Home | History | Annotate | Download | only in collect
      1 /*
      2  * Copyright (C) 2011 The Guava Authors
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
      5  * in compliance with the License. You may obtain a copy of the License at
      6  *
      7  * http://www.apache.org/licenses/LICENSE-2.0
      8  *
      9  * Unless required by applicable law or agreed to in writing, software distributed under the License
     10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
     11  * or implied. See the License for the specific language governing permissions and limitations under
     12  * the License.
     13  */
     14 
     15 package com.google.common.collect;
     16 
     17 import com.google.common.annotations.Beta;
     18 import com.google.common.base.Preconditions;
     19 
     20 import java.util.ArrayDeque;
     21 import java.util.Collection;
     22 import java.util.Deque;
     23 import java.util.PriorityQueue;
     24 import java.util.Queue;
     25 import java.util.concurrent.ArrayBlockingQueue;
     26 import java.util.concurrent.BlockingQueue;
     27 import java.util.concurrent.ConcurrentLinkedQueue;
     28 import java.util.concurrent.LinkedBlockingDeque;
     29 import java.util.concurrent.LinkedBlockingQueue;
     30 import java.util.concurrent.PriorityBlockingQueue;
     31 import java.util.concurrent.SynchronousQueue;
     32 import java.util.concurrent.TimeUnit;
     33 
     34 /**
     35  * Static utility methods pertaining to {@link Queue} and {@link Deque} instances.
     36  * Also see this class's counterparts {@link Lists}, {@link Sets}, and {@link Maps}.
     37  *
     38  * @author Kurt Alfred Kluever
     39  * @since 11.0
     40  */
     41 public final class Queues {
     42   private Queues() {}
     43 
     44   // ArrayBlockingQueue
     45 
     46   /**
     47    * Creates an empty {@code ArrayBlockingQueue} with the given (fixed) capacity
     48    * and nonfair access policy.
     49    */
     50   public static <E> ArrayBlockingQueue<E> newArrayBlockingQueue(int capacity) {
     51     return new ArrayBlockingQueue<E>(capacity);
     52   }
     53 
     54   // ArrayDeque
     55 
     56   /**
     57    * Creates an empty {@code ArrayDeque}.
     58    *
     59    * @since 12.0
     60    */
     61   public static <E> ArrayDeque<E> newArrayDeque() {
     62     return new ArrayDeque<E>();
     63   }
     64 
     65   /**
     66    * Creates an {@code ArrayDeque} containing the elements of the specified iterable,
     67    * in the order they are returned by the iterable's iterator.
     68    *
     69    * @since 12.0
     70    */
     71   public static <E> ArrayDeque<E> newArrayDeque(Iterable<? extends E> elements) {
     72     if (elements instanceof Collection) {
     73       return new ArrayDeque<E>(Collections2.cast(elements));
     74     }
     75     ArrayDeque<E> deque = new ArrayDeque<E>();
     76     Iterables.addAll(deque, elements);
     77     return deque;
     78   }
     79 
     80   // ConcurrentLinkedQueue
     81 
     82   /**
     83    * Creates an empty {@code ConcurrentLinkedQueue}.
     84    */
     85   public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue() {
     86     return new ConcurrentLinkedQueue<E>();
     87   }
     88 
     89   /**
     90    * Creates a {@code ConcurrentLinkedQueue} containing the elements of the specified iterable,
     91    * in the order they are returned by the iterable's iterator.
     92    */
     93   public static <E> ConcurrentLinkedQueue<E> newConcurrentLinkedQueue(
     94       Iterable<? extends E> elements) {
     95     if (elements instanceof Collection) {
     96       return new ConcurrentLinkedQueue<E>(Collections2.cast(elements));
     97     }
     98     ConcurrentLinkedQueue<E> queue = new ConcurrentLinkedQueue<E>();
     99     Iterables.addAll(queue, elements);
    100     return queue;
    101   }
    102 
    103   // LinkedBlockingDeque
    104 
    105   /**
    106    * Creates an empty {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE}.
