Home | History | Annotate | Download | only in src
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 
     32 // Google Mock - a framework for writing C++ mock classes.
     33 //
     34 // This file implements Matcher<const string&>, Matcher<string>, and
     35 // utilities for defining matchers.
     36 
     37 #include "gmock/gmock-matchers.h"
     38 #include "gmock/gmock-generated-matchers.h"
     39 
     40 #include <string.h>
     41 #include <sstream>
     42 #include <string>
     43 
     44 namespace testing {
     45 
     46 // Constructs a matcher that matches a const string& whose value is
     47 // equal to s.
     48 Matcher<const internal::string&>::Matcher(const internal::string& s) {
     49   *this = Eq(s);
     50 }
     51 
     52 // Constructs a matcher that matches a const string& whose value is
     53 // equal to s.
     54 Matcher<const internal::string&>::Matcher(const char* s) {
     55   *this = Eq(internal::string(s));
     56 }
     57 
     58 // Constructs a matcher that matches a string whose value is equal to s.
     59 Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); }
     60 
     61 // Constructs a matcher that matches a string whose value is equal to s.
     62 Matcher<internal::string>::Matcher(const char* s) {
     63   *this = Eq(internal::string(s));
     64 }
     65 
     66 #if GTEST_HAS_STRING_PIECE_
     67 // Constructs a matcher that matches a const StringPiece& whose value is
     68 // equal to s.
     69 Matcher<const StringPiece&>::Matcher(const internal::string& s) {
     70   *this = Eq(s);
     71 }
     72 
     73 // Constructs a matcher that matches a const StringPiece& whose value is
     74 // equal to s.
     75 Matcher<const StringPiece&>::Matcher(const char* s) {
     76   *this = Eq(internal::string(s));
     77 }
     78 
     79 // Constructs a matcher that matches a const StringPiece& whose value is
     80 // equal to s.
     81 Matcher<const StringPiece&>::Matcher(StringPiece s) {
     82   *this = Eq(s.ToString());
     83 }
     84 
     85 // Constructs a matcher that matches a StringPiece whose value is equal to s.
     86 Matcher<StringPiece>::Matcher(const internal::string& s) {
     87   *this = Eq(s);
     88 }
     89 
     90 // Constructs a matcher that matches a StringPiece whose value is equal to s.
     91 Matcher<StringPiece>::Matcher(const char* s) {
     92   *this = Eq(internal::string(s));
     93 }
     94 
     95 // Constructs a matcher that matches a StringPiece whose value is equal to s.
     96 Matcher<StringPiece>::Matcher(StringPiece s) {
     97   *this = Eq(s.ToString());
     98 }
     99 #endif  // GTEST_HAS_STRING_PIECE_
    100 
    101 namespace internal {
    102 
    103 // Joins a vector of strings as if they are fields of a tuple; returns
    104 // the joined string.
    105 GTEST_API_ string JoinAsTuple(const Strings& fields) {
    106   switch (fields.size()) {
    107     case 0:
    108       return "";
    109     case 1:
    110       return fields[0];
    111     default:
    112       string result = "(" + fields[0];
    113       for (size_t i = 1; i < fields.size(); i++) {
    114         result += ", ";
    115         result += fields[i];
    116       }
    117       result += ")";
    118       return result;
    119   }
    120 }
    121 
    122 // Returns the description for a matcher defined using the MATCHER*()
    123 // macro where the user-supplied description string is "", if
    124 // 'negation' is false; otherwise returns the description of the
    125 // negation of the matcher.  'param_values' contains a list of strings
    126 // that are the print-out of the matcher's parameters.
    127 GTEST_API_ string FormatMatcherDescription(bool negation,
    128                                            const char* matcher_name,
    129                                            const Strings& param_values) {
    130   string result = ConvertIdentifierNameToWords(matcher_name);
    131   if (param_values.size() >= 1)
    132     result += " " + JoinAsTuple(param_values);
    133   return negation ? "not (" + result + ")" : result;
    134 }
    135 
    136 // FindMaxBipartiteMatching and its helper class.
    137 //
    138 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
    139 // bipartite matching. Flow is considered to be from left to right.
    140 // There is an implicit source node that is connected to all of the left
    141 // nodes, and an implicit sink node that is connected to all of the
    142 // right nodes. All edges have unit capacity.
