Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <limits.h>
     12 #include <math.h>
     13 #include <stdio.h>
     14 
     15 #include "./vpx_dsp_rtcd.h"
     16 #include "./vpx_scale_rtcd.h"
     17 
     18 #include "vpx_dsp/vpx_dsp_common.h"
     19 #include "vpx_mem/vpx_mem.h"
     20 #include "vpx_ports/mem.h"
     21 #include "vpx_ports/system_state.h"
     22 #include "vpx_scale/vpx_scale.h"
     23 #include "vpx_scale/yv12config.h"
     24 
     25 #include "vp9/common/vp9_entropymv.h"
     26 #include "vp9/common/vp9_quant_common.h"
     27 #include "vp9/common/vp9_reconinter.h"  // vp9_setup_dst_planes()
     28 #include "vp9/encoder/vp9_aq_variance.h"
     29 #include "vp9/encoder/vp9_block.h"
     30 #include "vp9/encoder/vp9_encodeframe.h"
     31 #include "vp9/encoder/vp9_encodemb.h"
     32 #include "vp9/encoder/vp9_encodemv.h"
     33 #include "vp9/encoder/vp9_encoder.h"
     34 #include "vp9/encoder/vp9_ethread.h"
     35 #include "vp9/encoder/vp9_extend.h"
     36 #include "vp9/encoder/vp9_firstpass.h"
     37 #include "vp9/encoder/vp9_mcomp.h"
     38 #include "vp9/encoder/vp9_quantize.h"
     39 #include "vp9/encoder/vp9_rd.h"
     40 #include "vpx_dsp/variance.h"
     41 
     42 #define OUTPUT_FPF 0
     43 #define ARF_STATS_OUTPUT 0
     44 
     45 #define FIRST_PASS_Q 10.0
     46 #define GF_MAX_BOOST 96.0
     47 #define INTRA_MODE_PENALTY 1024
     48 #define MIN_ARF_GF_BOOST 240
     49 #define MIN_DECAY_FACTOR 0.01
     50 #define NEW_MV_MODE_PENALTY 32
     51 #define DARK_THRESH 64
     52 #define DEFAULT_GRP_WEIGHT 1.0
     53 #define RC_FACTOR_MIN 0.75
     54 #define RC_FACTOR_MAX 1.75
     55 #define SECTION_NOISE_DEF 250.0
     56 #define LOW_I_THRESH 24000
     57 
     58 #define NCOUNT_INTRA_THRESH 8192
     59 #define NCOUNT_INTRA_FACTOR 3
     60 
     61 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
     62 
     63 #if ARF_STATS_OUTPUT
     64 unsigned int arf_count = 0;
     65 #endif
     66 
     67 // Resets the first pass file to the given position using a relative seek from
     68 // the current position.
     69 static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
     70   p->stats_in = position;
     71 }
     72 
     73 // Read frame stats at an offset from the current position.
     74 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
     75   if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
     76       (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
     77     return NULL;
     78   }
     79 
     80   return &p->stats_in[offset];
     81 }
     82 
     83 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
     84   if (p->stats_in >= p->stats_in_end) return EOF;
     85 
     86   *fps = *p->stats_in;
     87   ++p->stats_in;
     88   return 1;
     89 }
     90 
     91 static void output_stats(FIRSTPASS_STATS *stats,
     92                          struct vpx_codec_pkt_list *pktlist) {
     93   struct vpx_codec_cx_pkt pkt;
     94   pkt.kind = VPX_CODEC_STATS_PKT;
     95   pkt.data.twopass_stats.buf = stats;
     96   pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
     97   vpx_codec_pkt_list_add(pktlist, &pkt);
     98 
     99 // TEMP debug code
    100 #if OUTPUT_FPF
    101   {
    102     FILE *fpfile;
    103     fpfile = fopen("firstpass.stt", "a");
    104 
    105     fprintf(fpfile,
    106             "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
    107             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
    108             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.0lf %12.0lf"
    109             "%12.4lf"
    110             "\n",
    111             stats->frame, stats->weight, stats->intra_error, stats->coded_error,
    112             stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter,
    113             stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
    114             stats->pcnt_intra_low, stats->pcnt_intra_high,
    115             stats->intra_skip_pct, stats->intra_smooth_pct,
    116             stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
    117             stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
    118             stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration);
    119     fclose(fpfile);
    120   }
    121 #endif
    122 }
    123 
    124 #if CONFIG_FP_MB_STATS
    125 static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
    126                               struct vpx_codec_pkt_list *pktlist) {