    107    *
    108    * @since 12.0
    109    */
    110   public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque() {
    111     return new LinkedBlockingDeque<E>();
    112   }
    113 
    114   /**
    115    * Creates an empty {@code LinkedBlockingDeque} with the given (fixed) capacity.
    116    *
    117    * @throws IllegalArgumentException if {@code capacity} is less than 1
    118    * @since 12.0
    119    */
    120   public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque(int capacity) {
    121     return new LinkedBlockingDeque<E>(capacity);
    122   }
    123 
    124   /**
    125    * Creates a {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE},
    126    * containing the elements of the specified iterable,
    127    * in the order they are returned by the iterable's iterator.
    128    *
    129    * @since 12.0
    130    */
    131   public static <E> LinkedBlockingDeque<E> newLinkedBlockingDeque(Iterable<? extends E> elements) {
    132     if (elements instanceof Collection) {
    133       return new LinkedBlockingDeque<E>(Collections2.cast(elements));
    134     }
    135     LinkedBlockingDeque<E> deque = new LinkedBlockingDeque<E>();
    136     Iterables.addAll(deque, elements);
    137     return deque;
    138   }
    139 
    140   // LinkedBlockingQueue
    141 
    142   /**
    143    * Creates an empty {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE}.
    144    */
    145   public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue() {
    146     return new LinkedBlockingQueue<E>();
    147   }
    148 
    149   /**
    150    * Creates an empty {@code LinkedBlockingQueue} with the given (fixed) capacity.
    151    *
    152    * @throws IllegalArgumentException if {@code capacity} is less than 1
    153    */
    154   public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(int capacity) {
    155     return new LinkedBlockingQueue<E>(capacity);
    156   }
    157 
    158   /**
    159    * Creates a {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE},
    160    * containing the elements of the specified iterable,
    161    * in the order they are returned by the iterable's iterator.
    162    *
    163    * @param elements the elements that the queue should contain, in order
    164    * @return a new {@code LinkedBlockingQueue} containing those elements
    165    */
    166   public static <E> LinkedBlockingQueue<E> newLinkedBlockingQueue(Iterable<? extends E> elements) {
    167     if (elements instanceof Collection) {
    168       return new LinkedBlockingQueue<E>(Collections2.cast(elements));
    169     }
    170     LinkedBlockingQueue<E> queue = new LinkedBlockingQueue<E>();
    171     Iterables.addAll(queue, elements);
    172     return queue;
    173   }
    174 
    175   // LinkedList: see {@link com.google.common.collect.Lists}
    176 
    177   // PriorityBlockingQueue
    178 
    179   /**
    180    * Creates an empty {@code PriorityBlockingQueue} with the ordering given by its
    181    * elements' natural ordering.
    182    *
    183    * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
    184    */
    185   public static <E extends Comparable> PriorityBlockingQueue<E> newPriorityBlockingQueue() {
    186     return new PriorityBlockingQueue<E>();
    187   }
    188 
    189   /**
    190    * Creates a {@code PriorityBlockingQueue} containing the given elements.
    191    *
    192    * <b>Note:</b> If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue},
    193    * this priority queue will be ordered according to the same ordering.
    194    *
    195    * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
    196    */
    197   public static <E extends Comparable> PriorityBlockingQueue<E> newPriorityBlockingQueue(
    198       Iterable<? extends E> elements) {
    199     if (elements instanceof Collection) {
    200       return new PriorityBlockingQueue<E>(Collections2.cast(elements));
    201     }
    202     PriorityBlockingQueue<E> queue = new PriorityBlockingQueue<E>();
    203     Iterables.addAll(queue, elements);
    204     return queue;
    205   }
    206 
    207   // PriorityQueue
    208 
    209   /**
    210    * Creates an empty {@code PriorityQueue} with the ordering given by its
    211    * elements' natural ordering.
