Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This defines a set of argument wrappers and related factory methods that
      6 // can be used specify the refcounting and reference semantics of arguments
      7 // that are bound by the Bind() function in base/bind.h.
      8 //
      9 // It also defines a set of simple functions and utilities that people want
     10 // when using Callback<> and Bind().
     11 //
     12 //
     13 // ARGUMENT BINDING WRAPPERS
     14 //
     15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
     16 // base::ConstRef(), and base::IgnoreResult().
     17 //
     18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
     19 // refcounting on arguments that are refcounted objects.
     20 //
     21 // Owned() transfers ownership of an object to the Callback resulting from
     22 // bind; the object will be deleted when the Callback is deleted.
     23 //
     24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
     25 // through a Callback. Logically, this signifies a destructive transfer of
     26 // the state of the argument into the target function.  Invoking
     27 // Callback::Run() twice on a Callback that was created with a Passed()
     28 // argument will CHECK() because the first invocation would have already
     29 // transferred ownership to the target function.
     30 //
     31 // RetainedRef() accepts a ref counted object and retains a reference to it.
     32 // When the callback is called, the object is passed as a raw pointer.
     33 //
     34 // ConstRef() allows binding a constant reference to an argument rather
     35 // than a copy.
     36 //
     37 // IgnoreResult() is used to adapt a function or Callback with a return type to
     38 // one with a void return. This is most useful if you have a function with,
     39 // say, a pesky ignorable bool return that you want to use with PostTask or
     40 // something else that expect a Callback with a void return.
     41 //
     42 // EXAMPLE OF Unretained():
     43 //
     44 //   class Foo {
     45 //    public:
     46 //     void func() { cout << "Foo:f" << endl; }
     47 //   };
     48 //
     49 //   // In some function somewhere.
     50 //   Foo foo;
     51 //   Closure foo_callback =
     52 //       Bind(&Foo::func, Unretained(&foo));
     53 //   foo_callback.Run();  // Prints "Foo:f".
     54 //
     55 // Without the Unretained() wrapper on |&foo|, the above call would fail
     56 // to compile because Foo does not support the AddRef() and Release() methods.
     57 //
     58 //
     59 // EXAMPLE OF Owned():
     60 //
     61 //   void foo(int* arg) { cout << *arg << endl }
     62 //
     63 //   int* pn = new int(1);
     64 //   Closure foo_callback = Bind(&foo, Owned(pn));
     65 //
     66 //   foo_callback.Run();  // Prints "1"
     67 //   foo_callback.Run();  // Prints "1"
     68 //   *n = 2;
     69 //   foo_callback.Run();  // Prints "2"
     70 //
     71 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
     72 //                          // |foo_callback| goes out of scope.
     73 //
     74 // Without Owned(), someone would have to know to delete |pn| when the last
     75 // reference to the Callback is deleted.
     76 //
     77 // EXAMPLE OF RetainedRef():
     78 //
     79 //    void foo(RefCountedBytes* bytes) {}
     80 //
     81 //    scoped_refptr<RefCountedBytes> bytes = ...;
     82 //    Closure callback = Bind(&foo, base::RetainedRef(bytes));
     83 //    callback.Run();
     84 //
     85 // Without RetainedRef, the scoped_refptr would try to implicitly convert to
     86 // a raw pointer and fail compilation:
     87 //
     88 //    Closure callback = Bind(&foo, bytes); // ERROR!
     89 //
     90 //
     91 // EXAMPLE OF ConstRef():
     92 //
     93 //   void foo(int arg) { cout << arg << endl }
     94 //
     95 //   int n = 1;
     96 //   Closure no_ref = Bind(&foo, n);
     97 //   Closure has_ref = Bind(&foo, ConstRef(n));
     98 //
     99 //   no_ref.Run();  // Prints "1"
    100 //   has_ref.Run();  // Prints "1"
    101 //
    102 //   n = 2;
    103 //   no_ref.Run();  // Prints "1"
    104 //   has_ref.Run();  // Prints "2"
    105 //
    106 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
    107 // its bound callbacks.
    108 //
    109 //
    110 // EXAMPLE OF IgnoreResult():
    111 //
    112 //   int DoSomething(int arg) { cout << arg << endl; }
    113 //
    114 //   // Assign to a Callback with a void return type.