    127   struct vpx_codec_cx_pkt pkt;
    128   pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
    129   pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
    130   pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
    131   vpx_codec_pkt_list_add(pktlist, &pkt);
    132 }
    133 #endif
    134 
    135 static void zero_stats(FIRSTPASS_STATS *section) {
    136   section->frame = 0.0;
    137   section->weight = 0.0;
    138   section->intra_error = 0.0;
    139   section->coded_error = 0.0;
    140   section->sr_coded_error = 0.0;
    141   section->frame_noise_energy = 0.0;
    142   section->pcnt_inter = 0.0;
    143   section->pcnt_motion = 0.0;
    144   section->pcnt_second_ref = 0.0;
    145   section->pcnt_neutral = 0.0;
    146   section->intra_skip_pct = 0.0;
    147   section->intra_smooth_pct = 0.0;
    148   section->pcnt_intra_low = 0.0;
    149   section->pcnt_intra_high = 0.0;
    150   section->inactive_zone_rows = 0.0;
    151   section->inactive_zone_cols = 0.0;
    152   section->MVr = 0.0;
    153   section->mvr_abs = 0.0;
    154   section->MVc = 0.0;
    155   section->mvc_abs = 0.0;
    156   section->MVrv = 0.0;
    157   section->MVcv = 0.0;
    158   section->mv_in_out_count = 0.0;
    159   section->count = 0.0;
    160   section->duration = 1.0;
    161   section->spatial_layer_id = 0;
    162 }
    163 
    164 static void accumulate_stats(FIRSTPASS_STATS *section,
    165                              const FIRSTPASS_STATS *frame) {
    166   section->frame += frame->frame;
    167   section->weight += frame->weight;
    168   section->spatial_layer_id = frame->spatial_layer_id;
    169   section->intra_error += frame->intra_error;
    170   section->coded_error += frame->coded_error;
    171   section->sr_coded_error += frame->sr_coded_error;
    172   section->frame_noise_energy += frame->frame_noise_energy;
    173   section->pcnt_inter += frame->pcnt_inter;
    174   section->pcnt_motion += frame->pcnt_motion;
    175   section->pcnt_second_ref += frame->pcnt_second_ref;
    176   section->pcnt_neutral += frame->pcnt_neutral;
    177   section->intra_skip_pct += frame->intra_skip_pct;
    178   section->intra_smooth_pct += frame->intra_smooth_pct;
    179   section->pcnt_intra_low += frame->pcnt_intra_low;
    180   section->pcnt_intra_high += frame->pcnt_intra_high;
    181   section->inactive_zone_rows += frame->inactive_zone_rows;
    182   section->inactive_zone_cols += frame->inactive_zone_cols;
    183   section->MVr += frame->MVr;
    184   section->mvr_abs += frame->mvr_abs;
    185   section->MVc += frame->MVc;
    186   section->mvc_abs += frame->mvc_abs;
    187   section->MVrv += frame->MVrv;
    188   section->MVcv += frame->MVcv;
    189   section->mv_in_out_count += frame->mv_in_out_count;
    190   section->count += frame->count;
    191   section->duration += frame->duration;
    192 }
    193 
    194 static void subtract_stats(FIRSTPASS_STATS *section,
    195                            const FIRSTPASS_STATS *frame) {
    196   section->frame -= frame->frame;
    197   section->weight -= frame->weight;
    198   section->intra_error -= frame->intra_error;
    199   section->coded_error -= frame->coded_error;
    200   section->sr_coded_error -= frame->sr_coded_error;
    201   section->frame_noise_energy -= frame->frame_noise_energy;
    202   section->pcnt_inter -= frame->pcnt_inter;
    203   section->pcnt_motion -= frame->pcnt_motion;
    204   section->pcnt_second_ref -= frame->pcnt_second_ref;
    205   section->pcnt_neutral -= frame->pcnt_neutral;
    206   section->intra_skip_pct -= frame->intra_skip_pct;
    207   section->intra_smooth_pct -= frame->intra_smooth_pct;
    208   section->pcnt_intra_low -= frame->pcnt_intra_low;
    209   section->pcnt_intra_high -= frame->pcnt_intra_high;
    210   section->inactive_zone_rows -= frame->inactive_zone_rows;
    211   section->inactive_zone_cols -= frame->inactive_zone_cols;
    212   section->MVr -= frame->MVr;
    213   section->mvr_abs -= frame->mvr_abs;
    214   section->MVc -= frame->MVc;
    215   section->mvc_abs -= frame->mvc_abs;
    216   section->MVrv -= frame->MVrv;
    217   section->MVcv -= frame->MVcv;
    218   section->mv_in_out_count -= frame->mv_in_out_count;
    219   section->count -= frame->count;
    220   section->duration -= frame->duration;
    221 }
    222 
    223 // Calculate an active area of the image that discounts formatting
    224 // bars and partially discounts other 0 energy areas.
