Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctfst.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains a fast, not so accurate integer implementation of the
     12  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     13  * must also perform dequantization of the input coefficients.
     14  *
     15  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     16  * on each row (or vice versa, but it's more convenient to emit a row at
     17  * a time).  Direct algorithms are also available, but they are much more
     18  * complex and seem not to be any faster when reduced to code.
     19  *
     20  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     21  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     22  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     23  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
     24  * code is based directly on figure 4-8 in P&M.
     25  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     26  * possible to arrange the computation so that many of the multiplies are
     27  * simple scalings of the final outputs.  These multiplies can then be
     28  * folded into the multiplications or divisions by the JPEG quantization
     29  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     30  * to be done in the DCT itself.
     31  * The primary disadvantage of this method is that with fixed-point math,
     32  * accuracy is lost due to imprecise representation of the scaled
     33  * quantization values.  The smaller the quantization table entry, the less
     34  * precise the scaled value, so this implementation does worse with high-
     35  * quality-setting files than with low-quality ones.
     36  */
     37 
     38 #define JPEG_INTERNALS
     39 #include "jinclude.h"
     40 #include "jpeglib.h"
     41 #include "jdct.h"               /* Private declarations for DCT subsystem */
     42 
     43 #ifdef DCT_IFAST_SUPPORTED
     44 
     45 
     46 /*
     47  * This module is specialized to the case DCTSIZE = 8.
     48  */
     49 
     50 #if DCTSIZE != 8
     51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     52 #endif
     53 
     54 
     55 /* Scaling decisions are generally the same as in the LL&M algorithm;
     56  * see jidctint.c for more details.  However, we choose to descale
     57  * (right shift) multiplication products as soon as they are formed,
     58  * rather than carrying additional fractional bits into subsequent additions.
     59  * This compromises accuracy slightly, but it lets us save a few shifts.
     60  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     61  * everywhere except in the multiplications proper; this saves a good deal
     62  * of work on 16-bit-int machines.
     63  *
     64  * The dequantized coefficients are not integers because the AA&N scaling
     65  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
     66  * so that the first and second IDCT rounds have the same input scaling.
     67  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
     68  * avoid a descaling shift; this compromises accuracy rather drastically
     69  * for small quantization table entries, but it saves a lot of shifts.
     70  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
     71  * so we use a much larger scaling factor to preserve accuracy.
     72  *
     73  * A final compromise is to represent the multiplicative constants to only
     74  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     75  * machines, and may also reduce the cost of multiplication (since there
     76  * are fewer one-bits in the constants).
     77  */
     78 
     79 #if BITS_IN_JSAMPLE == 8
     80 #define CONST_BITS  8
     81 #define PASS1_BITS  2
     82 #else
     83 #define CONST_BITS  8
     84 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     85 #endif
     86 
     87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     88  * causing a lot of useless floating-point operations at run time.
     89  * To get around this we use the following pre-calculated constants.
     90  * If you change CONST_BITS you may want to add appropriate values.
     91  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     92  */
     93 
     94 #if CONST_BITS == 8
     95 #define FIX_1_082392200  ((JLONG)  277)         /* FIX(1.082392200) */
     96 #define FIX_1_414213562  ((JLONG)  362)         /* FIX(1.414213562) */
     97 #define FIX_1_847759065  ((JLONG)  473)         /* FIX(1.847759065) */
     98 #define FIX_2_613125930  ((JLONG)  669)         /* FIX(2.613125930) */
     99 #else
    100 #define FIX_1_082392200  FIX(1.082392200)
    101 #define FIX_1_414213562  FIX(1.414213562)
    102 #define FIX_1_847759065  FIX(1.847759065)
    103 #define FIX_2_613125930  FIX(2.613125930)
    104 #endif
    105 
    106 
    107 /* We can gain a little more speed, with a further compromise in accuracy,
    108  * by omitting the addition in a descaling shift.  This yields an incorrectly
    109  * rounded result half the time...
