462 
   1463   GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
   1464 };
   1465 
   1466 // Used for implementing Matches(matcher), which turns a matcher into
   1467 // a predicate.
   1468 template <typename M>
   1469 class MatcherAsPredicate {
   1470  public:
   1471   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
   1472 
   1473   // This template operator() allows Matches(m) to be used as a
   1474   // predicate on type T where m is a matcher on type T.
   1475   //
   1476   // The argument x is passed by reference instead of by value, as
   1477   // some matcher may be interested in its address (e.g. as in
   1478   // Matches(Ref(n))(x)).
   1479   template <typename T>
   1480   bool operator()(const T& x) const {
   1481     // We let matcher_ commit to a particular type here instead of
   1482     // when the MatcherAsPredicate object was constructed.  This
   1483     // allows us to write Matches(m) where m is a polymorphic matcher
   1484     // (e.g. Eq(5)).
   1485     //
   1486     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
   1487     // compile when matcher_ has type Matcher<const T&>; if we write
   1488     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
   1489     // when matcher_ has type Matcher<T>; if we just write
   1490     // matcher_.Matches(x), it won't compile when matcher_ is
   1491     // polymorphic, e.g. Eq(5).
   1492     //
   1493     // MatcherCast<const T&>() is necessary for making the code work
   1494     // in all of the above situations.
   1495     return MatcherCast<const T&>(matcher_).Matches(x);
   1496   }
   1497 
   1498  private:
   1499   M matcher_;
   1500 
   1501   GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
   1502 };
   1503 
   1504 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
   1505 // argument M must be a type that can be converted to a matcher.
   1506 template <typename M>
   1507 class PredicateFormatterFromMatcher {
   1508  public:
   1509   explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
   1510 
   1511   // This template () operator allows a PredicateFormatterFromMatcher
   1512   // object to act as a predicate-formatter suitable for using with
   1513   // Google Test's EXPECT_PRED_FORMAT1() macro.
   1514   template <typename T>
   1515   AssertionResult operator()(const char* value_text, const T& x) const {
   1516     // We convert matcher_ to a Matcher<const T&> *now* instead of
   1517     // when the PredicateFormatterFromMatcher object was constructed,
   1518     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
   1519     // know which type to instantiate it to until we actually see the
   1520     // type of x here.
   1521     //
   1522     // We write MatcherCast<const T&>(matcher_) instead of
   1523     // Matcher<const T&>(matcher_), as the latter won't compile when
   1524     // matcher_ has type Matcher<T> (e.g. An<int>()).
   1525     const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
   1526     StringMatchResultListener listener;
   1527     if (MatchPrintAndExplain(x, matcher, &listener))
   1528       return AssertionSuccess();
   1529 
   1530     ::std::stringstream ss;
   1531     ss << "Value of: " << value_text << "\n"
   1532        << "Expected: ";
   1533     matcher.DescribeTo(&ss);
   1534     ss << "\n  Actual: " << listener.str();
   1535     return AssertionFailure() << ss.str();
   1536   }
   1537 
   1538  private:
   1539   const M matcher_;
   1540 
   1541   GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
   1542 };
   1543 
   1544 // A helper function for converting a matcher to a predicate-formatter
   1545 // without the user needing to explicitly write the type.  This is
   1546 // used for implementing ASSERT_THAT() and EXPECT_THAT().
   1547 template <typename M>
   1548 inline PredicateFormatterFromMatcher<M>
   1549 MakePredicateFormatterFromMatcher(const M& matcher) {
   1550   return PredicateFormatterFromMatcher<M>(matcher);
   1551 }
   1552 
   1553 // Implements the polymorphic floating point equality matcher, which
   1554 // matches two float values using ULP-based approximation.  The
   1555 // template is meant to be instantiated with FloatType being either
   1556 // float or double.
   1557 template <typename FloatType>
   1558 class FloatingEqMatcher {
   1559  public:
   1560   // Constructor for FloatingEqMatcher.
   1561   // The matcher's input will be compared with rhs.  The matcher treats two
   1562   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
   1563   // equality comparisons between NANs will always return false.
   1564   FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
   1565     rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
   1566 
   1567   // Implements floating point equality matcher as a Matcher<T>.
   1568   template <typename T>
   1569   class Impl : public MatcherInterface<T> {
   1570    public:
   1571     Impl(FloatType rhs, bool nan_eq_nan) :
   1572       rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
   1573 
   1574     virtual bool MatchAndExplain(T value,
   1575                                  MatchResultListener* /* listener */) const {
   1576       const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
   1577 
   1578       // Compares NaNs first, if nan_eq_nan_ is true.
   1579       if (nan_eq_nan_ && lhs.is_nan()) {
   1580         return rhs.is_nan();
   1581       }
   1582 
   1583       return lhs.AlmostEquals(rhs);
   1584     }
   1585 
   1586     virtual void DescribeTo(::std::ostream* os) const {
   1587       // os->precision() returns the previously set precision, which we
   1588       // store to restore the ostream to its original configuration
   1589       // after outputting.
   1590       const ::std::streamsize old_precision = os->precision(
   1591           ::std::numeric_limits<FloatType>::digits10 + 2);
   1592       if (FloatingPoint<FloatType>(rhs_).is_nan()) {
   1593         if (nan_eq_nan_) {
   1594           *os << "is NaN";
   1595         } else {
   1596           *os << "never matches";
   1597         }
   1598       } else {
   1599         *os << "is approximately " << rhs_;
   1600       }
   1601       os->precision(old_precision);
   1602     }
   1603 
   1604     virtual void DescribeNegationTo(::std::ostream* os) const {
   1605       // As before, get original precision.
   1606       const ::std::streamsize old_precision = os->precision(
   1607           ::std::numeric_limits<FloatType>::digits10 + 2);
   1608       if (FloatingPoint<FloatType>(rhs_).is_nan()) {
   1609         if (nan_eq_nan_) {
   1610           *os << "isn't NaN";
   1611         } else {
   1612           *os << "is anything";
   1613         }
   1614       } else {
   1615         *os << "isn't approximately " << rhs_;
   1616       }
   1617       // Restore original precision.
   1618       os->precision(old_precision);
   1619     }
   1620 
   1621    private:
   1622     const FloatType rhs_;
   1623     const bool nan_eq_nan_;
   1624 
   1625     GTEST_DISALLOW_ASSIGN_(Impl);
   1626   };
   1627 
   1628   // The following 3 type conversion operators allow FloatEq(rhs) and
   1629   // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
   1630   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
   1631   // (While Google's C++ coding style doesn't allow arguments passed
   1632   // by non-const reference, we may see them in code not conforming to
   1633   // the style.  Therefore Google Mock needs to support them.)
   1634   operator Matcher<FloatType>() const {
   1635     return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
   1636   }
   1637 
   1638   operator Matcher<const FloatType&>() const {
   1639     return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
   1640   }
   1641 
   1642   operator Matcher<FloatType&>() const {
   1643     return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
   1644   }
   1645 
   1646  private:
   1647   const FloatType rhs_;
   1648   const bool nan_eq_nan_;
   1649 
   1650   GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
   1651 };
   1652 
   1653 // Implements the Pointee(m) matcher for matching a pointer whose
   1654 // pointee matches matcher m.  The pointer can be either raw or smart.
   1655 template <typename InnerMatcher>
   1656 class PointeeMatcher {
   1657  public:
   1658   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
   1659 
   1660   // This type conversion operator template allows Pointee(m) to be
   1661   // used as a matcher for any pointer type whose pointee type is
   1662   // compatible with the inner matcher, where type Pointer can be
   1663   // either a raw pointer or a smart pointer.
   1664   //
   1665   // The reason we do this instead of relying on
   1666   // MakePolymorphicMatcher() is that the latter is not flexible
   1667   // enough for implementing the DescribeTo() method of Pointee().
   1668   template <typename Pointer>
   1669   operator Matcher<Pointer>() const {
   1670     return MakeMatcher(new Impl<Pointer>(matcher_));
   1671   }
   1672 
   1673  private:
   1674   // The monomorphic implementation that works for a particular pointer type.