    115 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
    116 //   cb->Run(1);  // Prints "1".
    117 //
    118 //   // Prints "1" on |ml|.
    119 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
    120 //
    121 //
    122 // EXAMPLE OF Passed():
    123 //
    124 //   void TakesOwnership(std::unique_ptr<Foo> arg) { }
    125 //   std::unique_ptr<Foo> CreateFoo() { return std::unique_ptr<Foo>(new Foo());
    126 //   }
    127 //
    128 //   std::unique_ptr<Foo> f(new Foo());
    129 //
    130 //   // |cb| is given ownership of Foo(). |f| is now NULL.
    131 //   // You can use std::move(f) in place of &f, but it's more verbose.
    132 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
    133 //
    134 //   // Run was never called so |cb| still owns Foo() and deletes
    135 //   // it on Reset().
    136 //   cb.Reset();
    137 //
    138 //   // |cb| is given a new Foo created by CreateFoo().
    139 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
    140 //
    141 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
    142 //   // no longer owns Foo() and, if reset, would not delete Foo().
    143 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
    144 //   cb.Run();  // This CHECK()s since Foo() already been used once.
    145 //
    146 // Passed() is particularly useful with PostTask() when you are transferring
    147 // ownership of an argument into a task, but don't necessarily know if the
    148 // task will always be executed. This can happen if the task is cancellable
    149 // or if it is posted to a TaskRunner.
    150 //
    151 //
    152 // SIMPLE FUNCTIONS AND UTILITIES.
    153 //
    154 //   DoNothing() - Useful for creating a Closure that does nothing when called.
    155 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
    156 //                        pointer when invoked. Only use this when necessary.
    157 //                        In most cases MessageLoop::DeleteSoon() is a better
    158 //                        fit.
    159 
    160 #ifndef BASE_BIND_HELPERS_H_
    161 #define BASE_BIND_HELPERS_H_
    162 
    163 #include <stddef.h>
    164 
    165 #include <type_traits>
    166 #include <utility>
    167 
    168 #include "base/callback.h"
    169 #include "base/memory/weak_ptr.h"
    170 #include "build/build_config.h"
    171 
    172 namespace base {
    173 
    174 template <typename T>
    175 struct IsWeakReceiver;
    176 
    177 namespace internal {
    178 
    179 template <typename T>
    180 class UnretainedWrapper {
    181  public:
    182   explicit UnretainedWrapper(T* o) : ptr_(o) {}
    183   T* get() const { return ptr_; }
    184  private:
    185   T* ptr_;
    186 };
    187 
    188 template <typename T>
    189 class ConstRefWrapper {
    190  public:
    191   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
    192   const T& get() const { return *ptr_; }
    193  private:
    194   const T* ptr_;
    195 };
    196 
    197 template <typename T>
    198 class RetainedRefWrapper {
    199  public:
    200   explicit RetainedRefWrapper(T* o) : ptr_(o) {}
    201   explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
    202   T* get() const { return ptr_.get(); }
    203  private:
    204   scoped_refptr<T> ptr_;
    205 };
    206 
    207 template <typename T>
    208 struct IgnoreResultHelper {
    209   explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
    210   explicit operator bool() const { return !!functor_; }
    211 
    212   T functor_;
    213 };
    214 
    215 // An alternate implementation is to avoid the destructive copy, and instead
    216 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
    217 // a class that is essentially a std::unique_ptr<>.
    218 //
    219 // The current implementation has the benefit though of leaving ParamTraits<>
    220 // fully in callback_internal.h as well as avoiding type conversions during
    221 // storage.
    222 template <typename T>
    223 class OwnedWrapper {
    224  public:
    225   explicit OwnedWrapper(T* o) : ptr_(o) {}
    226   ~OwnedWrapper() { delete ptr_; }
    227   T* get() const { return ptr_; }
    228   OwnedWrapper(OwnedWrapper&& other) {
    229     ptr_ = other.ptr_;
    230     other.ptr_ = NULL;
    231   }
    232 
    233  private:
    234   mutable T* ptr_;
    235 };
    236 
    237 // PassedWrapper is a copyable adapter for a scoper that ignores const.
    238 //
    239 // It is needed to get around the fact that Bind() takes a const reference to
    240 // all its arguments.  Because Bind() takes a const reference to avoid
    241 // unnecessary copies, it is incompatible with movable-but-not-copyable
    242 // types; doing a destructive "move" of the type into Bind() would violate
    243 // the const correctness.