    225 #define MIN_ACTIVE_AREA 0.5
    226 #define MAX_ACTIVE_AREA 1.0
    227 static double calculate_active_area(const VP9_COMP *cpi,
    228                                     const FIRSTPASS_STATS *this_frame) {
    229   double active_pct;
    230 
    231   active_pct =
    232       1.0 -
    233       ((this_frame->intra_skip_pct / 2) +
    234        ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
    235   return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
    236 }
    237 
    238 // Calculate a modified Error used in distributing bits between easier and
    239 // harder frames.
    240 #define ACT_AREA_CORRECTION 0.5
    241 static double calculate_mod_frame_score(const VP9_COMP *cpi,
    242                                         const TWO_PASS *twopass,
    243                                         const VP9EncoderConfig *oxcf,
    244                                         const FIRSTPASS_STATS *this_frame) {
    245   const FIRSTPASS_STATS *const stats = &twopass->total_stats;
    246   const double av_weight = stats->weight / stats->count;
    247   const double av_err = (stats->coded_error * av_weight) / stats->count;
    248   double modified_score =
    249       av_err * pow(this_frame->coded_error * this_frame->weight /
    250                        DOUBLE_DIVIDE_CHECK(av_err),
    251                    oxcf->two_pass_vbrbias / 100.0);
    252 
    253   // Correction for active area. Frames with a reduced active area
    254   // (eg due to formatting bars) have a higher error per mb for the
    255   // remaining active MBs. The correction here assumes that coding
    256   // 0.5N blocks of complexity 2X is a little easier than coding N
    257   // blocks of complexity X.
    258   modified_score *=
    259       pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
    260 
    261   return modified_score;
    262 }
    263 static double calculate_norm_frame_score(const VP9_COMP *cpi,
    264                                          const TWO_PASS *twopass,
    265                                          const VP9EncoderConfig *oxcf,
    266                                          const FIRSTPASS_STATS *this_frame) {
    267   const FIRSTPASS_STATS *const stats = &twopass->total_stats;
    268   const double av_weight = stats->weight / stats->count;
    269   const double av_err = (stats->coded_error * av_weight) / stats->count;
    270   double modified_score =
    271       av_err * pow(this_frame->coded_error * this_frame->weight /
    272                        DOUBLE_DIVIDE_CHECK(av_err),
    273                    oxcf->two_pass_vbrbias / 100.0);
    274 
    275   const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0;
    276   const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0;
    277 
    278   // Correction for active area. Frames with a reduced active area
    279   // (eg due to formatting bars) have a higher error per mb for the
    280   // remaining active MBs. The correction here assumes that coding
    281   // 0.5N blocks of complexity 2X is a little easier than coding N
    282   // blocks of complexity X.
    283   modified_score *=
    284       pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
    285 
    286   // Normalize to a midpoint score.
    287   modified_score /= DOUBLE_DIVIDE_CHECK(twopass->mean_mod_score);
    288 
    289   return fclamp(modified_score, min_score, max_score);
    290 }
    291 
    292 // This function returns the maximum target rate per frame.