   1675   template <typename Pointer>
   1676   class Impl : public MatcherInterface<Pointer> {
   1677    public:
   1678     typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
   1679         GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
   1680 
   1681     explicit Impl(const InnerMatcher& matcher)
   1682         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
   1683 
   1684     virtual void DescribeTo(::std::ostream* os) const {
   1685       *os << "points to a value that ";
   1686       matcher_.DescribeTo(os);
   1687     }
   1688 
   1689     virtual void DescribeNegationTo(::std::ostream* os) const {
   1690       *os << "does not point to a value that ";
   1691       matcher_.DescribeTo(os);
   1692     }
   1693 
   1694     virtual bool MatchAndExplain(Pointer pointer,
   1695                                  MatchResultListener* listener) const {
   1696       if (GetRawPointer(pointer) == NULL)
   1697         return false;
   1698 
   1699       *listener << "which points to ";
   1700       return MatchPrintAndExplain(*pointer, matcher_, listener);
   1701     }
   1702 
   1703    private:
   1704     const Matcher<const Pointee&> matcher_;
   1705 
   1706     GTEST_DISALLOW_ASSIGN_(Impl);
   1707   };
   1708 
   1709   const InnerMatcher matcher_;
   1710 
   1711   GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
   1712 };
   1713 
   1714 // Implements the Field() matcher for matching a field (i.e. member
   1715 // variable) of an object.
   1716 template <typename Class, typename FieldType>
   1717 class FieldMatcher {
   1718  public:
   1719   FieldMatcher(FieldType Class::*field,
   1720                const Matcher<const FieldType&>& matcher)
   1721       : field_(field), matcher_(matcher) {}
   1722 
   1723   void DescribeTo(::std::ostream* os) const {
   1724     *os << "is an object whose given field ";
   1725     matcher_.DescribeTo(os);
   1726   }
   1727 
   1728   void DescribeNegationTo(::std::ostream* os) const {
   1729     *os << "is an object whose given field ";
   1730     matcher_.DescribeNegationTo(os);
   1731   }
   1732 
   1733   template <typename T>
   1734   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
   1735     return MatchAndExplainImpl(
   1736         typename ::testing::internal::
   1737             is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
   1738         value, listener);
   1739   }
   1740 
   1741  private:
   1742   // The first argument of MatchAndExplainImpl() is needed to help
   1743   // Symbian's C++ compiler choose which overload to use.  Its type is
   1744   // true_type iff the Field() matcher is used to match a pointer.
   1745   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
   1746                            MatchResultListener* listener) const {
   1747     *listener << "whose given field is ";
   1748     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
   1749   }
   1750 
   1751   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
   1752                            MatchResultListener* listener) const {
   1753     if (p == NULL)
   1754       return false;
   1755 
   1756     *listener << "which points to an object ";
   1757     // Since *p has a field, it must be a class/struct/union type and
   1758     // thus cannot be a pointer.  Therefore we pass false_type() as
   1759     // the first argument.
   1760     return MatchAndExplainImpl(false_type(), *p, listener);
   1761   }
   1762 
   1763   const FieldType Class::*field_;
   1764   const Matcher<const FieldType&> matcher_;
   1765 
   1766   GTEST_DISALLOW_ASSIGN_(FieldMatcher);
   1767 };
   1768 
   1769 // Implements the Property() matcher for matching a property
   1770 // (i.e. return value of a getter method) of an object.
   1771 template <typename Class, typename PropertyType>
   1772 class PropertyMatcher {
   1773  public:
   1774   // The property may have a reference type, so 'const PropertyType&'
   1775   // may cause double references and fail to compile.  That's why we
   1776   // need GTEST_REFERENCE_TO_CONST, which works regardless of
   1777   // PropertyType being a reference or not.
   1778   typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
   1779 
   1780   PropertyMatcher(PropertyType (Class::*property)() const,
   1781                   const Matcher<RefToConstProperty>& matcher)
   1782       : property_(property), matcher_(matcher) {}
   1783 
   1784   void DescribeTo(::std::ostream* os) const {
   1785     *os << "is an object whose given property ";
   1786     matcher_.DescribeTo(os);
   1787   }
   1788 
   1789   void DescribeNegationTo(::std::ostream* os) const {
   1790     *os << "is an object whose given property ";
   1791     matcher_.DescribeNegationTo(os);
   1792   }
   1793 
   1794   template <typename T>
   1795   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
   1796     return MatchAndExplainImpl(
   1797         typename ::testing::internal::
   1798             is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
   1799         value, listener);
   1800   }
   1801 
   1802  private:
   1803   // The first argument of MatchAndExplainImpl() is needed to help
   1804   // Symbian's C++ compiler choose which overload to use.  Its type is
   1805   // true_type iff the Property() matcher is used to match a pointer.
   1806   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
   1807                            MatchResultListener* listener) const {
   1808     *listener << "whose given property is ";
   1809     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
   1810     // which takes a non-const reference as argument.
   1811     RefToConstProperty result = (obj.*property_)();
   1812     return MatchPrintAndExplain(result, matcher_, listener);
   1813   }
   1814 
   1815   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
   1816                            MatchResultListener* listener) const {
   1817     if (p == NULL)
   1818       return false;
   1819 
   1820     *listener << "which points to an object ";
   1821     // Since *p has a property method, it must be a class/struct/union
   1822     // type and thus cannot be a pointer.  Therefore we pass
   1823     // false_type() as the first argument.
   1824     return MatchAndExplainImpl(false_type(), *p, listener);
   1825   }
   1826 
   1827   PropertyType (Class::*property_)() const;
   1828   const Matcher<RefToConstProperty> matcher_;
   1829 
   1830   GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
   1831 };
   1832 
   1833 // Type traits specifying various features of different functors for ResultOf.
   1834 // The default template specifies features for functor objects.
   1835 // Functor classes have to typedef argument_type and result_type
   1836 // to be compatible with ResultOf.
   1837 template <typename Functor>
   1838 struct CallableTraits {
   1839   typedef typename Functor::result_type ResultType;
   1840   typedef Functor StorageType;
   1841 
   1842   static void CheckIsValid(Functor /* functor */) {}
   1843   template <typename T>
   1844   static ResultType Invoke(Functor f, T arg) { return f(arg); }
   1845 };
   1846 
   1847 // Specialization for function pointers.
   1848 template <typename ArgType, typename ResType>
   1849 struct CallableTraits<ResType(*)(ArgType)> {
   1850   typedef ResType ResultType;
   1851   typedef ResType(*StorageType)(ArgType);
   1852 
   1853   static void CheckIsValid(ResType(*f)(ArgType)) {
   1854     GTEST_CHECK_(f != NULL)
   1855         << "NULL function pointer is passed into ResultOf().";
   1856   }
   1857   template <typename T>
   1858   static ResType Invoke(ResType(*f)(ArgType), T arg) {
   1859     return (*f)(arg);
   1860   }
   1861 };
   1862 
   1863 // Implements the ResultOf() matcher for matching a return value of a
   1864 // unary function of an object.
   1865 template <typename Callable>
   1866 class ResultOfMatcher {
   1867  public:
   1868   typedef typename CallableTraits<Callable>::ResultType ResultType;
   1869 
   1870   ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
   1871       : callable_(callable), matcher_(matcher) {
   1872     CallableTraits<Callable>::CheckIsValid(callable_);
   1873   }
   1874 
   1875   template <typename T>
   1876   operator Matcher<T>() const {
   1877     return Matcher<T>(new Impl<T>(callable_, matcher_));
   1878   }
   1879 
   1880  private:
   1881   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
   1882 
   1883   template <typename T>
   1884   class Impl : public MatcherInterface<T> {
   1885    public:
   1886     Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
   1887         : callable_(callable), matcher_(matcher) {}
   1888 
   1889     virtual void DescribeTo(::std::ostream* os) const {
   1890       *os << "is mapped by the given callable to a value that ";
   1891       matcher_.DescribeTo(os);
   1892     }
   1893 
   1894     virtual void DescribeNegationTo(::std::ostream* os) const {
   1895       *os << "is mapped by the given callable to a value that ";
   1896       matcher_.DescribeNegationTo(os);
   1897     }
   1898 
   1899     virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
   1900       *listener << "which is mapped by the given callable to ";
   1901       // Cannot pass the return value (for example, int) to
   1902       // MatchPrintAndExplain, which takes a non-const reference as argument.
