Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jfdctint.c
      3  *
      4  * This file was part of the Independent JPEG Group's software.
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains a slow-but-accurate integer implementation of the
     12  * forward DCT (Discrete Cosine Transform).
     13  *
     14  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     15  * on each column.  Direct algorithms are also available, but they are
     16  * much more complex and seem not to be any faster when reduced to code.
     17  *
     18  * This implementation is based on an algorithm described in
     19  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
     20  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
     21  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
     22  * The primary algorithm described there uses 11 multiplies and 29 adds.
     23  * We use their alternate method with 12 multiplies and 32 adds.
     24  * The advantage of this method is that no data path contains more than one
     25  * multiplication; this allows a very simple and accurate implementation in
     26  * scaled fixed-point arithmetic, with a minimal number of shifts.
     27  */
     28 
     29 #define JPEG_INTERNALS
     30 #include "jinclude.h"
     31 #include "jpeglib.h"
     32 #include "jdct.h"               /* Private declarations for DCT subsystem */
     33 
     34 #ifdef DCT_ISLOW_SUPPORTED
     35 
     36 
     37 /*
     38  * This module is specialized to the case DCTSIZE = 8.
     39  */
     40 
     41 #if DCTSIZE != 8
     42   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     43 #endif
     44 
     45 
     46 /*
     47  * The poop on this scaling stuff is as follows:
     48  *
     49  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
     50  * larger than the true DCT outputs.  The final outputs are therefore
     51  * a factor of N larger than desired; since N=8 this can be cured by
     52  * a simple right shift at the end of the algorithm.  The advantage of
     53  * this arrangement is that we save two multiplications per 1-D DCT,
     54  * because the y0 and y4 outputs need not be divided by sqrt(N).
     55  * In the IJG code, this factor of 8 is removed by the quantization step
     56  * (in jcdctmgr.c), NOT in this module.
     57  *
     58  * We have to do addition and subtraction of the integer inputs, which
     59  * is no problem, and multiplication by fractional constants, which is
     60  * a problem to do in integer arithmetic.  We multiply all the constants
     61  * by CONST_SCALE and convert them to integer constants (thus retaining
     62  * CONST_BITS bits of precision in the constants).  After doing a
     63  * multiplication we have to divide the product by CONST_SCALE, with proper
     64  * rounding, to produce the correct output.  This division can be done
     65  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     66  * as long as possible so that partial sums can be added together with
     67  * full fractional precision.
     68  *
     69  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     70  * they are represented to better-than-integral precision.  These outputs
     71  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     72  * with the recommended scaling.  (For 12-bit sample data, the intermediate
     73  * array is JLONG anyway.)
     74  *
     75  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     76  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     77  * shows that the values given below are the most effective.
     78  */
     79 
     80 #if BITS_IN_JSAMPLE == 8
     81 #define CONST_BITS  13
     82 #define PASS1_BITS  2
     83 #else
     84 #define CONST_BITS  13
     85 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     86 #endif
     87 
     88 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     89  * causing a lot of useless floating-point operations at run time.
     90  * To get around this we use the following pre-calculated constants.
     91  * If you change CONST_BITS you may want to add appropriate values.
     92  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     93  */
     94 
     95 #if CONST_BITS == 13
     96 #define FIX_0_298631336  ((JLONG)  2446)        /* FIX(0.298631336) */
     97 #define FIX_0_390180644  ((JLONG)  3196)        /* FIX(0.390180644) */
     98 #define FIX_0_541196100  ((JLONG)  4433)        /* FIX(0.541196100) */
     99 #define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
    100 #define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
    101 #define FIX_1_175875602  ((JLONG)  9633)        /* FIX(1.175875602) */
    102 #define FIX_1_501321110  ((JLONG)  12299)       /* FIX(1.501321110) */
    103 #define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
    104 #define FIX_1_961570560  ((JLONG)  16069)       /* FIX(1.961570560) */
    105 #define FIX_2_053119869  ((JLONG)  16819)       /* FIX(2.053119869) */
    106 #define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
    107 #define FIX_3_072711026  ((JLONG)  25172)       /* FIX(3.072711026) */
    108 #else
    109 #define FIX_0_298631336  FIX(0.298631336)
    110 #define FIX_0_390180644  FIX(0.390180644)
    111 #define FIX_0_541196100  FIX(0.541196100)
    112 #define FIX_0_765366865  FIX(0.765366865)
    113 #define FIX_0_899976223  FIX(0.899976223)
    114 #define FIX_1_175875602  FIX(1.175875602)
    115 #define FIX_1_501321110  FIX(1.501321110)
    116 #define FIX_1_847759065  FIX(1.847759065)
    117 #define FIX_1_961570560  FIX(1.961570560)
    118 #define FIX_2_053119869  FIX(2.053119869)
    119 #define FIX_2_562915447  FIX(2.562915447)
    120 #define FIX_3_072711026  FIX(3.072711026)
    121 #endif
    122 
    123 
    124 /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
    125  * For 8-bit samples with the recommended scaling, all the variable
    126  * and constant values involved are no more than 16 bits wide, so a
    127  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    128  * For 12-bit samples, a full 32-bit multiplication will be needed.