    244 //
    245 // This conundrum cannot be solved without either C++11 rvalue references or
    246 // a O(2^n) blowup of Bind() templates to handle each combination of regular
    247 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
    248 // that is copyable to transmit the correct type information down into
    249 // BindState<>. Ignoring const in this type makes sense because it is only
    250 // created when we are explicitly trying to do a destructive move.
    251 //
    252 // Two notes:
    253 //  1) PassedWrapper supports any type that has a move constructor, however
    254 //     the type will need to be specifically whitelisted in order for it to be
    255 //     bound to a Callback. We guard this explicitly at the call of Passed()
    256 //     to make for clear errors. Things not given to Passed() will be forwarded
    257 //     and stored by value which will not work for general move-only types.
    258 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
    259 //     scoper to a Callback and allow the Callback to execute once.
    260 template <typename T>
    261 class PassedWrapper {
    262  public:
    263   explicit PassedWrapper(T&& scoper)
    264       : is_valid_(true), scoper_(std::move(scoper)) {}
    265   PassedWrapper(PassedWrapper&& other)
    266       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    267   T Take() const {
    268     CHECK(is_valid_);
    269     is_valid_ = false;
    270     return std::move(scoper_);
    271   }
    272 
    273  private:
    274   mutable bool is_valid_;
    275   mutable T scoper_;
    276 };
    277 
    278 // Unwrap the stored parameters for the wrappers above.
    279 template <typename T>
    280 T&& Unwrap(T&& o) {
    281   return std::forward<T>(o);
    282 }
    283 
    284 template <typename T>
    285 T* Unwrap(const UnretainedWrapper<T>& unretained) {
    286   return unretained.get();
    287 }
    288 
    289 template <typename T>
    290 const T& Unwrap(const ConstRefWrapper<T>& const_ref) {
    291   return const_ref.get();
    292 }
    293 
    294 template <typename T>
    295 T* Unwrap(const RetainedRefWrapper<T>& o) {
    296   return o.get();
    297 }
    298 
    299 template <typename T>
    300 T* Unwrap(const OwnedWrapper<T>& o) {
    301   return o.get();
    302 }
    303 
    304 template <typename T>
    305 T Unwrap(const PassedWrapper<T>& o) {
    306   return o.Take();
    307 }
    308 
    309 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
    310 // method.  It is used internally by Bind() to select the correct
    311 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
    312 // the target object is invalidated.
    313 //
    314 // The first argument should be the type of the object that will be received by
    315 // the method.
    316 template <bool is_method, typename... Args>
    317 struct IsWeakMethod : std::false_type {};
    318 
    319 template <typename T, typename... Args>
    320 struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
    321 
    322 // Packs a list of types to hold them in a single type.
    323 template <typename... Types>
    324 struct TypeList {};
    325 
    326 // Used for DropTypeListItem implementation.
    327 template <size_t n, typename List>
    328 struct DropTypeListItemImpl;
    329 
    330 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    331 template <size_t n, typename T, typename... List>
    332 struct DropTypeListItemImpl<n, TypeList<T, List...>>
    333     : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
    334 
    335 template <typename T, typename... List>
    336 struct DropTypeListItemImpl<0, TypeList<T, List...>> {
    337   using Type = TypeList<T, List...>;
    338 };
    339 
    340 template <>
    341 struct DropTypeListItemImpl<0, TypeList<>> {
    342   using Type = TypeList<>;
    343 };
    344 
    345 // A type-level function that drops |n| list item from given TypeList.
    346 template <size_t n, typename List>
    347 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
    348 
    349 // Used for TakeTypeListItem implementation.
    350 template <size_t n, typename List, typename... Accum>
    351 struct TakeTypeListItemImpl;
    352 
    353 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    354 template <size_t n, typename T, typename... List, typename... Accum>
    355 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
    356     : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
    357 
    358 template <typename T, typename... List, typename... Accum>
    359 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
    360   using Type = TypeList<Accum...>;
    361 };
    362 
    363 template <typename... Accum>
    364 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
    365   using Type = TypeList<Accum...>;
    366 };
    367 
    368 // A type-level function that takes first |n| list item from given TypeList.