   1903       ResultType result =
   1904           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
   1905       return MatchPrintAndExplain(result, matcher_, listener);
   1906     }
   1907 
   1908    private:
   1909     // Functors often define operator() as non-const method even though
   1910     // they are actualy stateless. But we need to use them even when
   1911     // 'this' is a const pointer. It's the user's responsibility not to
   1912     // use stateful callables with ResultOf(), which does't guarantee
   1913     // how many times the callable will be invoked.
   1914     mutable CallableStorageType callable_;
   1915     const Matcher<ResultType> matcher_;
   1916 
   1917     GTEST_DISALLOW_ASSIGN_(Impl);
   1918   };  // class Impl
   1919 
   1920   const CallableStorageType callable_;
   1921   const Matcher<ResultType> matcher_;
   1922 
   1923   GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
   1924 };
   1925 
   1926 // Implements an equality matcher for any STL-style container whose elements
   1927 // support ==. This matcher is like Eq(), but its failure explanations provide
   1928 // more detailed information that is useful when the container is used as a set.
   1929 // The failure message reports elements that are in one of the operands but not
   1930 // the other. The failure messages do not report duplicate or out-of-order
   1931 // elements in the containers (which don't properly matter to sets, but can
   1932 // occur if the containers are vectors or lists, for example).
   1933 //
   1934 // Uses the container's const_iterator, value_type, operator ==,
   1935 // begin(), and end().
   1936 template <typename Container>
   1937 class ContainerEqMatcher {
   1938  public:
   1939   typedef internal::StlContainerView<Container> View;
   1940   typedef typename View::type StlContainer;
   1941   typedef typename View::const_reference StlContainerReference;
   1942 
   1943   // We make a copy of rhs in case the elements in it are modified
   1944   // after this matcher is created.
   1945   explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
   1946     // Makes sure the user doesn't instantiate this class template
   1947     // with a const or reference type.
   1948     (void)testing::StaticAssertTypeEq<Container,
   1949         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
   1950   }
   1951 
   1952   void DescribeTo(::std::ostream* os) const {
   1953     *os << "equals ";
   1954     UniversalPrint(rhs_, os);
   1955   }
   1956   void DescribeNegationTo(::std::ostream* os) const {
   1957     *os << "does not equal ";
   1958     UniversalPrint(rhs_, os);
   1959   }
   1960 
   1961   template <typename LhsContainer>
   1962   bool MatchAndExplain(const LhsContainer& lhs,
   1963                        MatchResultListener* listener) const {
   1964     // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
   1965     // that causes LhsContainer to be a const type sometimes.
   1966     typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
   1967         LhsView;
   1968     typedef typename LhsView::type LhsStlContainer;
   1969     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
   1970     if (lhs_stl_container == rhs_)
   1971       return true;
   1972 
   1973     ::std::ostream* const os = listener->stream();
   1974     if (os != NULL) {
   1975       // Something is different. Check for extra values first.
   1976       bool printed_header = false;
   1977       for (typename LhsStlContainer::const_iterator it =
   1978                lhs_stl_container.begin();
   1979            it != lhs_stl_container.end(); ++it) {
   1980         if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
   1981             rhs_.end()) {
   1982           if (printed_header) {
   1983             *os << ", ";
   1984           } else {
   1985             *os << "which has these unexpected elements: ";
   1986             printed_header = true;
   1987           }
   1988           UniversalPrint(*it, os);
   1989         }
   1990       }
   1991 
   1992       // Now check for missing values.
   1993       bool printed_header2 = false;
   1994       for (typename StlContainer::const_iterator it = rhs_.begin();
   1995            it != rhs_.end(); ++it) {
   1996         if (internal::ArrayAwareFind(
   1997                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
   1998             lhs_stl_container.end()) {
   1999           if (printed_header2) {
   2000             *os << ", ";
   2001           } else {
   2002             *os << (printed_header ? ",\nand" : "which")
   2003                 << " doesn't have these expected elements: ";
   2004             printed_header2 = true;
   2005           }
   2006           UniversalPrint(*it, os);
   2007         }
   2008       }
   2009     }
   2010 
   2011     return false;
   2012   }
   2013 
   2014  private:
   2015   const StlContainer rhs_;
   2016 
   2017   GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
   2018 };
   2019 
   2020 // A comparator functor that uses the < operator to compare two values.
   2021 struct LessComparator {
   2022   template <typename T, typename U>
   2023   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
   2024 };
   2025 
   2026 // Implements WhenSortedBy(comparator, container_matcher).
   2027 template <typename Comparator, typename ContainerMatcher>
   2028 class WhenSortedByMatcher {
   2029  public:
   2030   WhenSortedByMatcher(const Comparator& comparator,
   2031                       const ContainerMatcher& matcher)
   2032       : comparator_(comparator), matcher_(matcher) {}
   2033 
   2034   template <typename LhsContainer>
   2035   operator Matcher<LhsContainer>() const {
   2036     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
   2037   }
   2038 
   2039   template <typename LhsContainer>
   2040   class Impl : public MatcherInterface<LhsContainer> {
   2041    public:
   2042     typedef internal::StlContainerView<
   2043          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
   2044     typedef typename LhsView::type LhsStlContainer;
   2045     typedef typename LhsView::const_reference LhsStlContainerReference;
   2046     typedef typename LhsStlContainer::value_type LhsValue;
   2047 
   2048     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
   2049         : comparator_(comparator), matcher_(matcher) {}
   2050 
   2051     virtual void DescribeTo(::std::ostream* os) const {
   2052       *os << "(when sorted) ";
   2053       matcher_.DescribeTo(os);
   2054     }
   2055 
   2056     virtual void DescribeNegationTo(::std::ostream* os) const {
   2057       *os << "(when sorted) ";
   2058       matcher_.DescribeNegationTo(os);
   2059     }
   2060 
   2061     virtual bool MatchAndExplain(LhsContainer lhs,
   2062                                  MatchResultListener* listener) const {
   2063       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
   2064       std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
   2065                                              lhs_stl_container.end());
   2066       std::sort(sorted_container.begin(), sorted_container.end(), comparator_);
   2067 
   2068       if (!listener->IsInterested()) {
   2069         // If the listener is not interested, we do not need to
   2070         // construct the inner explanation.
   2071         return matcher_.Matches(sorted_container);
   2072       }
   2073 
   2074       *listener << "which is ";
   2075       UniversalPrint(sorted_container, listener->stream());
   2076       *listener << " when sorted";
   2077 
   2078       StringMatchResultListener inner_listener;
   2079       const bool match = matcher_.MatchAndExplain(sorted_container,
   2080                                                   &inner_listener);
   2081       PrintIfNotEmpty(inner_listener.str(), listener->stream());
   2082       return match;
   2083     }
   2084 
   2085    private:
   2086     const Comparator comparator_;
   2087     const Matcher<const std::vector<LhsValue>&> matcher_;
   2088 
   2089     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
   2090   };
   2091 
   2092  private:
   2093   const Comparator comparator_;
   2094   const ContainerMatcher matcher_;
   2095 
   2096   GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
   2097 };
   2098 
   2099 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
   2100 // must be able to be safely cast to Matcher<tuple<const T1&, const
   2101 // T2&> >, where T1 and T2 are the types of elements in the LHS
   2102 // container and the RHS container respectively.
   2103 template <typename TupleMatcher, typename RhsContainer>
   2104 class PointwiseMatcher {
   2105  public:
   2106   typedef internal::StlContainerView<RhsContainer> RhsView;
   2107   typedef typename RhsView::type RhsStlContainer;
   2108   typedef typename RhsStlContainer::value_type RhsValue;
   2109 
   2110   // Like ContainerEq, we make a copy of rhs in case the elements in
   2111   // it are modified after this matcher is created.
