Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_CALLBACK_H_
      6 #define BASE_CALLBACK_H_
      7 
      8 #include "base/callback_forward.h"
      9 #include "base/callback_internal.h"
     10 
     11 // NOTE: Header files that do not require the full definition of Callback or
     12 // Closure should #include "base/callback_forward.h" instead of this file.
     13 
     14 // -----------------------------------------------------------------------------
     15 // Introduction
     16 // -----------------------------------------------------------------------------
     17 //
     18 // The templated Callback class is a generalized function object. Together
     19 // with the Bind() function in bind.h, they provide a type-safe method for
     20 // performing partial application of functions.
     21 //
     22 // Partial application (or "currying") is the process of binding a subset of
     23 // a function's arguments to produce another function that takes fewer
     24 // arguments. This can be used to pass around a unit of delayed execution,
     25 // much like lexical closures are used in other languages. For example, it
     26 // is used in Chromium code to schedule tasks on different MessageLoops.
     27 //
     28 // A callback with no unbound input parameters (base::Callback<void()>)
     29 // is called a base::Closure. Note that this is NOT the same as what other
     30 // languages refer to as a closure -- it does not retain a reference to its
     31 // enclosing environment.
     32 //
     33 // MEMORY MANAGEMENT AND PASSING
     34 //
     35 // The Callback objects themselves should be passed by const-reference, and
     36 // stored by copy. They internally store their state via a refcounted class
     37 // and thus do not need to be deleted.
     38 //
     39 // The reason to pass via a const-reference is to avoid unnecessary
     40 // AddRef/Release pairs to the internal state.
     41 //
     42 //
     43 // -----------------------------------------------------------------------------
     44 // Quick reference for basic stuff
     45 // -----------------------------------------------------------------------------
     46 //
     47 // BINDING A BARE FUNCTION
     48 //
     49 //   int Return5() { return 5; }
     50 //   base::Callback<int()> func_cb = base::Bind(&Return5);
     51 //   LOG(INFO) << func_cb.Run();  // Prints 5.
     52 //
     53 // BINDING A CLASS METHOD
     54 //
     55 //   The first argument to bind is the member function to call, the second is
     56 //   the object on which to call it.
     57 //
     58 //   class Ref : public base::RefCountedThreadSafe<Ref> {
     59 //    public:
     60 //     int Foo() { return 3; }
     61 //     void PrintBye() { LOG(INFO) << "bye."; }
     62 //   };
     63 //   scoped_refptr<Ref> ref = new Ref();
     64 //   base::Callback<void()> ref_cb = base::Bind(&Ref::Foo, ref);
     65 //   LOG(INFO) << ref_cb.Run();  // Prints out 3.
     66 //
     67 //   By default the object must support RefCounted or you will get a compiler
     68 //   error. If you're passing between threads, be sure it's
     69 //   RefCountedThreadSafe! See "Advanced binding of member functions" below if
     70 //   you don't want to use reference counting.
     71 //
     72 // RUNNING A CALLBACK
     73 //
     74 //   Callbacks can be run with their "Run" method, which has the same
     75 //   signature as the template argument to the callback.
     76 //
     77 //   void DoSomething(const base::Callback<void(int, std::string)>& callback) {
     78 //     callback.Run(5, "hello");
     79 //   }
     80 //
     81 //   Callbacks can be run more than once (they don't get deleted or marked when
     82 //   run). However, this precludes using base::Passed (see below).
     83 //
     84 //   void DoSomething(const base::Callback<double(double)>& callback) {
     85 //     double myresult = callback.Run(3.14159);
     86 //     myresult += callback.Run(2.71828);
     87 //   }
     88 //
     89 // PASSING UNBOUND INPUT PARAMETERS
     90 //
     91 //   Unbound parameters are specified at the time a callback is Run(). They are
     92 //   specified in the Callback template type:
     93 //
     94 //   void MyFunc(int i, const std::string& str) {}
     95 //   base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
     96 //   cb.Run(23, "hello, world");
     97 //
     98 // PASSING BOUND INPUT PARAMETERS
     99 //
    100 //   Bound parameters are specified when you create thee callback as arguments
    101 //   to Bind(). They will be passed to the function and the Run()ner of the
    102 //   callback doesn't see those values or even know that the function it's
    103 //   calling.