    369 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
    370 // TypeList<A, B, C>.
    371 template <size_t n, typename List>
    372 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
    373 
    374 // Used for ConcatTypeLists implementation.
    375 template <typename List1, typename List2>
    376 struct ConcatTypeListsImpl;
    377 
    378 template <typename... Types1, typename... Types2>
    379 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
    380   using Type = TypeList<Types1..., Types2...>;
    381 };
    382 
    383 // A type-level function that concats two TypeLists.
    384 template <typename List1, typename List2>
    385 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
    386 
    387 // Used for MakeFunctionType implementation.
    388 template <typename R, typename ArgList>
    389 struct MakeFunctionTypeImpl;
    390 
    391 template <typename R, typename... Args>
    392 struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
    393   // MSVC 2013 doesn't support Type Alias of function types.
    394   // Revisit this after we update it to newer version.
    395   typedef R Type(Args...);
    396 };
    397 
    398 // A type-level function that constructs a function type that has |R| as its
    399 // return type and has TypeLists items as its arguments.
    400 template <typename R, typename ArgList>
    401 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
    402 
    403 // Used for ExtractArgs and ExtractReturnType.
    404 template <typename Signature>
    405 struct ExtractArgsImpl;
    406 
    407 template <typename R, typename... Args>
    408 struct ExtractArgsImpl<R(Args...)> {
    409   using ReturnType = R;
    410   using ArgsList = TypeList<Args...>;
    411 };
    412 
    413 // A type-level function that extracts function arguments into a TypeList.
    414 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
    415 template <typename Signature>
    416 using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
    417 
    418 // A type-level function that extracts the return type of a function.
    419 // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
    420 template <typename Signature>
    421 using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
    422 
    423 }  // namespace internal
    424 
    425 template <typename T>
    426 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
    427   return internal::UnretainedWrapper<T>(o);
    428 }
    429 
    430 template <typename T>
    431 static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
    432   return internal::RetainedRefWrapper<T>(o);
    433 }
    434 
    435 template <typename T>
    436 static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
    437   return internal::RetainedRefWrapper<T>(std::move(o));
    438 }
    439 
    440 template <typename T>
    441 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
    442   return internal::ConstRefWrapper<T>(o);
    443 }
    444 
    445 template <typename T>
    446 static inline internal::OwnedWrapper<T> Owned(T* o) {
    447   return internal::OwnedWrapper<T>(o);
    448 }
    449 
    450 // We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
    451 // is best suited for use with the return value of a function or other temporary
    452 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar
    453 // to avoid having to write Passed(std::move(scoper)).
    454 //
    455 // Both versions of Passed() prevent T from being an lvalue reference. The first
    456 // via use of enable_if, and the second takes a T* which will not bind to T&.
    457 template <typename T,
    458           typename std::enable_if<!std::is_lvalue_reference<T>::value>::type* =
    459               nullptr>
    460 static inline internal::PassedWrapper<T> Passed(T&& scoper) {
    461   return internal::PassedWrapper<T>(std::move(scoper));
    462 }
    463 template <typename T>
    464 static inline internal::PassedWrapper<T> Passed(T* scoper) {
    465   return internal::PassedWrapper<T>(std::move(*scoper));
    466 }
    467 
    468 template <typename T>
    469 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
    470   return internal::IgnoreResultHelper<T>(std::move(data));
    471 }
    472 
    473 BASE_EXPORT void DoNothing();
    474 
    475 template<typename T>
    476 void DeletePointer(T* obj) {
    477   delete obj;
    478 }
    479 
    480 // An injection point to control |this| pointer behavior on a method invocation.
    481 // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
    482 // method, base::Bind cancels the method invocation if the receiver is tested as
    483 // false.
    484 // E.g. Foo::bar() is not called:
    485 //   struct Foo : base::SupportsWeakPtr<Foo> {
    486 //     void bar() {}
    487 //   };
    488 //
    489 //   WeakPtr<Foo> oo = nullptr;
    490 //   base::Bind(&Foo::bar, oo).Run();
    491 template <typename T>
    492 struct IsWeakReceiver : std::false_type {};
    493 
    494 template <typename T>
    495 struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {};
    496 
    497 template <typename T>
    498 struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
    499 
    500 }  // namespace base
    501 
    502 #endif  // BASE_BIND_HELPERS_H_
    503