   2112   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
   2113       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
   2114     // Makes sure the user doesn't instantiate this class template
   2115     // with a const or reference type.
   2116     (void)testing::StaticAssertTypeEq<RhsContainer,
   2117         GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
   2118   }
   2119 
   2120   template <typename LhsContainer>
   2121   operator Matcher<LhsContainer>() const {
   2122     return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
   2123   }
   2124 
   2125   template <typename LhsContainer>
   2126   class Impl : public MatcherInterface<LhsContainer> {
   2127    public:
   2128     typedef internal::StlContainerView<
   2129          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
   2130     typedef typename LhsView::type LhsStlContainer;
   2131     typedef typename LhsView::const_reference LhsStlContainerReference;
   2132     typedef typename LhsStlContainer::value_type LhsValue;
   2133     // We pass the LHS value and the RHS value to the inner matcher by
   2134     // reference, as they may be expensive to copy.  We must use tuple
   2135     // instead of pair here, as a pair cannot hold references (C++ 98,
   2136     // 20.2.2 [lib.pairs]).
   2137     typedef std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
   2138 
   2139     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
   2140         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
   2141         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
   2142           rhs_(rhs) {}
   2143 
   2144     virtual void DescribeTo(::std::ostream* os) const {
   2145       *os << "contains " << rhs_.size()
   2146           << " values, where each value and its corresponding value in ";
   2147       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
   2148       *os << " ";
   2149       mono_tuple_matcher_.DescribeTo(os);
   2150     }
   2151     virtual void DescribeNegationTo(::std::ostream* os) const {
   2152       *os << "doesn't contain exactly " << rhs_.size()
   2153           << " values, or contains a value x at some index i"
   2154           << " where x and the i-th value of ";
   2155       UniversalPrint(rhs_, os);
   2156       *os << " ";
   2157       mono_tuple_matcher_.DescribeNegationTo(os);
   2158     }
   2159 
   2160     virtual bool MatchAndExplain(LhsContainer lhs,
   2161                                  MatchResultListener* listener) const {
   2162       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
   2163       const size_t actual_size = lhs_stl_container.size();
   2164       if (actual_size != rhs_.size()) {
   2165         *listener << "which contains " << actual_size << " values";
   2166         return false;
   2167       }
   2168 
   2169       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
   2170       typename RhsStlContainer::const_iterator right = rhs_.begin();
   2171       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
   2172         const InnerMatcherArg value_pair(*left, *right);
   2173 
   2174         if (listener->IsInterested()) {
   2175           StringMatchResultListener inner_listener;
   2176           if (!mono_tuple_matcher_.MatchAndExplain(
   2177                   value_pair, &inner_listener)) {
   2178             *listener << "where the value pair (";
   2179             UniversalPrint(*left, listener->stream());
   2180             *listener << ", ";
   2181             UniversalPrint(*right, listener->stream());
   2182             *listener << ") at index #" << i << " don't match";
   2183             PrintIfNotEmpty(inner_listener.str(), listener->stream());
   2184             return false;
   2185           }
   2186         } else {
   2187           if (!mono_tuple_matcher_.Matches(value_pair))
   2188             return false;
   2189         }
   2190       }
   2191 
   2192       return true;
   2193     }
   2194 
   2195    private:
   2196     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
   2197     const RhsStlContainer rhs_;
   2198 
   2199     GTEST_DISALLOW_ASSIGN_(Impl);
   2200   };
   2201 
   2202  private:
   2203   const TupleMatcher tuple_matcher_;
   2204   const RhsStlContainer rhs_;
   2205 
   2206   GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
   2207 };
   2208 
   2209 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
   2210 template <typename Container>
   2211 class QuantifierMatcherImpl : public MatcherInterface<Container> {
   2212  public:
   2213   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
   2214   typedef StlContainerView<RawContainer> View;
   2215   typedef typename View::type StlContainer;
   2216   typedef typename View::const_reference StlContainerReference;
   2217   typedef typename StlContainer::value_type Element;
   2218 
   2219   template <typename InnerMatcher>
   2220   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
   2221       : inner_matcher_(
   2222            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
   2223 
   2224   // Checks whether:
   2225   // * All elements in the container match, if all_elements_should_match.
   2226   // * Any element in the container matches, if !all_elements_should_match.
   2227   bool MatchAndExplainImpl(bool all_elements_should_match,
   2228                            Container container,
   2229                            MatchResultListener* listener) const {
   2230     StlContainerReference stl_container = View::ConstReference(container);
   2231     size_t i = 0;
   2232     for (typename StlContainer::const_iterator it = stl_container.begin();
   2233          it != stl_container.end(); ++it, ++i) {
   2234       StringMatchResultListener inner_listener;
   2235       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
   2236 
   2237       if (matches != all_elements_should_match) {
   2238         *listener << "whose element #" << i
   2239                   << (matches ? " matches" : " doesn't match");
   2240         PrintIfNotEmpty(inner_listener.str(), listener->stream());
   2241         return !all_elements_should_match;
   2242       }
   2243     }
   2244     return all_elements_should_match;
   2245   }
   2246 
   2247  protected:
   2248   const Matcher<const Element&> inner_matcher_;
   2249 
   2250   GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
   2251 };
   2252 
   2253 // Implements Contains(element_matcher) for the given argument type Container.
   2254 // Symmetric to EachMatcherImpl.
   2255 template <typename Container>
   2256 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
   2257  public:
   2258   template <typename InnerMatcher>
   2259   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
   2260       : QuantifierMatcherImpl<Container>(inner_matcher) {}
   2261 
   2262   // Describes what this matcher does.
   2263   virtual void DescribeTo(::std::ostream* os) const {
   2264     *os << "contains at least one element that ";
   2265     this->inner_matcher_.DescribeTo(os);
   2266   }
   2267 
   2268   virtual void DescribeNegationTo(::std::ostream* os) const {
   2269     *os << "doesn't contain any element that ";
   2270     this->inner_matcher_.DescribeTo(os);
   2271   }
   2272 
   2273   virtual bool MatchAndExplain(Container container,
   2274                                MatchResultListener* listener) const {
   2275     return this->MatchAndExplainImpl(false, container, listener);
   2276   }
   2277 
   2278  private:
   2279   GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
   2280 };
   2281 
   2282 // Implements Each(element_matcher) for the given argument type Container.
   2283 // Symmetric to ContainsMatcherImpl.
   2284 template <typename Container>
   2285 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
   2286  public:
   2287   template <typename InnerMatcher>
   2288   explicit EachMatcherImpl(InnerMatcher inner_matcher)
   2289       : QuantifierMatcherImpl<Container>(inner_matcher) {}
   2290 
   2291   // Describes what this matcher does.
   2292   virtual void DescribeTo(::std::ostream* os) const {
   2293     *os << "only contains elements that ";
   2294     this->inner_matcher_.DescribeTo(os);
   2295   }
   2296 
   2297   virtual void DescribeNegationTo(::std::ostream* os) const {
   2298     *os << "contains some element that ";
   2299     this->inner_matcher_.DescribeNegationTo(os);
   2300   }
   2301 
   2302   virtual bool MatchAndExplain(Container container,
   2303                                MatchResultListener* listener) const {
   2304     return this->MatchAndExplainImpl(true, container, listener);
   2305   }
   2306 
   2307  private:
   2308   GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
   2309 };
   2310 
   2311 // Implements polymorphic Contains(element_matcher).
   2312 template <typename M>
   2313 class ContainsMatcher {
   2314  public:
   2315   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
   2316 
   2317   template <typename Container>
   2318   operator Matcher<Container>() const {
   2319     return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
   2320   }
   2321 
   2322  private:
   2323   const M inner_matcher_;
   2324 
   2325   GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
   2326 };
   2327 
   2328 // Implements polymorphic Each(element_matcher).
   2329 template <typename M>
   2330 class EachMatcher {
   2331  public:
   2332   explicit EachMatcher(M m) : inner_matcher_(m) {}
   2333 
   2334   template <typename Container>
   2335   operator Matcher<Container>() const {
   2336     return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
   2337   }
   2338 
   2339  private:
   2340   const M inner_matcher_;
   2341 
   2342   GTEST_DISALLOW_ASSIGN_(EachMatcher);
   2343 };
   2344 
   2345 // Implements Key(inner_matcher) for the given argument pair type.
