1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 // 30 // Author: wan (at) google.com (Zhanyong Wan) 31 32 // Google Mock - a framework for writing C++ mock classes. 33 // 34 // This file implements Matcher<const string&>, Matcher<string>, and 35 // utilities for defining matchers. 36 37 #include "gmock/gmock-matchers.h" 38 #include "gmock/gmock-generated-matchers.h" 39 40 #include <string.h> 41 #include <sstream> 42 #include <string> 43 44 namespace testing { 45 46 // Constructs a matcher that matches a const string& whose value is 47 // equal to s. 48 Matcher<const internal::string&>::Matcher(const internal::string& s) { 49 *this = Eq(s); 50 } 51 52 // Constructs a matcher that matches a const string& whose value is 53 // equal to s. 54 Matcher<const internal::string&>::Matcher(const char* s) { 55 *this = Eq(internal::string(s)); 56 } 57 58 // Constructs a matcher that matches a string whose value is equal to s. 59 Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); } 60 61 // Constructs a matcher that matches a string whose value is equal to s. 62 Matcher<internal::string>::Matcher(const char* s) { 63 *this = Eq(internal::string(s)); 64 } 65 66 #if GTEST_HAS_STRING_PIECE_ 67 // Constructs a matcher that matches a const StringPiece& whose value is 68 // equal to s. 69 Matcher<const StringPiece&>::Matcher(const internal::string& s) { 70 *this = Eq(s); 71 } 72 73 // Constructs a matcher that matches a const StringPiece& whose value is 74 // equal to s. 75 Matcher<const StringPiece&>::Matcher(const char* s) { 76 *this = Eq(internal::string(s)); 77 } 78 79 // Constructs a matcher that matches a const StringPiece& whose value is 80 // equal to s. 81 Matcher<const StringPiece&>::Matcher(StringPiece s) { 82 *this = Eq(s.ToString()); 83 } 84 85 // Constructs a matcher that matches a StringPiece whose value is equal to s. 86 Matcher<StringPiece>::Matcher(const internal::string& s) { 87 *this = Eq(s); 88 } 89 90 // Constructs a matcher that matches a StringPiece whose value is equal to s. 91 Matcher<StringPiece>::Matcher(const char* s) { 92 *this = Eq(internal::string(s)); 93 } 94 95 // Constructs a matcher that matches a StringPiece whose value is equal to s. 96 Matcher<StringPiece>::Matcher(StringPiece s) { 97 *this = Eq(s.ToString()); 98 } 99 #endif // GTEST_HAS_STRING_PIECE_ 100 101 namespace internal { 102 103 // Joins a vector of strings as if they are fields of a tuple; returns 104 // the joined string. 105 GTEST_API_ string JoinAsTuple(const Strings& fields) { 106 switch (fields.size()) { 107 case 0: 108 return ""; 109 case 1: 110 return fields[0]; 111 default: 112 string result = "(" + fields[0]; 113 for (size_t i = 1; i < fields.size(); i++) { 114 result += ", "; 115 result += fields[i]; 116 } 117 result += ")"; 118 return result; 119 } 120 } 121 122 // Returns the description for a matcher defined using the MATCHER*() 123 // macro where the user-supplied description string is "", if 124 // 'negation' is false; otherwise returns the description of the 125 // negation of the matcher. 'param_values' contains a list of strings 126 // that are the print-out of the matcher's parameters. 127 GTEST_API_ string FormatMatcherDescription(bool negation, 128 const char* matcher_name, 129 const Strings& param_values) { 130 string result = ConvertIdentifierNameToWords(matcher_name); 131 if (param_values.size() >= 1) 132 result += " " + JoinAsTuple(param_values); 133 return negation ? "not (" + result + ")" : result; 134 } 135 136 // FindMaxBipartiteMatching and its helper class. 137 // 138 // Uses the well-known Ford-Fulkerson max flow method to find a maximum 139 // bipartite matching. Flow is considered to be from left to right. 140 // There is an implicit source node that is connected to all of the left 141 // nodes, and an implicit sink node that is connected to all of the 142 // right nodes. All edges have unit capacity. 143 // 144 // Neither the flow graph nor the residual flow graph are represented 145 // explicitly. Instead, they are implied by the information in 'graph' and 146 // a vector<int> called 'left_' whose elements are initialized to the 147 // value kUnused. This represents the initial state of the algorithm, 148 // where the flow graph is empty, and the residual flow graph has the 149 // following edges: 150 // - An edge from source to each left_ node 151 // - An edge from each right_ node to sink 152 // - An edge from each left_ node to each right_ node, if the 153 // corresponding edge exists in 'graph'. 