    143 //
    144 // Neither the flow graph nor the residual flow graph are represented
    145 // explicitly. Instead, they are implied by the information in 'graph' and
    146 // a vector<int> called 'left_' whose elements are initialized to the
    147 // value kUnused. This represents the initial state of the algorithm,
    148 // where the flow graph is empty, and the residual flow graph has the
    149 // following edges:
    150 //   - An edge from source to each left_ node
    151 //   - An edge from each right_ node to sink
    152 //   - An edge from each left_ node to each right_ node, if the
    153 //     corresponding edge exists in 'graph'.
    154 //
    155 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
    156 // nodes l and r. This induces the following changes:
    157 //   - The edges (source, l), (l, r), and (r, sink) are added to the
    158 //     flow graph.
    159 //   - The same three edges are removed from the residual flow graph.
    160 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
    161 //     to the residual flow graph, which is a directional graph
    162 //     representing unused flow capacity.
    163 //
    164 // When the method augments a flow (moving left_[l] from some r1 to some
    165 // other r2), this can be thought of as "undoing" the above steps with
    166 // respect to r1 and "redoing" them with respect to r2.
    167 //
    168 // It bears repeating that the flow graph and residual flow graph are
    169 // never represented explicitly, but can be derived by looking at the
    170 // information in 'graph' and in left_.
    171 //
    172 // As an optimization, there is a second vector<int> called right_ which
    173 // does not provide any new information. Instead, it enables more
    174 // efficient queries about edges entering or leaving the right-side nodes
    175 // of the flow or residual flow graphs. The following invariants are
    176 // maintained:
    177 //
    178 // left[l] == kUnused or right[left[l]] == l
    179 // right[r] == kUnused or left[right[r]] == r
    180 //
    181 // . [ source ]                                        .
    182 // .   |||                                             .
    183 // .   |||                                             .
    184 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
    185 // .   ||                   |                    |     .
    186 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
    187 // .   |                                        ||     .
    188 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
    189 // .                                           |||     .
    190 // .         elements           matchers       vvv     .
    191 // .                                         [ sink ]  .
    192 //
    193 // See Also:
    194 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
    195 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
    196 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
    197 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
    198 class MaxBipartiteMatchState {
    199  public:
    200   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
    201       : graph_(&graph),
    202         left_(graph_->LhsSize(), kUnused),
    203         right_(graph_->RhsSize(), kUnused) {
    204   }
    205 
    206   // Returns the edges of a maximal match, each in the form {left, right}.
    207   ElementMatcherPairs Compute() {
    208     // 'seen' is used for path finding { 0: unseen, 1: seen }.
    209     ::std::vector<char> seen;
    210     // Searches the residual flow graph for a path from each left node to
    211     // the sink in the residual flow graph, and if one is found, add flow
    212     // to the graph. It's okay to search through the left nodes once. The
    213     // edge from the implicit source node to each previously-visited left
    214     // node will have flow if that left node has any path to the sink
    215     // whatsoever. Subsequent augmentations can only add flow to the
    216     // network, and cannot take away that previous flow unit from the source.
    217     // Since the source-to-left edge can only carry one flow unit (or,
    218     // each element can be matched to only one matcher), there is no need
    219     // to visit the left nodes more than once looking for augmented paths.
    220     // The flow is known to be possible or impossible by looking at the
    221     // node once.
    222     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
    223       // Reset the path-marking vector and try to find a path from
    224       // source to sink starting at the left_[ilhs] node.
    225       GTEST_CHECK_(left_[ilhs] == kUnused)
    226           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
    227       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
    228       seen.assign(graph_->RhsSize(), 0);
    229       TryAugment(ilhs, &seen);
    230     }
    231     ElementMatcherPairs result;
    232     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
    233       size_t irhs = left_[ilhs];
    234       if (irhs == kUnused) continue;
    235       result.push_back(ElementMatcherPair(ilhs, irhs));
    236     }
    237     return result;
    238   }
    239 
    240  private:
    241   static const size_t kUnused = static_cast<size_t>(-1);
    242 
    243   // Perform a depth-first search from left node ilhs to the sink.  If a
    244   // path is found, flow is added to the network by linking the left and
    245   // right vector elements corresponding each segment of the path.