    104 //
    105 //   void MyFunc(int i, const std::string& str) {}
    106 //   base::Callback<void()> cb = base::Bind(&MyFunc, 23, "hello world");
    107 //   cb.Run();
    108 //
    109 //   A callback with no unbound input parameters (base::Callback<void()>)
    110 //   is called a base::Closure. So we could have also written:
    111 //
    112 //   base::Closure cb = base::Bind(&MyFunc, 23, "hello world");
    113 //
    114 //   When calling member functions, bound parameters just go after the object
    115 //   pointer.
    116 //
    117 //   base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");
    118 //
    119 // PARTIAL BINDING OF PARAMETERS
    120 //
    121 //   You can specify some parameters when you create the callback, and specify
    122 //   the rest when you execute the callback.
    123 //
    124 //   void MyFunc(int i, const std::string& str) {}
    125 //   base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23);
    126 //   cb.Run("hello world");
    127 //
    128 //   When calling a function bound parameters are first, followed by unbound
    129 //   parameters.
    130 //
    131 //
    132 // -----------------------------------------------------------------------------
    133 // Quick reference for advanced binding
    134 // -----------------------------------------------------------------------------
    135 //
    136 // BINDING A CLASS METHOD WITH WEAK POINTERS
    137 //
    138 //   base::Bind(&MyClass::Foo, GetWeakPtr());
    139 //
    140 //   The callback will not be run if the object has already been destroyed.
    141 //   DANGER: weak pointers are not threadsafe, so don't use this
    142 //   when passing between threads!
    143 //
    144 // BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT
    145 //
    146 //   base::Bind(&MyClass::Foo, base::Unretained(this));
    147 //
    148 //   This disables all lifetime management on the object. You're responsible
    149 //   for making sure the object is alive at the time of the call. You break it,
    150 //   you own it!
    151 //
    152 // BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS
    153 //
    154 //   MyClass* myclass = new MyClass;
    155 //   base::Bind(&MyClass::Foo, base::Owned(myclass));
    156 //
    157 //   The object will be deleted when the callback is destroyed, even if it's
    158 //   not run (like if you post a task during shutdown). Potentially useful for
    159 //   "fire and forget" cases.
    160 //
    161 // IGNORING RETURN VALUES
    162 //
    163 //   Sometimes you want to call a function that returns a value in a callback
    164 //   that doesn't expect a return value.
    165 //
    166 //   int DoSomething(int arg) { cout << arg << endl; }
    167 //   base::Callback<void(int)> cb =
    168 //       base::Bind(base::IgnoreResult(&DoSomething));
    169 //
    170 //
    171 // -----------------------------------------------------------------------------
    172 // Quick reference for binding parameters to Bind()
    173 // -----------------------------------------------------------------------------
    174 //
    175 // Bound parameters are specified as arguments to Bind() and are passed to the
    176 // function. A callback with no parameters or no unbound parameters is called a
    177 // Closure (base::Callback<void()> and base::Closure are the same thing).
    178 //
    179 // PASSING PARAMETERS OWNED BY THE CALLBACK
    180 //
    181 //   void Foo(int* arg) { cout << *arg << endl; }
    182 //   int* pn = new int(1);
    183 //   base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));
    184 //
    185 //   The parameter will be deleted when the callback is destroyed, even if it's
    186 //   not run (like if you post a task during shutdown).
    187 //
    188 // PASSING PARAMETERS AS A scoped_ptr
    189 //
    190 //   void TakesOwnership(std::unique_ptr<Foo> arg) {}
    191 //   std::unique_ptr<Foo> f(new Foo);
    192 //   // f becomes null during the following call.
    193 //   base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f));
    194 //
    195 //   Ownership of the parameter will be with the callback until the it is run,
    196 //   when ownership is passed to the callback function. This means the callback
    197 //   can only be run once. If the callback is never run, it will delete the
    198 //   object when it's destroyed.
    199 //
    200 // PASSING PARAMETERS AS A scoped_refptr
    201 //
    202 //   void TakesOneRef(scoped_refptr<Foo> arg) {}
    203 //   scoped_refptr<Foo> f(new Foo)
    204 //   base::Closure cb = base::Bind(&TakesOneRef, f);
    205 //
    206 //   This should "just work." The closure will take a reference as long as it
    207 //   is alive, and another reference will be taken for the called function.