154 // 155 // When the TryAugment() method adds a flow, it sets left_[l] = r for some 156 // nodes l and r. This induces the following changes: 157 // - The edges (source, l), (l, r), and (r, sink) are added to the 158 // flow graph. 159 // - The same three edges are removed from the residual flow graph. 160 // - The reverse edges (l, source), (r, l), and (sink, r) are added 161 // to the residual flow graph, which is a directional graph 162 // representing unused flow capacity. 163 // 164 // When the method augments a flow (moving left_[l] from some r1 to some 165 // other r2), this can be thought of as "undoing" the above steps with 166 // respect to r1 and "redoing" them with respect to r2. 167 // 168 // It bears repeating that the flow graph and residual flow graph are 169 // never represented explicitly, but can be derived by looking at the 170 // information in 'graph' and in left_. 171 // 172 // As an optimization, there is a second vector<int> called right_ which 173 // does not provide any new information. Instead, it enables more 174 // efficient queries about edges entering or leaving the right-side nodes 175 // of the flow or residual flow graphs. The following invariants are 176 // maintained: 177 // 178 // left[l] == kUnused or right[left[l]] == l 179 // right[r] == kUnused or left[right[r]] == r 180 // 181 // . [ source ] . 182 // . ||| . 183 // . ||| . 184 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . 185 // . || | | . 186 // . |\---> left[1]=-1 \--> right[1]=0 ---\| . 187 // . | || . 188 // . \----> left[2]=2 ------> right[2]=2 --\|| . 189 // . ||| . 190 // . elements matchers vvv . 191 // . [ sink ] . 192 // 193 // See Also: 194 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". 195 // "Introduction to Algorithms (Second ed.)", pp. 651-664. 196 // [2] "Ford-Fulkerson algorithm", Wikipedia, 197 // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' 198 class MaxBipartiteMatchState { 199 public: 200 explicit MaxBipartiteMatchState(const MatchMatrix& graph) 201 : graph_(&graph), 202 left_(graph_->LhsSize(), kUnused), 203 right_(graph_->RhsSize(), kUnused) { 204 } 205 206 // Returns the edges of a maximal match, each in the form {left, right}. 207 ElementMatcherPairs Compute() { 208 // 'seen' is used for path finding { 0: unseen, 1: seen }. 209 ::std::vector<char> seen; 210 // Searches the residual flow graph for a path from each left node to 211 // the sink in the residual flow graph, and if one is found, add flow 212 // to the graph. It's okay to search through the left nodes once. The 213 // edge from the implicit source node to each previously-visited left 214 // node will have flow if that left node has any path to the sink 215 // whatsoever. Subsequent augmentations can only add flow to the 216 // network, and cannot take away that previous flow unit from the source. 217 // Since the source-to-left edge can only carry one flow unit (or, 218 // each element can be matched to only one matcher), there is no need 219 // to visit the left nodes more than once looking for augmented paths. 220 // The flow is known to be possible or impossible by looking at the 221 // node once. 222 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { 223 // Reset the path-marking vector and try to find a path from 224 // source to sink starting at the left_[ilhs] node. 225 GTEST_CHECK_(left_[ilhs] == kUnused) 226 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; 227 // 'seen' initialized to 'graph_->RhsSize()' copies of 0. 228 seen.assign(graph_->RhsSize(), 0); 229 TryAugment(ilhs, &seen); 230 } 231 ElementMatcherPairs result; 232 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { 233 size_t irhs = left_[ilhs]; 234 if (irhs == kUnused) continue; 235 result.push_back(ElementMatcherPair(ilhs, irhs)); 236 } 237 return result; 238 } 239 240 private: 241 static const size_t kUnused = static_cast<size_t>(-1); 242 243 // Perform a depth-first search from left node ilhs to the sink. If a 244 // path is found, flow is added to the network by linking the left and 245 // right vector elements corresponding each segment of the path. 246 // Returns true if a path to sink was found, which means that a unit of 247 // flow was added to the network. The 'seen' vector elements correspond 248 // to right nodes and are marked to eliminate cycles from the search. 