   2346 // Key(inner_matcher) matches an std::pair whose 'first' field matches
   2347 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
   2348 // std::map that contains at least one element whose key is >= 5.
   2349 template <typename PairType>
   2350 class KeyMatcherImpl : public MatcherInterface<PairType> {
   2351  public:
   2352   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
   2353   typedef typename RawPairType::first_type KeyType;
   2354 
   2355   template <typename InnerMatcher>
   2356   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
   2357       : inner_matcher_(
   2358           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
   2359   }
   2360 
   2361   // Returns true iff 'key_value.first' (the key) matches the inner matcher.
   2362   virtual bool MatchAndExplain(PairType key_value,
   2363                                MatchResultListener* listener) const {
   2364     StringMatchResultListener inner_listener;
   2365     const bool match = inner_matcher_.MatchAndExplain(key_value.first,
   2366                                                       &inner_listener);
   2367     const internal::string explanation = inner_listener.str();
   2368     if (explanation != "") {
   2369       *listener << "whose first field is a value " << explanation;
   2370     }
   2371     return match;
   2372   }
   2373 
   2374   // Describes what this matcher does.
   2375   virtual void DescribeTo(::std::ostream* os) const {
   2376     *os << "has a key that ";
   2377     inner_matcher_.DescribeTo(os);
   2378   }
   2379 
   2380   // Describes what the negation of this matcher does.
   2381   virtual void DescribeNegationTo(::std::ostream* os) const {
   2382     *os << "doesn't have a key that ";
   2383     inner_matcher_.DescribeTo(os);
   2384   }
   2385 
   2386  private:
   2387   const Matcher<const KeyType&> inner_matcher_;
   2388 
   2389   GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
   2390 };
   2391 
   2392 // Implements polymorphic Key(matcher_for_key).
   2393 template <typename M>
   2394 class KeyMatcher {
   2395  public:
   2396   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
   2397 
   2398   template <typename PairType>
   2399   operator Matcher<PairType>() const {
   2400     return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
   2401   }
   2402 
   2403  private:
   2404   const M matcher_for_key_;
   2405 
   2406   GTEST_DISALLOW_ASSIGN_(KeyMatcher);
   2407 };
   2408 
   2409 // Implements Pair(first_matcher, second_matcher) for the given argument pair
   2410 // type with its two matchers. See Pair() function below.
   2411 template <typename PairType>
   2412 class PairMatcherImpl : public MatcherInterface<PairType> {
   2413  public:
   2414   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
   2415   typedef typename RawPairType::first_type FirstType;
   2416   typedef typename RawPairType::second_type SecondType;
   2417 
   2418   template <typename FirstMatcher, typename SecondMatcher>
   2419   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
   2420       : first_matcher_(
   2421             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
   2422         second_matcher_(
   2423             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
   2424   }
   2425 
   2426   // Describes what this matcher does.
   2427   virtual void DescribeTo(::std::ostream* os) const {
   2428     *os << "has a first field that ";
   2429     first_matcher_.DescribeTo(os);
   2430     *os << ", and has a second field that ";
   2431     second_matcher_.DescribeTo(os);
   2432   }
   2433 
   2434   // Describes what the negation of this matcher does.
   2435   virtual void DescribeNegationTo(::std::ostream* os) const {
   2436     *os << "has a first field that ";
   2437     first_matcher_.DescribeNegationTo(os);
   2438     *os << ", or has a second field that ";
   2439     second_matcher_.DescribeNegationTo(os);
   2440   }
   2441 
   2442   // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
   2443   // matches second_matcher.
   2444   virtual bool MatchAndExplain(PairType a_pair,
   2445                                MatchResultListener* listener) const {
   2446     if (!listener->IsInterested()) {
   2447       // If the listener is not interested, we don't need to construct the
   2448       // explanation.
   2449       return first_matcher_.Matches(a_pair.first) &&
   2450              second_matcher_.Matches(a_pair.second);
   2451     }
   2452     StringMatchResultListener first_inner_listener;
   2453     if (!first_matcher_.MatchAndExplain(a_pair.first,
   2454                                         &first_inner_listener)) {
   2455       *listener << "whose first field does not match";
   2456       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
   2457       return false;
   2458     }
   2459     StringMatchResultListener second_inner_listener;
   2460     if (!second_matcher_.MatchAndExplain(a_pair.second,
   2461                                          &second_inner_listener)) {
   2462       *listener << "whose second field does not match";
   2463       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
   2464       return false;
   2465     }
   2466     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
   2467                    listener);
   2468     return true;
   2469   }
   2470 
   2471  private:
   2472   void ExplainSuccess(const internal::string& first_explanation,
   2473                       const internal::string& second_explanation,
   2474                       MatchResultListener* listener) const {
   2475     *listener << "whose both fields match";
   2476     if (first_explanation != "") {
   2477       *listener << ", where the first field is a value " << first_explanation;
   2478     }
   2479     if (second_explanation != "") {
   2480       *listener << ", ";
   2481       if (first_explanation != "") {
   2482         *listener << "and ";
   2483       } else {
   2484         *listener << "where ";
   2485       }
   2486       *listener << "the second field is a value " << second_explanation;
   2487     }
   2488   }
   2489 
   2490   const Matcher<const FirstType&> first_matcher_;
   2491   const Matcher<const SecondType&> second_matcher_;
   2492 
   2493   GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
   2494 };
   2495 
   2496 // Implements polymorphic Pair(first_matcher, second_matcher).
   2497 template <typename FirstMatcher, typename SecondMatcher>
   2498 class PairMatcher {
   2499  public:
   2500   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
   2501       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
   2502 
   2503   template <typename PairType>
   2504   operator Matcher<PairType> () const {
   2505     return MakeMatcher(
   2506         new PairMatcherImpl<PairType>(
   2507             first_matcher_, second_matcher_));
   2508   }
   2509 
   2510  private:
   2511   const FirstMatcher first_matcher_;
   2512   const SecondMatcher second_matcher_;
   2513 
   2514   GTEST_DISALLOW_ASSIGN_(PairMatcher);
   2515 };
   2516 
   2517 // Implements ElementsAre() and ElementsAreArray().
   2518 template <typename Container>
   2519 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
   2520  public:
   2521   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
   2522   typedef internal::StlContainerView<RawContainer> View;
   2523   typedef typename View::type StlContainer;
   2524   typedef typename View::const_reference StlContainerReference;
   2525   typedef typename StlContainer::value_type Element;
   2526 
   2527   // Constructs the matcher from a sequence of element values or
   2528   // element matchers.
   2529   template <typename InputIter>
   2530   ElementsAreMatcherImpl(InputIter first, size_t a_count) {
   2531     matchers_.reserve(a_count);
   2532     InputIter it = first;
   2533     for (size_t i = 0; i != a_count; ++i, ++it) {
   2534       matchers_.push_back(MatcherCast<const Element&>(*it));
   2535     }
   2536   }
   2537 
   2538   // Describes what this matcher does.
   2539   virtual void DescribeTo(::std::ostream* os) const {
   2540     if (count() == 0) {
   2541       *os << "is empty";
   2542     } else if (count() == 1) {
   2543       *os << "has 1 element that ";
   2544       matchers_[0].DescribeTo(os);
   2545     } else {
   2546       *os << "has " << Elements(count()) << " where\n";
   2547       for (size_t i = 0; i != count(); ++i) {
   2548         *os << "element #" << i << " ";
   2549         matchers_[i].DescribeTo(os);
   2550         if (i + 1 < count()) {
   2551           *os << ",\n";
   2552         }
   2553       }
   2554     }
   2555   }
   2556 
   2557   // Describes what the negation of this matcher does.