    246   // Returns true if a path to sink was found, which means that a unit of
    247   // flow was added to the network. The 'seen' vector elements correspond
    248   // to right nodes and are marked to eliminate cycles from the search.
    249   //
    250   // Left nodes will only be explored at most once because they
    251   // are accessible from at most one right node in the residual flow
    252   // graph.
    253   //
    254   // Note that left_[ilhs] is the only element of left_ that TryAugment will
    255   // potentially transition from kUnused to another value. Any other
    256   // left_ element holding kUnused before TryAugment will be holding it
    257   // when TryAugment returns.
    258   //
    259   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
    260     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
    261       if ((*seen)[irhs])
    262         continue;
    263       if (!graph_->HasEdge(ilhs, irhs))
    264         continue;
    265       // There's an available edge from ilhs to irhs.
    266       (*seen)[irhs] = 1;
    267       // Next a search is performed to determine whether
    268       // this edge is a dead end or leads to the sink.
    269       //
    270       // right_[irhs] == kUnused means that there is residual flow from
    271       // right node irhs to the sink, so we can use that to finish this
    272       // flow path and return success.
    273       //
    274       // Otherwise there is residual flow to some ilhs. We push flow
    275       // along that path and call ourselves recursively to see if this
    276       // ultimately leads to sink.
    277       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
    278         // Add flow from left_[ilhs] to right_[irhs].
    279         left_[ilhs] = irhs;
    280         right_[irhs] = ilhs;
    281         return true;
    282       }
    283     }
    284     return false;
    285   }
    286 
    287   const MatchMatrix* graph_;  // not owned
    288   // Each element of the left_ vector represents a left hand side node
    289   // (i.e. an element) and each element of right_ is a right hand side
    290   // node (i.e. a matcher). The values in the left_ vector indicate
    291   // outflow from that node to a node on the the right_ side. The values
    292   // in the right_ indicate inflow, and specify which left_ node is
    293   // feeding that right_ node, if any. For example, left_[3] == 1 means
    294   // there's a flow from element #3 to matcher #1. Such a flow would also
    295   // be redundantly represented in the right_ vector as right_[1] == 3.
    296   // Elements of left_ and right_ are either kUnused or mutually
    297   // referent. Mutually referent means that left_[right_[i]] = i and
    298   // right_[left_[i]] = i.
    299   ::std::vector<size_t> left_;
    300   ::std::vector<size_t> right_;
    301 
    302   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
    303 };
    304 
    305 const size_t MaxBipartiteMatchState::kUnused;
    306 
    307 GTEST_API_ ElementMatcherPairs
    308 FindMaxBipartiteMatching(const MatchMatrix& g) {
    309   return MaxBipartiteMatchState(g).Compute();
    310 }
    311 
    312 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
    313                                      ::std::ostream* stream) {
    314   typedef ElementMatcherPairs::const_iterator Iter;
    315   ::std::ostream& os = *stream;
    316   os << "{";
    317   const char *sep = "";
    318   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
    319     os << sep << "\n  ("
    320        << "element #" << it->first << ", "
    321        << "matcher #" << it->second << ")";
    322     sep = ",";
    323   }
    324   os << "\n}";
    325 }
    326 
    327 // Tries to find a pairing, and explains the result.