    208 //
    209 // PASSING PARAMETERS BY REFERENCE
    210 //
    211 //   Const references are *copied* unless ConstRef is used. Example:
    212 //
    213 //   void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
    214 //   int n = 1;
    215 //   base::Closure has_copy = base::Bind(&foo, n);
    216 //   base::Closure has_ref = base::Bind(&foo, base::ConstRef(n));
    217 //   n = 2;
    218 //   foo(n);                        // Prints "2 0xaaaaaaaaaaaa"
    219 //   has_copy.Run();                // Prints "1 0xbbbbbbbbbbbb"
    220 //   has_ref.Run();                 // Prints "2 0xaaaaaaaaaaaa"
    221 //
    222 //   Normally parameters are copied in the closure. DANGER: ConstRef stores a
    223 //   const reference instead, referencing the original parameter. This means
    224 //   that you must ensure the object outlives the callback!
    225 //
    226 //
    227 // -----------------------------------------------------------------------------
    228 // Implementation notes
    229 // -----------------------------------------------------------------------------
    230 //
    231 // WHERE IS THIS DESIGN FROM:
    232 //
    233 // The design Callback and Bind is heavily influenced by C++'s
    234 // tr1::function/tr1::bind, and by the "Google Callback" system used inside
    235 // Google.
    236 //
    237 //
    238 // HOW THE IMPLEMENTATION WORKS:
    239 //
    240 // There are three main components to the system:
    241 //   1) The Callback classes.
    242 //   2) The Bind() functions.
    243 //   3) The arguments wrappers (e.g., Unretained() and ConstRef()).
    244 //
    245 // The Callback classes represent a generic function pointer. Internally,
    246 // it stores a refcounted piece of state that represents the target function
    247 // and all its bound parameters.  Each Callback specialization has a templated
    248 // constructor that takes an BindState<>*.  In the context of the constructor,
    249 // the static type of this BindState<> pointer uniquely identifies the
    250 // function it is representing, all its bound parameters, and a Run() method
    251 // that is capable of invoking the target.
    252 //
    253 // Callback's constructor takes the BindState<>* that has the full static type
    254 // and erases the target function type as well as the types of the bound
    255 // parameters.  It does this by storing a pointer to the specific Run()
    256 // function, and upcasting the state of BindState<>* to a
    257 // BindStateBase*. This is safe as long as this BindStateBase pointer
    258 // is only used with the stored Run() pointer.
    259 //
    260 // To BindState<> objects are created inside the Bind() functions.
    261 // These functions, along with a set of internal templates, are responsible for
    262 //
    263 //  - Unwrapping the function signature into return type, and parameters
    264 //  - Determining the number of parameters that are bound
    265 //  - Creating the BindState storing the bound parameters
    266 //  - Performing compile-time asserts to avoid error-prone behavior
    267 //  - Returning an Callback<> with an arity matching the number of unbound
    268 //    parameters and that knows the correct refcounting semantics for the
    269 //    target object if we are binding a method.
    270 //
    271 // The Bind functions do the above using type-inference, and template
    272 // specializations.
    273 //
    274 // By default Bind() will store copies of all bound parameters, and attempt
    275 // to refcount a target object if the function being bound is a class method.
    276 // These copies are created even if the function takes parameters as const
    277 // references. (Binding to non-const references is forbidden, see bind.h.)
    278 //
    279 // To change this behavior, we introduce a set of argument wrappers
    280 // (e.g., Unretained(), and ConstRef()).  These are simple container templates
    281 // that are passed by value, and wrap a pointer to argument.  See the
    282 // file-level comment in base/bind_helpers.h for more info.
    283 //
    284 // These types are passed to the Unwrap() functions, and the MaybeRefcount()
    285 // functions respectively to modify the behavior of Bind().  The Unwrap()
    286 // and MaybeRefcount() functions change behavior by doing partial
    287 // specialization based on whether or not a parameter is a wrapper type.
    288 //
    289 // ConstRef() is similar to tr1::cref.  Unretained() is specific to Chromium.
    290 //
    291 //
    292 // WHY NOT TR1 FUNCTION/BIND?
    293 //
    294 // Direct use of tr1::function and tr1::bind was considered, but ultimately
    295 // rejected because of the number of copy constructors invocations involved
    296 // in the binding of arguments during construction, and the forwarding of
    297 // arguments during invocation.  These copies will no longer be an issue in
    298 // C++0x because C++0x will support rvalue reference allowing for the compiler
    299 // to avoid these copies.  However, waiting for C++0x is not an option.