249 // 250 // Left nodes will only be explored at most once because they 251 // are accessible from at most one right node in the residual flow 252 // graph. 253 // 254 // Note that left_[ilhs] is the only element of left_ that TryAugment will 255 // potentially transition from kUnused to another value. Any other 256 // left_ element holding kUnused before TryAugment will be holding it 257 // when TryAugment returns. 258 // 259 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { 260 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { 261 if ((*seen)[irhs]) 262 continue; 263 if (!graph_->HasEdge(ilhs, irhs)) 264 continue; 265 // There's an available edge from ilhs to irhs. 266 (*seen)[irhs] = 1; 267 // Next a search is performed to determine whether 268 // this edge is a dead end or leads to the sink. 269 // 270 // right_[irhs] == kUnused means that there is residual flow from 271 // right node irhs to the sink, so we can use that to finish this 272 // flow path and return success. 273 // 274 // Otherwise there is residual flow to some ilhs. We push flow 275 // along that path and call ourselves recursively to see if this 276 // ultimately leads to sink. 277 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { 278 // Add flow from left_[ilhs] to right_[irhs]. 279 left_[ilhs] = irhs; 280 right_[irhs] = ilhs; 281 return true; 282 } 283 } 284 return false; 285 } 286 287 const MatchMatrix* graph_; // not owned 288 // Each element of the left_ vector represents a left hand side node 289 // (i.e. an element) and each element of right_ is a right hand side 290 // node (i.e. a matcher). The values in the left_ vector indicate 291 // outflow from that node to a node on the the right_ side. The values 292 // in the right_ indicate inflow, and specify which left_ node is 293 // feeding that right_ node, if any. For example, left_[3] == 1 means 294 // there's a flow from element #3 to matcher #1. Such a flow would also 295 // be redundantly represented in the right_ vector as right_[1] == 3. 296 // Elements of left_ and right_ are either kUnused or mutually 297 // referent. Mutually referent means that left_[right_[i]] = i and 298 // right_[left_[i]] = i. 299 ::std::vector<size_t> left_; 300 ::std::vector<size_t> right_; 301 302 GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); 303 }; 304 305 const size_t MaxBipartiteMatchState::kUnused; 306 307 GTEST_API_ ElementMatcherPairs 308 FindMaxBipartiteMatching(const MatchMatrix& g) { 309 return MaxBipartiteMatchState(g).Compute(); 310 } 311 312 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, 313 ::std::ostream* stream) { 314 typedef ElementMatcherPairs::const_iterator Iter; 315 ::std::ostream& os = *stream; 316 os << "{"; 317 const char *sep = ""; 318 for (Iter it = pairs.begin(); it != pairs.end(); ++it) { 319 os << sep << "\n (" 320 << "element #" << it->first << ", " 321 << "matcher #" << it->second << ")"; 322 sep = ","; 323 } 324 os << "\n}"; 325 } 326 327 // Tries to find a pairing, and explains the result. 328 GTEST_API_ bool FindPairing(const MatchMatrix& matrix, 329 MatchResultListener* listener) { 330 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); 331 332 size_t max_flow = matches.size(); 333 bool result = (max_flow == matrix.RhsSize()); 334 335 if (!result) { 336 if (listener->IsInterested()) { 337 *listener << "where no permutation of the elements can " 338 "satisfy all matchers, and the closest match is " 339 << max_flow << " of " << matrix.RhsSize() 340 << " matchers with the pairings:\n"; 341 LogElementMatcherPairVec(matches, listener->stream()); 342 } 343 return false; 344 } 345 346 if (matches.size() > 1) { 347 if (listener->IsInterested()) { 348 const char *sep = "where:\n"; 349 for (size_t mi = 0; mi < matches.size(); ++mi) { 350 *listener << sep << " - element #" << matches[mi].first 351 << " is matched by matcher #" << matches[mi].second; 352 sep = ",\n"; 353 } 354 } 355 } 356 return true; 357 } 358 359 bool MatchMatrix::NextGraph() { 360 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 361 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 362 char& b = matched_[SpaceIndex(ilhs, irhs)]; 363 if (!b) { 364 b = 1; 365 return true; 366 } 367 b = 0; 368 } 369 } 370 return false; 371 } 372 373 void MatchMatrix::Randomize() { 374 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 375 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 376 char& b = matched_[SpaceIndex(ilhs, irhs)]; 377 b = static_cast<char>(rand() & 1); // NOLINT 378 } 379 } 380 } 381 382 string MatchMatrix::DebugString() const { 383 ::std::stringstream ss; 384 const char *sep = ""; 385 for (size_t i = 0; i < LhsSize(); ++i) { 386 ss << sep; 387 for (size_t j = 0; j < RhsSize(); ++j) { 388 ss << HasEdge(i, j); 389 } 390 sep = ";"; 391 } 392 return ss.str(); 393 } 394 395 void UnorderedElementsAreMatcherImplBase::DescribeToImpl( 396 ::std::ostream* os) const { 397 if (matcher_describers_.empty()) { 398 *os << "is empty"; 399 return; 400 } 401 if (matcher_describers_.size() == 1) { 402 *os << "has " << Elements(1) << " and that element "; 403 matcher_describers_[0]->DescribeTo(os); 404 return; 405 } 406 *os << "has " << Elements(matcher_describers_.size()) 407 << " and there exists some permutation of elements such that:\n"; 408 const char* sep = ""; 409 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 410 *os << sep << " - element #" << i << " "; 411 matcher_describers_[i]->DescribeTo(os); 412 sep = ", and\n"; 413 } 414 } 415 416 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( 417 ::std::ostream* os) const { 418 if (matcher_describers_.empty()) { 419 *os << "isn't empty"; 420 return; 421 } 422 if (matcher_describers_.size() == 1) { 423 *os << "doesn't have " << Elements(1) 424 << ", or has " << Elements(1) << " that "; 425 matcher_describers_[0]->DescribeNegationTo(os); 426 return; 427 } 428 *os << "doesn't have " << Elements(matcher_describers_.size()) 429 << ", or there exists no permutation of elements such that:\n"; 430 const char* sep = ""; 431 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 432 *os << sep << " - element #" << i << " "; 433 matcher_describers_[i]->DescribeTo(os); 434 sep = ", and\n"; 435 } 436 } 437 438 // Checks that all matchers match at least one element, and that all 439 // elements match at least one matcher. This enables faster matching 440 // and better error reporting. 441 // Returns false, writing an explanation to 'listener', if and only 442 // if the success criteria are not met. 443 bool UnorderedElementsAreMatcherImplBase:: 444 VerifyAllElementsAndMatchersAreMatched( 445 const ::std::vector<string>& element_printouts, 446 const MatchMatrix& matrix, 447 MatchResultListener* listener) const { 448 bool result = true; 449 ::std::vector<char> element_matched(matrix.LhsSize(), 0); 450 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); 451 452 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { 453 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { 454 char matched = matrix.HasEdge(ilhs, irhs); 455 element_matched[ilhs] |= matched; 456 matcher_matched[irhs] |= matched; 457 } 458 } 459 460 { 461 const char* sep = 462 "where the following matchers don't match any elements:\n"; 463 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { 464 if (matcher_matched[mi]) 465 continue; 466 result = false; 467 if (listener->IsInterested()) { 468 *listener << sep << "matcher #" << mi << ": "; 469 matcher_describers_[mi]->DescribeTo(listener->stream()); 470 sep = ",\n"; 471 } 472 } 473 } 474 475 { 476 const char* sep = 477 "where the following elements don't match any matchers:\n"; 478 const char* outer_sep = ""; 479 if (!result) { 480 outer_sep = "\nand "; 481 } 482 for (size_t ei = 0; ei < element_matched.size(); ++ei) { 483 if (element_matched[ei]) 484 continue; 485 result = false; 486 if (listener->IsInterested()) { 487 *listener << outer_sep << sep << "element #" << ei << ": " 488 << element_printouts[ei]; 489 sep = ",\n"; 490 outer_sep = ""; 491 } 492 } 493 } 494 return result; 495 } 496 497 } // namespace internal 498 } // namespace testing 499