    293 static int frame_max_bits(const RATE_CONTROL *rc,
    294                           const VP9EncoderConfig *oxcf) {
    295   int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
    296                       (int64_t)oxcf->two_pass_vbrmax_section) /
    297                      100;
    298   if (max_bits < 0)
    299     max_bits = 0;
    300   else if (max_bits > rc->max_frame_bandwidth)
    301     max_bits = rc->max_frame_bandwidth;
    302 
    303   return (int)max_bits;
    304 }
    305 
    306 void vp9_init_first_pass(VP9_COMP *cpi) {
    307   zero_stats(&cpi->twopass.total_stats);
    308 }
    309 
    310 void vp9_end_first_pass(VP9_COMP *cpi) {
    311   if (is_two_pass_svc(cpi)) {
    312     int i;
    313     for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
    314       output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
    315                    cpi->output_pkt_list);
    316     }
    317   } else {
    318     output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
    319   }
    320 
    321   vpx_free(cpi->twopass.fp_mb_float_stats);
    322   cpi->twopass.fp_mb_float_stats = NULL;
    323 }
    324 
    325 static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
    326   switch (bsize) {
    327     case BLOCK_8X8: return vpx_mse8x8;
    328     case BLOCK_16X8: return vpx_mse16x8;
    329     case BLOCK_8X16: return vpx_mse8x16;
    330     default: return vpx_mse16x16;
    331   }
    332 }
    333 
    334 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
    335                                          const struct buf_2d *src,
    336                                          const struct buf_2d *ref) {
    337   unsigned int sse;
    338   const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
    339   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
    340   return sse;
    341 }
    342 
    343 #if CONFIG_VP9_HIGHBITDEPTH
    344 static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
    345                                                       int bd) {
    346   switch (bd) {
    347     default:
    348       switch (bsize) {
    349         case BLOCK_8X8: return vpx_highbd_8_mse8x8;
    350         case BLOCK_16X8: return vpx_highbd_8_mse16x8;
    351         case BLOCK_8X16: return vpx_highbd_8_mse8x16;
    352         default: return vpx_highbd_8_mse16x16;
    353       }
    354       break;
    355     case 10:
    356       switch (bsize) {
    357         case BLOCK_8X8: return vpx_highbd_10_mse8x8;
    358         case BLOCK_16X8: return vpx_highbd_10_mse16x8;
    359         case BLOCK_8X16: return vpx_highbd_10_mse8x16;
    360         default: return vpx_highbd_10_mse16x16;
    361       }
    362       break;
    363     case 12:
    364       switch (bsize) {
    365         case BLOCK_8X8: return vpx_highbd_12_mse8x8;
    366         case BLOCK_16X8: return vpx_highbd_12_mse16x8;
    367         case BLOCK_8X16: return vpx_highbd_12_mse8x16;
    368         default: return vpx_highbd_12_mse16x16;
    369       }
    370       break;
    371   }
    372 }
    373 
    374 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
    375                                                 const struct buf_2d *src,
    376                                                 const struct buf_2d *ref,
    377                                                 int bd) {
    378   unsigned int sse;
    379   const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
    380   fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
    381   return sse;
    382 }
    383 #endif  // CONFIG_VP9_HIGHBITDEPTH
    384 
    385 // Refine the motion search range according to the frame dimension
    386 // for first pass test.
    387 static int get_search_range(const VP9_COMP *cpi) {
    388   int sr = 0;
    389   const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
    390 
    391   while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
    392   return sr;
    393 }
    394 
    395 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
    396                                      const MV *ref_mv, MV *best_mv,
    397                                      int *best_motion_err) {
    398   MACROBLOCKD *const xd = &x->e_mbd;
    399   MV tmp_mv = { 0, 0 };
    400   MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
    401   int num00, tmp_err, n;
    402   const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
    403   vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
    404   const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
    405 
    406   int step_param = 3;
    407   int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
    408   const int sr = get_search_range(cpi);
    409   step_param += sr;
    410   further_steps -= sr;
    411 
    412   // Override the default variance function to use MSE.
    413   v_fn_ptr.vf = get_block_variance_fn(bsize);
    414 #if CONFIG_VP9_HIGHBITDEPTH
    415   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    416     v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
    417   }
    418 #endif  // CONFIG_VP9_HIGHBITDEPTH
    419 
    420   // Center the initial step/diamond search on best mv.
    421   tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
    422                                     step_param, x->sadperbit16, &num00,
    423                                     &v_fn_ptr, ref_mv);
    424   if (tmp_err < INT_MAX)
    425     tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
    426   if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
    427 
    428   if (tmp_err < *best_motion_err) {
    429     *best_motion_err = tmp_err;
    430     *best_mv = tmp_mv;
    431   }
    432 
    433   // Carry out further step/diamond searches as necessary.
    434   n = num00;
    435   num00 = 0;
    436 
    437   while (n < further_steps) {
    438     ++n;
    439 
    440     if (num00) {
    441       --num00;
    442     } else {
    443       tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
    444                                         step_param + n, x->sadperbit16, &num00,
    445                                         &v_fn_ptr, ref_mv);
    446       if (tmp_err < INT_MAX)
    447         tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
    448       if (tmp_err < INT_MAX - new_mv_mode_penalty)
    449         tmp_err += new_mv_mode_penalty;
    450 
    451       if (tmp_err < *best_motion_err) {
    452         *best_motion_err = tmp_err;
    453         *best_mv = tmp_mv;
    454       }
    455     }
    456   }
    457 }
    458 
    459 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
    460   if (2 * mb_col + 1 < cm->mi_cols) {
    461     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8;
    462   } else {
    463     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8;
    464   }
    465 }
    466 
    467 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
    468   int i;
    469 
    470   for (i = 0; i < QINDEX_RANGE; ++i)
    471     if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
    472 
    473   if (i == QINDEX_RANGE) i--;
    474 
    475   return i;
    476 }
    477 
    478 static void set_first_pass_params(VP9_COMP *cpi) {
    479   VP9_COMMON *const cm = &cpi->common;
    480   if (!cpi->refresh_alt_ref_frame &&
    481       (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
    482     cm->frame_type = KEY_FRAME;
    483   } else {
    484     cm->frame_type = INTER_FRAME;
    485   }
    486   // Do not use periodic key frames.