    300 //
    301 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the
    302 // tr1::bind call itself will invoke a non-trivial copy constructor three times
    303 // for each bound parameter.  Also, each when passing a tr1::function, each
    304 // bound argument will be copied again.
    305 //
    306 // In addition to the copies taken at binding and invocation, copying a
    307 // tr1::function causes a copy to be made of all the bound parameters and
    308 // state.
    309 //
    310 // Furthermore, in Chromium, it is desirable for the Callback to take a
    311 // reference on a target object when representing a class method call.  This
    312 // is not supported by tr1.
    313 //
    314 // Lastly, tr1::function and tr1::bind has a more general and flexible API.
    315 // This includes things like argument reordering by use of
    316 // tr1::bind::placeholder, support for non-const reference parameters, and some
    317 // limited amount of subtyping of the tr1::function object (e.g.,
    318 // tr1::function<int(int)> is convertible to tr1::function<void(int)>).
    319 //
    320 // These are not features that are required in Chromium. Some of them, such as
    321 // allowing for reference parameters, and subtyping of functions, may actually
    322 // become a source of errors. Removing support for these features actually
    323 // allows for a simpler implementation, and a terser Currying API.
    324 //
    325 //
    326 // WHY NOT GOOGLE CALLBACKS?
    327 //
    328 // The Google callback system also does not support refcounting.  Furthermore,
    329 // its implementation has a number of strange edge cases with respect to type
    330 // conversion of its arguments.  In particular, the argument's constness must
    331 // at times match exactly the function signature, or the type-inference might
    332 // break.  Given the above, writing a custom solution was easier.
    333 //
    334 //
    335 // MISSING FUNCTIONALITY
    336 //  - Invoking the return of Bind.  Bind(&foo).Run() does not work;
    337 //  - Binding arrays to functions that take a non-const pointer.
    338 //    Example:
    339 //      void Foo(const char* ptr);
    340 //      void Bar(char* ptr);
    341 //      Bind(&Foo, "test");
    342 //      Bind(&Bar, "test");  // This fails because ptr is not const.
    343 //
    344 // If you are thinking of forward declaring Callback in your own header file,
    345 // please include "base/callback_forward.h" instead.
    346 
    347 namespace base {
    348 
    349 template <typename R, typename... Args, internal::CopyMode copy_mode>
    350 class Callback<R(Args...), copy_mode>
    351     : public internal::CallbackBase<copy_mode> {
    352  private:
    353   using PolymorphicInvoke = R (*)(internal::BindStateBase*, Args&&...);
    354 
    355  public:
    356   // MSVC 2013 doesn't support Type Alias of function types.
    357   // Revisit this after we update it to newer version.
    358   typedef R RunType(Args...);
    359 
    360   Callback() : internal::CallbackBase<copy_mode>(nullptr) {}
    361 
    362   Callback(internal::BindStateBase* bind_state,
    363            PolymorphicInvoke invoke_func)
    364       : internal::CallbackBase<copy_mode>(bind_state) {
    365     using InvokeFuncStorage =
    366         typename internal::CallbackBase<copy_mode>::InvokeFuncStorage;
    367     this->polymorphic_invoke_ =
    368         reinterpret_cast<InvokeFuncStorage>(invoke_func);
    369   }
    370 
    371   bool Equals(const Callback& other) const {
    372     return this->EqualsInternal(other);
    373   }
    374 
    375   // Run() makes an extra copy compared to directly calling the bound function
    376   // if an argument is passed-by-value and is copyable-but-not-movable:
    377   // i.e. below copies CopyableNonMovableType twice.
    378   //   void F(CopyableNonMovableType) {}
    379   //   Bind(&F).Run(CopyableNonMovableType());
    380   //
    381   // We can not fully apply Perfect Forwarding idiom to the callchain from
    382   // Callback::Run() to the target function. Perfect Forwarding requires
    383   // knowing how the caller will pass the arguments. However, the signature of
    384   // InvokerType::Run() needs to be fixed in the callback constructor, so Run()
    385   // cannot template its arguments based on how it's called.
    386   R Run(Args... args) const {
    387     PolymorphicInvoke f =
    388         reinterpret_cast<PolymorphicInvoke>(this->polymorphic_invoke_);
    389     return f(this->bind_state_.get(), std::forward<Args>(args)...);
    390   }
    391 };
    392 
    393 }  // namespace base
    394 
    395 #endif  // BASE_CALLBACK_H_
    396