    212    *
    213    * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
    214    */
    215   public static <E extends Comparable> PriorityQueue<E> newPriorityQueue() {
    216     return new PriorityQueue<E>();
    217   }
    218 
    219   /**
    220    * Creates a {@code PriorityQueue} containing the given elements.
    221    *
    222    * <b>Note:</b> If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue},
    223    * this priority queue will be ordered according to the same ordering.
    224    *
    225    * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
    226    */
    227   public static <E extends Comparable> PriorityQueue<E> newPriorityQueue(
    228       Iterable<? extends E> elements) {
    229     if (elements instanceof Collection) {
    230       return new PriorityQueue<E>(Collections2.cast(elements));
    231     }
    232     PriorityQueue<E> queue = new PriorityQueue<E>();
    233     Iterables.addAll(queue, elements);
    234     return queue;
    235   }
    236 
    237   // SynchronousQueue
    238 
    239   /**
    240    * Creates an empty {@code SynchronousQueue} with nonfair access policy.
    241    */
    242   public static <E> SynchronousQueue<E> newSynchronousQueue() {
    243     return new SynchronousQueue<E>();
    244   }
    245 
    246   /**
    247    * Drains the queue as {@link BlockingQueue#drainTo(Collection, int)}, but if the requested
    248    * {@code numElements} elements are not available, it will wait for them up to the specified
    249    * timeout.
    250    *
    251    * @param q the blocking queue to be drained
    252    * @param buffer where to add the transferred elements
    253    * @param numElements the number of elements to be waited for
    254    * @param timeout how long to wait before giving up, in units of {@code unit}
    255    * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter
    256    * @return the number of elements transferred
    257    * @throws InterruptedException if interrupted while waiting
    258    */
    259   @Beta
    260   public static <E> int drain(BlockingQueue<E> q, Collection<? super E> buffer, int numElements,
    261       long timeout, TimeUnit unit) throws InterruptedException {
    262     Preconditions.checkNotNull(buffer);
    263     /*
    264      * This code performs one System.nanoTime() more than necessary, and in return, the time to
    265      * execute Queue#drainTo is not added *on top* of waiting for the timeout (which could make
    266      * the timeout arbitrarily inaccurate, given a queue that is slow to drain).
    267      */
    268     long deadline = System.nanoTime() + unit.toNanos(timeout);
    269     int added = 0;
    270     while (added < numElements) {
    271       // we could rely solely on #poll, but #drainTo might be more efficient when there are multiple
    272       // elements already available (e.g. LinkedBlockingQueue#drainTo locks only once)
    273       added += q.drainTo(buffer, numElements - added);
    274       if (added < numElements) { // not enough elements immediately available; will have to poll
    275         E e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS);
    276         if (e == null) {
    277           break; // we already waited enough, and there are no more elements in sight
    278         }
    279         buffer.add(e);
    280         added++;
    281       }
    282     }
    283     return added;
    284   }
    285 
    286   /**
    287    * Drains the queue as {@linkplain #drain(BlockingQueue, Collection, int, long, TimeUnit)},
    288    * but with a different behavior in case it is interrupted while waiting. In that case, the
    289    * operation will continue as usual, and in the end the thread's interruption status will be set
    290    * (no {@code InterruptedException} is thrown).