    110  */
    111 
    112 #ifndef USE_ACCURATE_ROUNDING
    113 #undef DESCALE
    114 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    115 #endif
    116 
    117 
    118 /* Multiply a DCTELEM variable by an JLONG constant, and immediately
    119  * descale to yield a DCTELEM result.
    120  */
    121 
    122 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    123 
    124 
    125 /* Dequantize a coefficient by multiplying it by the multiplier-table
    126  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
    127  * multiplication will do.  For 12-bit data, the multiplier table is
    128  * declared JLONG, so a 32-bit multiply will be used.
    129  */
    130 
    131 #if BITS_IN_JSAMPLE == 8
    132 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
    133 #else
    134 #define DEQUANTIZE(coef,quantval)  \
    135         DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
    136 #endif
    137 
    138 
    139 /* Like DESCALE, but applies to a DCTELEM and produces an int.
    140  * We assume that int right shift is unsigned if JLONG right shift is.
    141  */
    142 
    143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    144 #define ISHIFT_TEMPS    DCTELEM ishift_temp;
    145 #if BITS_IN_JSAMPLE == 8
    146 #define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
    147 #else
    148 #define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
    149 #endif
    150 #define IRIGHT_SHIFT(x,shft)  \
    151     ((ishift_temp = (x)) < 0 ? \
    152      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
    153      (ishift_temp >> (shft)))
    154 #else
    155 #define ISHIFT_TEMPS
    156 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
    157 #endif
    158 
    159 #ifdef USE_ACCURATE_ROUNDING
    160 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
    161 #else
    162 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
    163 #endif
    164 
    165 
    166 /*
    167  * Perform dequantization and inverse DCT on one block of coefficients.
    168  */
    169 
    170 GLOBAL(void)
    171 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr,
    172                  JCOEFPTR coef_block,
    173                  JSAMPARRAY output_buf, JDIMENSION output_col)
    174 {
    175   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    176   DCTELEM tmp10, tmp11, tmp12, tmp13;
    177   DCTELEM z5, z10, z11, z12, z13;
    178   JCOEFPTR inptr;
    179   IFAST_MULT_TYPE *quantptr;
    180   int *wsptr;
    181   JSAMPROW outptr;
    182   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    183   int ctr;
    184   int workspace[DCTSIZE2];      /* buffers data between passes */
    185   SHIFT_TEMPS                   /* for DESCALE */
    186   ISHIFT_TEMPS                  /* for IDESCALE */
    187 
    188   /* Pass 1: process columns from input, store into work array. */
    189 
    190   inptr = coef_block;
    191   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
    192   wsptr = workspace;
    193   for (ctr = DCTSIZE; ctr > 0; ctr--) {
    194     /* Due to quantization, we will usually find that many of the input
    195      * coefficients are zero, especially the AC terms.  We can exploit this
    196      * by short-circuiting the IDCT calculation for any column in which all
    197      * the AC terms are zero.  In that case each output is equal to the
    198      * DC coefficient (with scale factor as needed).
    199      * With typical images and quantization tables, half or more of the
    200      * column DCT calculations can be simplified this way.