    328 GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
    329                             MatchResultListener* listener) {
    330   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
    331 
    332   size_t max_flow = matches.size();
    333   bool result = (max_flow == matrix.RhsSize());
    334 
    335   if (!result) {
    336     if (listener->IsInterested()) {
    337       *listener << "where no permutation of the elements can "
    338                    "satisfy all matchers, and the closest match is "
    339                 << max_flow << " of " << matrix.RhsSize()
    340                 << " matchers with the pairings:\n";
    341       LogElementMatcherPairVec(matches, listener->stream());
    342     }
    343     return false;
    344   }
    345 
    346   if (matches.size() > 1) {
    347     if (listener->IsInterested()) {
    348       const char *sep = "where:\n";
    349       for (size_t mi = 0; mi < matches.size(); ++mi) {
    350         *listener << sep << " - element #" << matches[mi].first
    351                   << " is matched by matcher #" << matches[mi].second;
    352         sep = ",\n";
    353       }
    354     }
    355   }
    356   return true;
    357 }
    358 
    359 bool MatchMatrix::NextGraph() {
    360   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    361     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
    362       char& b = matched_[SpaceIndex(ilhs, irhs)];
    363       if (!b) {
    364         b = 1;
    365         return true;
    366       }
    367       b = 0;
    368     }
    369   }
    370   return false;
    371 }
    372 
    373 void MatchMatrix::Randomize() {
    374   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    375     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
    376       char& b = matched_[SpaceIndex(ilhs, irhs)];
    377       b = static_cast<char>(rand() & 1);  // NOLINT
    378     }
    379   }
    380 }
    381 
    382 string MatchMatrix::DebugString() const {
    383   ::std::stringstream ss;
    384   const char *sep = "";
    385   for (size_t i = 0; i < LhsSize(); ++i) {
    386     ss << sep;
    387     for (size_t j = 0; j < RhsSize(); ++j) {
    388       ss << HasEdge(i, j);
    389     }
    390     sep = ";";
    391   }
    392   return ss.str();
    393 }
    394 
    395 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
    396     ::std::ostream* os) const {
    397   if (matcher_describers_.empty()) {
    398     *os << "is empty";
    399     return;
    400   }
    401   if (matcher_describers_.size() == 1) {
    402     *os << "has " << Elements(1) << " and that element ";
    403     matcher_describers_[0]->DescribeTo(os);
    404     return;
    405   }
    406   *os << "has " << Elements(matcher_describers_.size())
    407       << " and there exists some permutation of elements such that:\n";
    408   const char* sep = "";
    409   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    410     *os << sep << " - element #" << i << " ";
    411     matcher_describers_[i]->DescribeTo(os);
    412     sep = ", and\n";
    413   }
    414 }
    415 
    416 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
    417     ::std::ostream* os) const {
    418   if (matcher_describers_.empty()) {
    419     *os << "isn't empty";
    420     return;
    421   }
    422   if (matcher_describers_.size() == 1) {
    423     *os << "doesn't have " << Elements(1)
    424         << ", or has " << Elements(1) << " that ";
    425     matcher_describers_[0]->DescribeNegationTo(os);
    426     return;
    427   }
    428   *os << "doesn't have " << Elements(matcher_describers_.size())
    429       << ", or there exists no permutation of elements such that:\n";
    430   const char* sep = "";
    431   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    432     *os << sep << " - element #" << i << " ";
    433     matcher_describers_[i]->DescribeTo(os);
    434     sep = ", and\n";
    435   }
    436 }
    437 
    438 // Checks that all matchers match at least one element, and that all
    439 // elements match at least one matcher. This enables faster matching
    440 // and better error reporting.
    441 // Returns false, writing an explanation to 'listener', if and only
    442 // if the success criteria are not met.
    443 bool UnorderedElementsAreMatcherImplBase::
    444 VerifyAllElementsAndMatchersAreMatched(
    445     const ::std::vector<string>& element_printouts,
    446     const MatchMatrix& matrix,
    447     MatchResultListener* listener) const {
    448   bool result = true;
    449   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
    450   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
    451 
    452   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
    453     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
    454       char matched = matrix.HasEdge(ilhs, irhs);
    455       element_matched[ilhs] |= matched;
    456       matcher_matched[irhs] |= matched;
    457     }
    458   }
    459 
    460   {
    461     const char* sep =
    462         "where the following matchers don't match any elements:\n";
    463     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
    464       if (matcher_matched[mi])
    465         continue;
    466       result = false;
    467       if (listener->IsInterested()) {
    468         *listener << sep << "matcher #" << mi << ": ";
    469         matcher_describers_[mi]->DescribeTo(listener->stream());
    470         sep = ",\n";
    471       }
    472     }
    473   }
    474 
    475   {
    476     const char* sep =
    477         "where the following elements don't match any matchers:\n";
    478     const char* outer_sep = "";
    479     if (!result) {
    480       outer_sep = "\nand ";
    481     }
    482     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
    483       if (element_matched[ei])
    484         continue;
    485       result = false;
    486       if (listener->IsInterested()) {
    487         *listener << outer_sep << sep << "element #" << ei << ": "
    488                   << element_printouts[ei];
    489         sep = ",\n";
    490         outer_sep = "";
    491       }
    492     }
    493   }
    494   return result;
    495 }
    496 
    497 }  // namespace internal
    498 }  // namespace testing
    499