    291    *
    292    * @param q the blocking queue to be drained
    293    * @param buffer where to add the transferred elements
    294    * @param numElements the number of elements to be waited for
    295    * @param timeout how long to wait before giving up, in units of {@code unit}
    296    * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter
    297    * @return the number of elements transferred
    298    */
    299   @Beta
    300   public static <E> int drainUninterruptibly(BlockingQueue<E> q, Collection<? super E> buffer,
    301       int numElements, long timeout, TimeUnit unit) {
    302     Preconditions.checkNotNull(buffer);
    303     long deadline = System.nanoTime() + unit.toNanos(timeout);
    304     int added = 0;
    305     boolean interrupted = false;
    306     try {
    307       while (added < numElements) {
    308         // we could rely solely on #poll, but #drainTo might be more efficient when there are
    309         // multiple elements already available (e.g. LinkedBlockingQueue#drainTo locks only once)
    310         added += q.drainTo(buffer, numElements - added);
    311         if (added < numElements) { // not enough elements immediately available; will have to poll
    312           E e; // written exactly once, by a successful (uninterrupted) invocation of #poll
    313           while (true) {
    314             try {
    315               e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS);
    316               break;
    317             } catch (InterruptedException ex) {
    318               interrupted = true; // note interruption and retry
    319             }
    320           }
    321           if (e == null) {
    322             break; // we already waited enough, and there are no more elements in sight
    323           }
    324           buffer.add(e);
    325           added++;
    326         }
    327       }
    328     } finally {
    329       if (interrupted) {
    330         Thread.currentThread().interrupt();
    331       }
    332     }
    333     return added;
    334   }
    335 
    336   /**
    337    * Returns a synchronized (thread-safe) queue backed by the specified queue. In order to
    338    * guarantee serial access, it is critical that <b>all</b> access to the backing queue is
    339    * accomplished through the returned queue.
    340    *
    341    * <p>It is imperative that the user manually synchronize on the returned queue when accessing
    342    * the queue's iterator: <pre>   {@code
    343    *
    344    *   Queue<E> queue = Queues.synchronizedQueue(MinMaxPriorityQueue.<E>create());
    345    *   ...
    346    *   queue.add(element);  // Needn't be in synchronized block
    347    *   ...
    348    *   synchronized (queue) {  // Must synchronize on queue!
    349    *     Iterator<E> i = queue.iterator(); // Must be in synchronized block
    350    *     while (i.hasNext()) {
    351    *       foo(i.next());
    352    *     }
    353    *   }}</pre>
    354    *
    355    * <p>Failure to follow this advice may result in non-deterministic behavior.
    356    *
    357    * <p>The returned queue will be serializable if the specified queue is serializable.
    358    *
    359    * @param queue the queue to be wrapped in a synchronized view
    360    * @return a synchronized view of the specified queue
    361    * @since 14.0
    362    */
    363   public static <E> Queue<E> synchronizedQueue(Queue<E> queue) {
    364     return Synchronized.queue(queue, null);
    365   }
    366 
    367   /**
    368    * Returns a synchronized (thread-safe) deque backed by the specified deque. In order to
    369    * guarantee serial access, it is critical that <b>all</b> access to the backing deque is
    370    * accomplished through the returned deque.
    371    *
    372    * <p>It is imperative that the user manually synchronize on the returned deque when accessing
    373    * any of the deque's iterators: <pre>   {@code
    374    *
    375    *   Deque<E> deque = Queues.synchronizedDeque(Queues.<E>newArrayDeque());
    376    *   ...
    377    *   deque.add(element);  // Needn't be in synchronized block
    378    *   ...
    379    *   synchronized (deque) {  // Must synchronize on deque!
    380    *     Iterator<E> i = deque.iterator(); // Must be in synchronized block
    381    *     while (i.hasNext()) {
    382    *       foo(i.next());
    383    *     }
    384    *   }}</pre>
    385    *
    386    * <p>Failure to follow this advice may result in non-deterministic behavior.
    387    *
    388    * <p>The returned deque will be serializable if the specified deque is serializable.
    389    *
    390    * @param deque the deque to be wrapped in a synchronized view
    391    * @return a synchronized view of the specified deque
    392    * @since 15.0
    393    */
    394   public static <E> Deque<E> synchronizedDeque(Deque<E> deque) {
    395     return Synchronized.deque(deque, null);
    396   }
    397 }
    398