    201      */
    202 
    203     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    204         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    205         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    206         inptr[DCTSIZE*7] == 0) {
    207       /* AC terms all zero */
    208       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    209 
    210       wsptr[DCTSIZE*0] = dcval;
    211       wsptr[DCTSIZE*1] = dcval;
    212       wsptr[DCTSIZE*2] = dcval;
    213       wsptr[DCTSIZE*3] = dcval;
    214       wsptr[DCTSIZE*4] = dcval;
    215       wsptr[DCTSIZE*5] = dcval;
    216       wsptr[DCTSIZE*6] = dcval;
    217       wsptr[DCTSIZE*7] = dcval;
    218 
    219       inptr++;                  /* advance pointers to next column */
    220       quantptr++;
    221       wsptr++;
    222       continue;
    223     }
    224 
    225     /* Even part */
    226 
    227     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    228     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    229     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    230     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    231 
    232     tmp10 = tmp0 + tmp2;        /* phase 3 */
    233     tmp11 = tmp0 - tmp2;
    234 
    235     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
    236     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
    237 
    238     tmp0 = tmp10 + tmp13;       /* phase 2 */
    239     tmp3 = tmp10 - tmp13;
    240     tmp1 = tmp11 + tmp12;
    241     tmp2 = tmp11 - tmp12;
    242 
    243     /* Odd part */
    244 
    245     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    246     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    247     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    248     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    249 
    250     z13 = tmp6 + tmp5;          /* phase 6 */
    251     z10 = tmp6 - tmp5;
    252     z11 = tmp4 + tmp7;
    253     z12 = tmp4 - tmp7;
    254 
    255     tmp7 = z11 + z13;           /* phase 5 */
    256     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    257 
    258     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    259     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    260     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    261 
    262     tmp6 = tmp12 - tmp7;        /* phase 2 */
    263     tmp5 = tmp11 - tmp6;
    264     tmp4 = tmp10 + tmp5;
    265 
    266     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    267     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    268     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    269     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    270     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
    271     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
    272     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
    273     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
    274 
    275     inptr++;                    /* advance pointers to next column */
    276     quantptr++;
    277     wsptr++;
    278   }
    279 
    280   /* Pass 2: process rows from work array, store into output array. */
    281   /* Note that we must descale the results by a factor of 8 == 2**3, */
    282   /* and also undo the PASS1_BITS scaling. */
    283 
    284   wsptr = workspace;
    285   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    286     outptr = output_buf[ctr] + output_col;
    287     /* Rows of zeroes can be exploited in the same way as we did with columns.
    288      * However, the column calculation has created many nonzero AC terms, so
    289      * the simplification applies less often (typically 5% to 10% of the time).
    290      * On machines with very fast multiplication, it's possible that the
    291      * test takes more time than it's worth.  In that case this section
    292      * may be commented out.
    293      */
    294 
    295 #ifndef NO_ZERO_ROW_TEST
    296     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
    297         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    298       /* AC terms all zero */
    299       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
    300                                   & RANGE_MASK];
    301 
    302       outptr[0] = dcval;
    303       outptr[1] = dcval;
    304       outptr[2] = dcval;
    305       outptr[3] = dcval;
    306       outptr[4] = dcval;
    307       outptr[5] = dcval;
    308       outptr[6] = dcval;
    309       outptr[7] = dcval;
    310 
    311       wsptr += DCTSIZE;         /* advance pointer to next row */
    312       continue;
    313     }
    314 #endif
    315 
    316     /* Even part */
    317 
    318     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
    319     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
    320 
    321     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
    322     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
    323             - tmp13;
    324 
    325     tmp0 = tmp10 + tmp13;
    326     tmp3 = tmp10 - tmp13;
    327     tmp1 = tmp11 + tmp12;
    328     tmp2 = tmp11 - tmp12;
    329 
    330     /* Odd part */
    331 
    332     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
    333     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
    334     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
    335     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
    336 
    337     tmp7 = z11 + z13;           /* phase 5 */
    338     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    339 
    340     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    341     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    342     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    343 
    344     tmp6 = tmp12 - tmp7;        /* phase 2 */
    345     tmp5 = tmp11 - tmp6;
    346     tmp4 = tmp10 + tmp5;
    347 
    348     /* Final output stage: scale down by a factor of 8 and range-limit */
    349 
    350     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
    351                             & RANGE_MASK];
    352     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
    353                             & RANGE_MASK];
    354     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
    355                             & RANGE_MASK];
    356     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
    357                             & RANGE_MASK];
    358     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
    359                             & RANGE_MASK];
    360     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
    361                             & RANGE_MASK];
    362     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
    363                             & RANGE_MASK];
    364     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
    365                             & RANGE_MASK];
    366 
    367     wsptr += DCTSIZE;           /* advance pointer to next row */
    368   }
    369 }
    370 
    371 #endif /* DCT_IFAST_SUPPORTED */
    372