Home | History | Annotate | Download | only in rand.dist.samp.plinear
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class RealType = double>
     15 // class piecewise_linear_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     18 
     19 #include <random>
     20 #include <vector>
     21 #include <iterator>
     22 #include <numeric>
     23 #include <algorithm>   // for sort
     24 #include <cassert>
     25 #include <limits>
     26 
     27 template <class T>
     28 inline
     29 T
     30 sqr(T x)
     31 {
     32     return x*x;
     33 }
     34 
     35 double
     36 f(double x, double a, double m, double b, double c)
     37 {
     38     return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
     39 }
     40 
     41 int main()
     42 {
     43     {
     44         typedef std::piecewise_linear_distribution<> D;
     45         typedef D::param_type P;
     46         typedef std::mt19937_64 G;
     47         G g;
     48         double b[] = {10, 14, 16, 17};
     49         double p[] = {25, 62.5, 12.5, 0};
     50         const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
     51         D d;
     52         P pa(b, b+Np+1, p);
     53         const size_t N = 1000000;
     54         std::vector<D::result_type> u;
     55         for (size_t i = 0; i < N; ++i)
     56         {
     57             D::result_type v = d(g, pa);
     58             assert(10 <= v && v < 17);
     59             u.push_back(v);
     60         }
     61         std::sort(u.begin(), u.end());
     62         int kp = -1;
     63         double a = std::numeric_limits<double>::quiet_NaN();
     64         double m = std::numeric_limits<double>::quiet_NaN();
     65         double bk = std::numeric_limits<double>::quiet_NaN();
     66         double c = std::numeric_limits<double>::quiet_NaN();
     67         std::vector<double> areas(Np);
     68         double S = 0;
     69         for (size_t i = 0; i < areas.size(); ++i)
     70         {
     71             areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
     72             S += areas[i];
     73         }
     74         for (size_t i = 0; i < areas.size(); ++i)
     75             areas[i] /= S;
     76         for (size_t i = 0; i < Np+1; ++i)
     77             p[i] /= S;
     78         for (size_t i = 0; i < N; ++i)
     79         {
     80             int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
     81             if (k != kp)
     82             {
     83                 a = 0;
     84                 for (int j = 0; j < k; ++j)
     85                     a += areas[j];
     86                 m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
     87                 bk = b[k];
     88                 c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
     89                 kp = k;
     90             }
     91             assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
     92         }
     93     }
     94 }
     95