   2558   virtual void DescribeNegationTo(::std::ostream* os) const {
   2559     if (count() == 0) {
   2560       *os << "isn't empty";
   2561       return;
   2562     }
   2563 
   2564     *os << "doesn't have " << Elements(count()) << ", or\n";
   2565     for (size_t i = 0; i != count(); ++i) {
   2566       *os << "element #" << i << " ";
   2567       matchers_[i].DescribeNegationTo(os);
   2568       if (i + 1 < count()) {
   2569         *os << ", or\n";
   2570       }
   2571     }
   2572   }
   2573 
   2574   virtual bool MatchAndExplain(Container container,
   2575                                MatchResultListener* listener) const {
   2576     StlContainerReference stl_container = View::ConstReference(container);
   2577     const size_t actual_count = stl_container.size();
   2578     if (actual_count != count()) {
   2579       // The element count doesn't match.  If the container is empty,
   2580       // there's no need to explain anything as Google Mock already
   2581       // prints the empty container.  Otherwise we just need to show
   2582       // how many elements there actually are.
   2583       if (actual_count != 0) {
   2584         *listener << "which has " << Elements(actual_count);
   2585       }
   2586       return false;
   2587     }
   2588 
   2589     typename StlContainer::const_iterator it = stl_container.begin();
   2590     // explanations[i] is the explanation of the element at index i.
   2591     std::vector<internal::string> explanations(count());
   2592     for (size_t i = 0; i != count();  ++it, ++i) {
   2593       StringMatchResultListener s;
   2594       if (matchers_[i].MatchAndExplain(*it, &s)) {
   2595         explanations[i] = s.str();
   2596       } else {
   2597         // The container has the right size but the i-th element
   2598         // doesn't match its expectation.
   2599         *listener << "whose element #" << i << " doesn't match";
   2600         PrintIfNotEmpty(s.str(), listener->stream());
   2601         return false;
   2602       }
   2603     }
   2604 
   2605     // Every element matches its expectation.  We need to explain why
   2606     // (the obvious ones can be skipped).
   2607     bool reason_printed = false;
   2608     for (size_t i = 0; i != count(); ++i) {
   2609       const internal::string& s = explanations[i];
   2610       if (!s.empty()) {
   2611         if (reason_printed) {
   2612           *listener << ",\nand ";
   2613         }
   2614         *listener << "whose element #" << i << " matches, " << s;
   2615         reason_printed = true;
   2616       }
   2617     }
   2618 
   2619     return true;
   2620   }
   2621 
   2622  private:
   2623   static Message Elements(size_t count) {
   2624     return Message() << count << (count == 1 ? " element" : " elements");
   2625   }
   2626 
   2627   size_t count() const { return matchers_.size(); }
   2628   std::vector<Matcher<const Element&> > matchers_;
   2629 
   2630   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
   2631 };
   2632 
   2633 // Implements ElementsAre() of 0 arguments.
   2634 class ElementsAreMatcher0 {
   2635  public:
   2636   ElementsAreMatcher0() {}
   2637 
   2638   template <typename Container>
   2639   operator Matcher<Container>() const {
   2640     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
   2641     typedef typename internal::StlContainerView<RawContainer>::type::value_type
   2642         Element;
   2643 
   2644     const Matcher<const Element&>* const matchers = NULL;
   2645     return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
   2646   }
   2647 };
   2648 
   2649 // Implements ElementsAreArray().
   2650 template <typename T>
   2651 class ElementsAreArrayMatcher {
   2652  public:
   2653   ElementsAreArrayMatcher(const T* first, size_t count) :
   2654       first_(first), count_(count) {}
   2655 
   2656   template <typename Container>
   2657   operator Matcher<Container>() const {
   2658     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
   2659     typedef typename internal::StlContainerView<RawContainer>::type::value_type
   2660         Element;
   2661 
   2662     return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
   2663   }
   2664 
   2665  private:
   2666   const T* const first_;
   2667   const size_t count_;
   2668 
   2669   GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
   2670 };
   2671 
   2672 // Returns the description for a matcher defined using the MATCHER*()
   2673 // macro where the user-supplied description string is "", if
   2674 // 'negation' is false; otherwise returns the description of the
   2675 // negation of the matcher.  'param_values' contains a list of strings
   2676 // that are the print-out of the matcher's parameters.
   2677 GTEST_API_ string FormatMatcherDescription(bool negation,
   2678                                            const char* matcher_name,
   2679                                            const Strings& param_values);
   2680 
   2681 }  // namespace internal
   2682 
   2683 // _ is a matcher that matches anything of any type.
   2684 //
   2685 // This definition is fine as:
   2686 //
   2687 //   1. The C++ standard permits using the name _ in a namespace that
   2688 //      is not the global namespace or ::std.
   2689 //   2. The AnythingMatcher class has no data member or constructor,
   2690 //      so it's OK to create global variables of this type.
   2691 //   3. c-style has approved of using _ in this case.
   2692 const internal::AnythingMatcher _ = {};
   2693 // Creates a matcher that matches any value of the given type T.
   2694 template <typename T>
   2695 inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
   2696 
   2697 // Creates a matcher that matches any value of the given type T.
   2698 template <typename T>
   2699 inline Matcher<T> An() { return A<T>(); }
   2700 
   2701 // Creates a polymorphic matcher that matches anything equal to x.
   2702 // Note: if the parameter of Eq() were declared as const T&, Eq("foo")
   2703 // wouldn't compile.
   2704 template <typename T>
   2705 inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
   2706 
   2707 // Constructs a Matcher<T> from a 'value' of type T.  The constructed
   2708 // matcher matches any value that's equal to 'value'.
   2709 template <typename T>
   2710 Matcher<T>::Matcher(T value) { *this = Eq(value); }
   2711 
   2712 // Creates a monomorphic matcher that matches anything with type Lhs
   2713 // and equal to rhs.  A user may need to use this instead of Eq(...)
   2714 // in order to resolve an overloading ambiguity.
   2715 //
   2716 // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
   2717 // or Matcher<T>(x), but more readable than the latter.
   2718 //
   2719 // We could define similar monomorphic matchers for other comparison
   2720 // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
   2721 // it yet as those are used much less than Eq() in practice.  A user
   2722 // can always write Matcher<T>(Lt(5)) to be explicit about the type,
   2723 // for example.
   2724 template <typename Lhs, typename Rhs>
   2725 inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
   2726 
   2727 // Creates a polymorphic matcher that matches anything >= x.
   2728 template <typename Rhs>
   2729 inline internal::GeMatcher<Rhs> Ge(Rhs x) {
   2730   return internal::GeMatcher<Rhs>(x);
   2731 }
   2732 
   2733 // Creates a polymorphic matcher that matches anything > x.
   2734 template <typename Rhs>
   2735 inline internal::GtMatcher<Rhs> Gt(Rhs x) {
   2736   return internal::GtMatcher<Rhs>(x);
   2737 }
   2738 
   2739 // Creates a polymorphic matcher that matches anything <= x.
   2740 template <typename Rhs>
   2741 inline internal::LeMatcher<Rhs> Le(Rhs x) {
   2742   return internal::LeMatcher<Rhs>(x);
   2743 }
   2744 
   2745 // Creates a polymorphic matcher that matches anything < x.
   2746 template <typename Rhs>
   2747 inline internal::LtMatcher<Rhs> Lt(Rhs x) {
   2748   return internal::LtMatcher<Rhs>(x);
   2749 }
   2750 
   2751 // Creates a polymorphic matcher that matches anything != x.
   2752 template <typename Rhs>
   2753 inline internal::NeMatcher<Rhs> Ne(Rhs x) {
   2754   return internal::NeMatcher<Rhs>(x);
   2755 }
   2756 
   2757 // Creates a polymorphic matcher that matches any NULL pointer.
   2758 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
   2759   return MakePolymorphicMatcher(internal::IsNullMatcher());
   2760 }
   2761 
   2762 // Creates a polymorphic matcher that matches any non-NULL pointer.
   2763 // This is convenient as Not(NULL) doesn't compile (the compiler
   2764 // thinks that that expression is comparing a pointer with an integer).
   2765 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
   2766   return MakePolymorphicMatcher(internal::NotNullMatcher());
   2767 }
   2768 
   2769 // Creates a polymorphic matcher that matches any argument that
   2770 // references variable x.