    129  */
    130 
    131 #if BITS_IN_JSAMPLE == 8
    132 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    133 #else
    134 #define MULTIPLY(var,const)  ((var) * (const))
    135 #endif
    136 
    137 
    138 /*
    139  * Perform the forward DCT on one block of samples.
    140  */
    141 
    142 GLOBAL(void)
    143 jpeg_fdct_islow (DCTELEM *data)
    144 {
    145   JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    146   JLONG tmp10, tmp11, tmp12, tmp13;
    147   JLONG z1, z2, z3, z4, z5;
    148   DCTELEM *dataptr;
    149   int ctr;
    150   SHIFT_TEMPS
    151 
    152   /* Pass 1: process rows. */
    153   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    154   /* furthermore, we scale the results by 2**PASS1_BITS. */
    155 
    156   dataptr = data;
    157   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    158     tmp0 = dataptr[0] + dataptr[7];
    159     tmp7 = dataptr[0] - dataptr[7];
    160     tmp1 = dataptr[1] + dataptr[6];
    161     tmp6 = dataptr[1] - dataptr[6];
    162     tmp2 = dataptr[2] + dataptr[5];
    163     tmp5 = dataptr[2] - dataptr[5];
    164     tmp3 = dataptr[3] + dataptr[4];
    165     tmp4 = dataptr[3] - dataptr[4];
    166 
    167     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    168      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    169      */
    170 
    171     tmp10 = tmp0 + tmp3;
    172     tmp13 = tmp0 - tmp3;
    173     tmp11 = tmp1 + tmp2;
    174     tmp12 = tmp1 - tmp2;
    175 
    176     dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
    177     dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
    178 
    179     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    180     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    181                                    CONST_BITS-PASS1_BITS);
    182     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    183                                    CONST_BITS-PASS1_BITS);
    184 
    185     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    186      * cK represents cos(K*pi/16).
    187      * i0..i3 in the paper are tmp4..tmp7 here.
    188      */
    189 
    190     z1 = tmp4 + tmp7;
    191     z2 = tmp5 + tmp6;
    192     z3 = tmp4 + tmp6;
    193     z4 = tmp5 + tmp7;
    194     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    195 
    196     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    197     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    198     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    199     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    200     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    201     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    202     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    203     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    204 
    205     z3 += z5;
    206     z4 += z5;
    207 
    208     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    209     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    210     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    211     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
    212 
    213     dataptr += DCTSIZE;         /* advance pointer to next row */
    214   }
    215 
    216   /* Pass 2: process columns.
    217    * We remove the PASS1_BITS scaling, but leave the results scaled up
    218    * by an overall factor of 8.
    219    */
    220 
    221   dataptr = data;
    222   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    223     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    224     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    225     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    226     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    227     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    228     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    229     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    230     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    231 
    232     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    233      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    234      */
    235 
    236     tmp10 = tmp0 + tmp3;
    237     tmp13 = tmp0 - tmp3;
    238     tmp11 = tmp1 + tmp2;
    239     tmp12 = tmp1 - tmp2;
    240 
    241     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    242     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
    243 
    244     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    245     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
    246                                            CONST_BITS+PASS1_BITS);
    247     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
    248                                            CONST_BITS+PASS1_BITS);
    249 
    250     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    251      * cK represents cos(K*pi/16).
    252      * i0..i3 in the paper are tmp4..tmp7 here.
    253      */
    254 
    255     z1 = tmp4 + tmp7;
    256     z2 = tmp5 + tmp6;
    257     z3 = tmp4 + tmp6;
    258     z4 = tmp5 + tmp7;
    259     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    260 
    261     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    262     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    263     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    264     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    265     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    266     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    267     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    268     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    269 
    270     z3 += z5;
    271     z4 += z5;
    272 
    273     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
    274                                            CONST_BITS+PASS1_BITS);
    275     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
    276                                            CONST_BITS+PASS1_BITS);
    277     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
    278                                            CONST_BITS+PASS1_BITS);
    279     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
    280                                            CONST_BITS+PASS1_BITS);
    281 
    282     dataptr++;                  /* advance pointer to next column */
    283   }
    284 }
    285 
    286 #endif /* DCT_ISLOW_SUPPORTED */
    287