Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This code implements SPAKE2, a variant of EKE:
      6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
      7 
      8 #include <crypto/p224_spake.h>
      9 
     10 #include <algorithm>
     11 
     12 #include <base/logging.h>
     13 #include <crypto/p224.h>
     14 #include <crypto/random.h>
     15 #include <crypto/secure_util.h>
     16 
     17 namespace {
     18 
     19 // The following two points (M and N in the protocol) are verifiable random
     20 // points on the curve and can be generated with the following code:
     21 
     22 // #include <stdint.h>
     23 // #include <stdio.h>
     24 // #include <string.h>
     25 //
     26 // #include <openssl/ec.h>
     27 // #include <openssl/obj_mac.h>
     28 // #include <openssl/sha.h>
     29 //
     30 // static const char kSeed1[] = "P224 point generation seed (M)";
     31 // static const char kSeed2[] = "P224 point generation seed (N)";
     32 //
     33 // void find_seed(const char* seed) {
     34 //   SHA256_CTX sha256;
     35 //   uint8_t digest[SHA256_DIGEST_LENGTH];
     36 //
     37 //   SHA256_Init(&sha256);
     38 //   SHA256_Update(&sha256, seed, strlen(seed));
     39 //   SHA256_Final(digest, &sha256);
     40 //
     41 //   BIGNUM x, y;
     42 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
     43 //   EC_POINT* p = EC_POINT_new(p224);
     44 //
     45 //   for (unsigned i = 0;; i++) {
     46 //     BN_init(&x);
     47 //     BN_bin2bn(digest, 28, &x);
     48 //
     49 //     if (EC_POINT_set_compressed_coordinates_GFp(
     50 //             p224, p, &x, digest[28] & 1, NULL)) {
     51 //       BN_init(&y);
     52 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
     53 //       char* x_str = BN_bn2hex(&x);
     54 //       char* y_str = BN_bn2hex(&y);
     55 //       printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
     56 //       OPENSSL_free(x_str);
     57 //       OPENSSL_free(y_str);
     58 //       BN_free(&x);
     59 //       BN_free(&y);
     60 //       break;
     61 //     }
     62 //
     63 //     SHA256_Init(&sha256);
     64 //     SHA256_Update(&sha256, digest, sizeof(digest));
     65 //     SHA256_Final(digest, &sha256);
     66 //
     67 //     BN_free(&x);
     68 //   }
     69 //
     70 //   EC_POINT_free(p);
     71 //   EC_GROUP_free(p224);
     72 // }
     73 //
     74 // int main() {
     75 //   find_seed(kSeed1);
     76 //   find_seed(kSeed2);
     77 //   return 0;
     78 // }
     79 
     80 const crypto::p224::Point kM = {
     81   {174237515, 77186811, 235213682, 33849492,
     82    33188520, 48266885, 177021753, 81038478},
     83   {104523827, 245682244, 266509668, 236196369,
     84    28372046, 145351378, 198520366, 113345994},
     85   {1, 0, 0, 0, 0, 0, 0, 0},
     86 };
     87 
     88 const crypto::p224::Point kN = {
     89   {136176322, 263523628, 251628795, 229292285,
     90    5034302, 185981975, 171998428, 11653062},
     91   {197567436, 51226044, 60372156, 175772188,
     92    42075930, 8083165, 160827401, 65097570},
     93   {1, 0, 0, 0, 0, 0, 0, 0},
     94 };
     95 
     96 }  // anonymous namespace
     97 
     98 namespace crypto {
     99 
    100 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
    101     PeerType peer_type, const base::StringPiece& password)
    102     : state_(kStateInitial),
    103       is_server_(peer_type == kPeerTypeServer) {
    104   memset(&x_, 0, sizeof(x_));
    105   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
    106 
    107   // x_ is a random scalar.
    108   RandBytes(x_, sizeof(x_));
    109 
    110   // Calculate |password| hash to get SPAKE password value.
    111   SHA256HashString(std::string(password.data(), password.length()),
    112                    pw_, sizeof(pw_));
    113 
    114   Init();
    115 }
    116 
    117 void P224EncryptedKeyExchange::Init() {
    118   // X = g**x_
    119   p224::Point X;
    120   p224::ScalarBaseMult(x_, &X);
    121 
    122   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
    123   // server uses N**pw.