   2771 template <typename T>
   2772 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
   2773   return internal::RefMatcher<T&>(x);
   2774 }
   2775 
   2776 // Creates a matcher that matches any double argument approximately
   2777 // equal to rhs, where two NANs are considered unequal.
   2778 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
   2779   return internal::FloatingEqMatcher<double>(rhs, false);
   2780 }
   2781 
   2782 // Creates a matcher that matches any double argument approximately
   2783 // equal to rhs, including NaN values when rhs is NaN.
   2784 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
   2785   return internal::FloatingEqMatcher<double>(rhs, true);
   2786 }
   2787 
   2788 // Creates a matcher that matches any float argument approximately
   2789 // equal to rhs, where two NANs are considered unequal.
   2790 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
   2791   return internal::FloatingEqMatcher<float>(rhs, false);
   2792 }
   2793 
   2794 // Creates a matcher that matches any double argument approximately
   2795 // equal to rhs, including NaN values when rhs is NaN.
   2796 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
   2797   return internal::FloatingEqMatcher<float>(rhs, true);
   2798 }
   2799 
   2800 // Creates a matcher that matches a pointer (raw or smart) that points
   2801 // to a value that matches inner_matcher.
   2802 template <typename InnerMatcher>
   2803 inline internal::PointeeMatcher<InnerMatcher> Pointee(
   2804     const InnerMatcher& inner_matcher) {
   2805   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
   2806 }
   2807 
   2808 // Creates a matcher that matches an object whose given field matches
   2809 // 'matcher'.  For example,
   2810 //   Field(&Foo::number, Ge(5))
   2811 // matches a Foo object x iff x.number >= 5.
   2812 template <typename Class, typename FieldType, typename FieldMatcher>
   2813 inline PolymorphicMatcher<
   2814   internal::FieldMatcher<Class, FieldType> > Field(
   2815     FieldType Class::*field, const FieldMatcher& matcher) {
   2816   return MakePolymorphicMatcher(
   2817       internal::FieldMatcher<Class, FieldType>(
   2818           field, MatcherCast<const FieldType&>(matcher)));
   2819   // The call to MatcherCast() is required for supporting inner
   2820   // matchers of compatible types.  For example, it allows
   2821   //   Field(&Foo::bar, m)
   2822   // to compile where bar is an int32 and m is a matcher for int64.
   2823 }
   2824 
   2825 // Creates a matcher that matches an object whose given property
   2826 // matches 'matcher'.  For example,
   2827 //   Property(&Foo::str, StartsWith("hi"))
   2828 // matches a Foo object x iff x.str() starts with "hi".
   2829 template <typename Class, typename PropertyType, typename PropertyMatcher>
   2830 inline PolymorphicMatcher<
   2831   internal::PropertyMatcher<Class, PropertyType> > Property(
   2832     PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
   2833   return MakePolymorphicMatcher(
   2834       internal::PropertyMatcher<Class, PropertyType>(
   2835           property,
   2836           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
   2837   // The call to MatcherCast() is required for supporting inner
   2838   // matchers of compatible types.  For example, it allows
   2839   //   Property(&Foo::bar, m)
   2840   // to compile where bar() returns an int32 and m is a matcher for int64.
   2841 }
   2842 
   2843 // Creates a matcher that matches an object iff the result of applying
   2844 // a callable to x matches 'matcher'.
   2845 // For example,
   2846 //   ResultOf(f, StartsWith("hi"))
   2847 // matches a Foo object x iff f(x) starts with "hi".
   2848 // callable parameter can be a function, function pointer, or a functor.
   2849 // Callable has to satisfy the following conditions:
   2850 //   * It is required to keep no state affecting the results of
   2851 //     the calls on it and make no assumptions about how many calls
   2852 //     will be made. Any state it keeps must be protected from the
   2853 //     concurrent access.
   2854 //   * If it is a function object, it has to define type result_type.
   2855 //     We recommend deriving your functor classes from std::unary_function.
   2856 template <typename Callable, typename ResultOfMatcher>
   2857 internal::ResultOfMatcher<Callable> ResultOf(
   2858     Callable callable, const ResultOfMatcher& matcher) {
   2859   return internal::ResultOfMatcher<Callable>(
   2860           callable,
   2861           MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
   2862               matcher));
   2863   // The call to MatcherCast() is required for supporting inner
   2864   // matchers of compatible types.  For example, it allows
   2865   //   ResultOf(Function, m)
   2866   // to compile where Function() returns an int32 and m is a matcher for int64.
   2867 }
   2868 
   2869 // String matchers.
   2870 
   2871 // Matches a string equal to str.
   2872 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
   2873     StrEq(const internal::string& str) {
   2874   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
   2875       str, true, true));
   2876 }
   2877 
   2878 // Matches a string not equal to str.
   2879 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
   2880     StrNe(const internal::string& str) {
   2881   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
   2882       str, false, true));
   2883 }
   2884 
   2885 // Matches a string equal to str, ignoring case.
   2886 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
   2887     StrCaseEq(const internal::string& str) {
   2888   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
   2889       str, true, false));
   2890 }
   2891 
   2892 // Matches a string not equal to str, ignoring case.
   2893 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
   2894     StrCaseNe(const internal::string& str) {
   2895   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
   2896       str, false, false));
   2897 }
   2898 
   2899 // Creates a matcher that matches any string, std::string, or C string
   2900 // that contains the given substring.
   2901 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
   2902     HasSubstr(const internal::string& substring) {
   2903   return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
   2904       substring));
   2905 }
   2906 
   2907 // Matches a string that starts with 'prefix' (case-sensitive).
   2908 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
   2909     StartsWith(const internal::string& prefix) {
   2910   return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
   2911       prefix));
   2912 }
   2913 
   2914 // Matches a string that ends with 'suffix' (case-sensitive).
   2915 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
   2916     EndsWith(const internal::string& suffix) {
   2917   return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
   2918       suffix));
   2919 }
   2920 
   2921 // Matches a string that fully matches regular expression 'regex'.
   2922 // The matcher takes ownership of 'regex'.
   2923 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
   2924     const internal::RE* regex) {
   2925   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
   2926 }
   2927 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
   2928     const internal::string& regex) {
   2929   return MatchesRegex(new internal::RE(regex));
   2930 }
   2931 
   2932 // Matches a string that contains regular expression 'regex'.
   2933 // The matcher takes ownership of 'regex'.
   2934 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
   2935     const internal::RE* regex) {
   2936   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
   2937 }
   2938 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
   2939     const internal::string& regex) {
   2940   return ContainsRegex(new internal::RE(regex));
   2941 }
   2942 
   2943 #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
   2944 // Wide string matchers.
   2945 
   2946 // Matches a string equal to str.
   2947 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
   2948     StrEq(const internal::wstring& str) {
   2949   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
   2950       str, true, true));
   2951 }
   2952 
   2953 // Matches a string not equal to str.
   2954 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
   2955     StrNe(const internal::wstring& str) {
   2956   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
   2957       str, false, true));
   2958 }
   2959 
   2960 // Matches a string equal to str, ignoring case.
   2961 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
   2962     StrCaseEq(const internal::wstring& str) {
   2963   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
   2964       str, true, false));
   2965 }
   2966 
   2967 // Matches a string not equal to str, ignoring case.
   2968 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
   2969     StrCaseNe(const internal::wstring& str) {
   2970   return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
   2971       str, false, false));
   2972 }
   2973 
   2974 // Creates a matcher that matches any wstring, std::wstring, or C wide string
   2975 // that contains the given substring.
   2976 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
   2977     HasSubstr(const internal::wstring& substring) {
   2978   return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
   2979       substring));
   2980 }
   2981 
   2982 // Matches a string that starts with 'prefix' (case-sensitive).
   2983 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
   2984     StartsWith(const internal::wstring& prefix) {
   2985   return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
   2986       prefix));
   2987 }
   2988 
   2989 // Matches a string that ends with 'suffix' (case-sensitive).
   2990 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
   2991     EndsWith(const internal::wstring& suffix) {
   2992   return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
   2993       suffix));
   2994 }
   2995 
   2996 #endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
   2997 
   2998 // Creates a polymorphic matcher that matches a 2-tuple where the
   2999 // first field == the second field.
   3000 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
   3001 
   3002 // Creates a polymorphic matcher that matches a 2-tuple where the
   3003 // first field >= the second field.
   3004 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
   3005 
   3006 // Creates a polymorphic matcher that matches a 2-tuple where the
   3007 // first field > the second field.
   3008 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
   3009 
   3010 // Creates a polymorphic matcher that matches a 2-tuple where the
   3011 // first field <= the second field.
   3012 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
   3013 
   3014 // Creates a polymorphic matcher that matches a 2-tuple where the
   3015 // first field < the second field.
   3016 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
   3017 
   3018 // Creates a polymorphic matcher that matches a 2-tuple where the
   3019 // first field != the second field.
   3020 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
   3021 
   3022 // Creates a matcher that matches any value of type T that m doesn't
   3023 // match.
   3024 template <typename InnerMatcher>
   3025 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
   3026   return internal::NotMatcher<InnerMatcher>(m);
   3027 }
   3028 
   3029 // Returns a matcher that matches anything that satisfies the given
   3030 // predicate.  The predicate can be any unary function or functor
   3031 // whose return type can be implicitly converted to bool.
   3032 template <typename Predicate>
   3033 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
   3034 Truly(Predicate pred) {
   3035   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
   3036 }
   3037 
   3038 // Returns a matcher that matches an equal container.
   3039 // This matcher behaves like Eq(), but in the event of mismatch lists the
   3040 // values that are included in one container but not the other. (Duplicate
   3041 // values and order differences are not explained.)
   3042 template <typename Container>
   3043 inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
   3044                             GTEST_REMOVE_CONST_(Container)> >
   3045     ContainerEq(const Container& rhs) {
   3046   // This following line is for working around a bug in MSVC 8.0,
   3047   // which causes Container to be a const type sometimes.
   3048   typedef GTEST_REMOVE_CONST_(Container) RawContainer;
   3049   return MakePolymorphicMatcher(
   3050       internal::ContainerEqMatcher<RawContainer>(rhs));
   3051 }
   3052 
   3053 // Returns a matcher that matches a container that, when sorted using
   3054 // the given comparator, matches container_matcher.
   3055 template <typename Comparator, typename ContainerMatcher>
   3056 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
   3057 WhenSortedBy(const Comparator& comparator,
   3058              const ContainerMatcher& container_matcher) {
   3059   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
   3060       comparator, container_matcher);
   3061 }
   3062 
   3063 // Returns a matcher that matches a container that, when sorted using
   3064 // the < operator, matches container_matcher.
   3065 template <typename ContainerMatcher>
   3066 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
   3067 WhenSorted(const ContainerMatcher& container_matcher) {
   3068   return
   3069       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
   3070           internal::LessComparator(), container_matcher);
   3071 }
   3072 
   3073 // Matches an STL-style container or a native array that contains the
   3074 // same number of elements as in rhs, where its i-th element and rhs's
   3075 // i-th element (as a pair) satisfy the given pair matcher, for all i.
   3076 // TupleMatcher must be able to be safely cast to Matcher<tuple<const
   3077 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
   3078 // LHS container and the RHS container respectively.
   3079 template <typename TupleMatcher, typename Container>
   3080 inline internal::PointwiseMatcher<TupleMatcher,
   3081                                   GTEST_REMOVE_CONST_(Container)>
   3082 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
   3083   // This following line is for working around a bug in MSVC 8.0,
   3084   // which causes Container to be a const type sometimes.
   3085   typedef GTEST_REMOVE_CONST_(Container) RawContainer;
   3086   return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
   3087       tuple_matcher, rhs);
   3088 }
   3089 
   3090 // Matches an STL-style container or a native array that contains at
   3091 // least one element matching the given value or matcher.
   3092 //
   3093 // Examples:
   3094 //   ::std::set<int> page_ids;
   3095 //   page_ids.insert(3);
   3096 //   page_ids.insert(1);
   3097 //   EXPECT_THAT(page_ids, Contains(1));
   3098 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
   3099 //   EXPECT_THAT(page_ids, Not(Contains(4)));
   3100 //
   3101 //   ::std::map<int, size_t> page_lengths;
   3102 //   page_lengths[1] = 100;
   3103 //   EXPECT_THAT(page_lengths,
   3104 //               Contains(::std::pair<const int, size_t>(1, 100)));
   3105 //
   3106 //   const char* user_ids[] = { "joe", "mike", "tom" };
   3107 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
   3108 template <typename M>
   3109 inline internal::ContainsMatcher<M> Contains(M matcher) {
   3110   return internal::ContainsMatcher<M>(matcher);
   3111 }
   3112 
   3113 // Matches an STL-style container or a native array that contains only
   3114 // elements matching the given value or matcher.
   3115 //
   3116 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
   3117 // the messages are different.
   3118 //
   3119 // Examples:
   3120 //   ::std::set<int> page_ids;
   3121 //   // Each(m) matches an empty container, regardless of what m is.
   3122 //   EXPECT_THAT(page_ids, Each(Eq(1)));
   3123 //   EXPECT_THAT(page_ids, Each(Eq(77)));
   3124 //
   3125 //   page_ids.insert(3);
   3126 //   EXPECT_THAT(page_ids, Each(Gt(0)));
   3127 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
   3128 //   page_ids.insert(1);
   3129 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
   3130 //
   3131 //   ::std::map<int, size_t> page_lengths;
   3132 //   page_lengths[1] = 100;
   3133 //   page_lengths[2] = 200;
   3134 //   page_lengths[3] = 300;
   3135 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
   3136 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
   3137 //
   3138 //   const char* user_ids[] = { "joe", "mike", "tom" };
   3139 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
   3140 template <typename M>
   3141 inline internal::EachMatcher<M> Each(M matcher) {
   3142   return internal::EachMatcher<M>(matcher);
   3143 }
   3144 
   3145 // Key(inner_matcher) matches an std::pair whose 'first' field matches
   3146 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
   3147 // std::map that contains at least one element whose key is >= 5.
   3148 template <typename M>
   3149 inline internal::KeyMatcher<M> Key(M inner_matcher) {
   3150   return internal::KeyMatcher<M>(inner_matcher);
   3151 }
   3152 
   3153 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
   3154 // matches first_matcher and whose 'second' field matches second_matcher.  For
   3155 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
   3156 // to match a std::map<int, string> that contains exactly one element whose key
   3157 // is >= 5 and whose value equals "foo".
   3158 template <typename FirstMatcher, typename SecondMatcher>
   3159 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
   3160 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
   3161   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
   3162       first_matcher, second_matcher);
   3163 }
   3164 
   3165 // Returns a predicate that is satisfied by anything that matches the
   3166 // given matcher.
   3167 template <typename M>
   3168 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
   3169   return internal::MatcherAsPredicate<M>(matcher);
   3170 }
   3171 
   3172 // Returns true iff the value matches the matcher.
   3173 template <typename T, typename M>
   3174 inline bool Value(const T& value, M matcher) {
   3175   return testing::Matches(matcher)(value);
   3176 }
   3177 
   3178 // Matches the value against the given matcher and explains the match
   3179 // result to listener.
   3180 template <typename T, typename M>
   3181 inline bool ExplainMatchResult(
   3182     M matcher, const T& value, MatchResultListener* listener) {
   3183   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
   3184 }
   3185 
   3186 // AllArgs(m) is a synonym of m.  This is useful in
   3187 //
   3188 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
   3189 //
   3190 // which is easier to read than
   3191 //
   3192 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
   3193 template <typename InnerMatcher>
   3194 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
   3195 
   3196 // These macros allow using matchers to check values in Google Test
   3197 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
   3198 // succeed iff the value matches the matcher.  If the assertion fails,
   3199 // the value and the description of the matcher will be printed.
   3200 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
   3201     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
   3202 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
   3203     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
   3204 
   3205 }  // namespace testing
   3206 
   3207 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
   3208