    124   p224::Point MNpw;
    125   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
    126 
    127   // X* = X + (N|M)**pw
    128   p224::Point Xstar;
    129   p224::Add(X, MNpw, &Xstar);
    130 
    131   next_message_ = Xstar.ToString();
    132 }
    133 
    134 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
    135   if (state_ == kStateInitial) {
    136     state_ = kStateRecvDH;
    137     return next_message_;
    138   } else if (state_ == kStateSendHash) {
    139     state_ = kStateRecvHash;
    140     return next_message_;
    141   }
    142 
    143   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
    144                 " bad state " << state_;
    145   next_message_ = "";
    146   return next_message_;
    147 }
    148 
    149 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
    150     const base::StringPiece& message) {
    151   if (state_ == kStateRecvHash) {
    152     // This is the final state of the protocol: we are reading the peer's
    153     // authentication hash and checking that it matches the one that we expect.
    154     if (message.size() != sizeof(expected_authenticator_)) {
    155       error_ = "peer's hash had an incorrect size";
    156       return kResultFailed;
    157     }
    158     if (!SecureMemEqual(message.data(), expected_authenticator_,
    159                         message.size())) {
    160       error_ = "peer's hash had incorrect value";
    161       return kResultFailed;
    162     }
    163     state_ = kStateDone;
    164     return kResultSuccess;
    165   }
    166 
    167   if (state_ != kStateRecvDH) {
    168     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
    169                   " bad state " << state_;
    170     error_ = "internal error";
    171     return kResultFailed;
    172   }
    173 
    174   // Y* is the other party's masked, Diffie-Hellman value.
    175   p224::Point Ystar;
    176   if (!Ystar.SetFromString(message)) {
    177     error_ = "failed to parse peer's masked Diffie-Hellman value";
    178     return kResultFailed;
    179   }
    180 
    181   // We calculate the mask value: (N|M)**pw
    182   p224::Point MNpw, minus_MNpw, Y, k;
    183   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
    184   p224::Negate(MNpw, &minus_MNpw);
    185 
    186   // Y = Y* - (N|M)**pw
    187   p224::Add(Ystar, minus_MNpw, &Y);
    188 
    189   // K = Y**x_
    190   p224::ScalarMult(Y, x_, &k);
    191 
    192   // If everything worked out, then K is the same for both parties.
    193   key_ = k.ToString();
    194 
    195   std::string client_masked_dh, server_masked_dh;
    196   if (is_server_) {
    197     client_masked_dh = message.as_string();
    198     server_masked_dh = next_message_;
    199   } else {
    200     client_masked_dh = next_message_;
    201     server_masked_dh = message.as_string();
    202   }
    203 
    204   // Now we calculate the hashes that each side will use to prove to the other
    205   // that they derived the correct value for K.
    206   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
    207   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
    208                 client_hash);
    209   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
    210                 server_hash);
    211 
    212   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
    213   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
    214 
    215   next_message_ =
    216       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
    217   memcpy(expected_authenticator_, their_hash, kSHA256Length);
    218   state_ = kStateSendHash;
    219   return kResultPending;
    220 }
    221 
    222 void P224EncryptedKeyExchange::CalculateHash(
    223     PeerType peer_type,
    224     const std::string& client_masked_dh,
    225     const std::string& server_masked_dh,
    226     const std::string& k,
    227     uint8_t* out_digest) {
    228   std::string hash_contents;
    229 
    230   if (peer_type == kPeerTypeServer) {
    231     hash_contents = "server";
    232   } else {
    233     hash_contents = "client";
    234   }
    235 
    236   hash_contents += client_masked_dh;
    237   hash_contents += server_masked_dh;
    238   hash_contents +=
    239       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
    240   hash_contents += k;
    241 
    242   SHA256HashString(hash_contents, out_digest, kSHA256Length);
    243 }
    244 
    245 const std::string& P224EncryptedKeyExchange::error() const {
    246   return error_;
    247 }
    248 
    249 const std::string& P224EncryptedKeyExchange::GetKey() const {
    250   DCHECK_EQ(state_, kStateDone);
    251   return GetUnverifiedKey();
    252 }
    253 
    254 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
    255   // Key is already final when state is kStateSendHash. Subsequent states are
    256   // used only for verification of the key. Some users may combine verification
    257   // with sending verifiable data instead of |expected_authenticator_|.
    258   DCHECK_GE(state_, kStateSendHash);
    259   return key_;
    260 }
    261 
    262 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
    263   memset(&x_, 0, sizeof(x_));
    264   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
    265   Init();
    266 }
    267 
    268 }  // namespace crypto
    269