    487   cpi->rc.frames_to_key = INT_MAX;
    488 }
    489 
    490 // Scale an sse threshold to account for 8/10/12 bit.
    491 static int scale_sse_threshold(VP9_COMMON *cm, int thresh) {
    492   int ret_val = thresh;
    493 #if CONFIG_VP9_HIGHBITDEPTH
    494   if (cm->use_highbitdepth) {
    495     switch (cm->bit_depth) {
    496       case VPX_BITS_8: ret_val = thresh; break;
    497       case VPX_BITS_10: ret_val = thresh << 4; break;
    498       case VPX_BITS_12: ret_val = thresh << 8; break;
    499       default:
    500         assert(0 &&
    501                "cm->bit_depth should be VPX_BITS_8, "
    502                "VPX_BITS_10 or VPX_BITS_12");
    503     }
    504   }
    505 #else
    506   (void)cm;
    507 #endif  // CONFIG_VP9_HIGHBITDEPTH
    508   return ret_val;
    509 }
    510 
    511 // This threshold is used to track blocks where to all intents and purposes
    512 // the intra prediction error 0. Though the metric we test against
    513 // is technically a sse we are mainly interested in blocks where all the pixels
    514 // in the 8 bit domain have an error of <= 1 (where error = sse) so a
    515 // linear scaling for 10 and 12 bit gives similar results.
    516 #define UL_INTRA_THRESH 50
    517 static int get_ul_intra_threshold(VP9_COMMON *cm) {
    518   int ret_val = UL_INTRA_THRESH;
    519 #if CONFIG_VP9_HIGHBITDEPTH
    520   if (cm->use_highbitdepth) {
    521     switch (cm->bit_depth) {
    522       case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break;
    523       case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break;
    524       case VPX_BITS_12: ret_val = UL_INTRA_THRESH << 4; break;
    525       default:
    526         assert(0 &&
    527                "cm->bit_depth should be VPX_BITS_8, "
    528                "VPX_BITS_10 or VPX_BITS_12");
    529     }
    530   }
    531 #else
    532   (void)cm;
    533 #endif  // CONFIG_VP9_HIGHBITDEPTH
    534   return ret_val;
    535 }
    536 
    537 #define SMOOTH_INTRA_THRESH 4000
    538 static int get_smooth_intra_threshold(VP9_COMMON *cm) {
    539   int ret_val = SMOOTH_INTRA_THRESH;
    540 #if CONFIG_VP9_HIGHBITDEPTH
    541   if (cm->use_highbitdepth) {
    542     switch (cm->bit_depth) {
    543       case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break;
    544       case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break;
    545       case VPX_BITS_12: ret_val = SMOOTH_INTRA_THRESH << 8; break;
    546       default:
    547         assert(0 &&
    548                "cm->bit_depth should be VPX_BITS_8, "
    549                "VPX_BITS_10 or VPX_BITS_12");
    550     }
    551   }
    552 #else
    553   (void)cm;
    554 #endif  // CONFIG_VP9_HIGHBITDEPTH
    555   return ret_val;
    556 }
    557 
    558 #define FP_DN_THRESH 8
    559 #define FP_MAX_DN_THRESH 16
    560 #define KERNEL_SIZE 3
    561 
    562 // Baseline Kernal weights for first pass noise metric
    563 static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
    564                                                              2, 1, 2, 1 };
    565 
    566 // Estimate noise at a single point based on the impace of a spatial kernal
    567 // on the point value
    568 static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
    569   int sum_weight = 0;
    570   int sum_val = 0;
    571   int i, j;
    572   int max_diff = 0;
    573   int diff;
    574   int dn_diff;
    575   uint8_t *tmp_ptr;
    576   uint8_t *kernal_ptr;
    577   uint8_t dn_val;
    578   uint8_t centre_val = *src_ptr;
    579 
    580   kernal_ptr = fp_dn_kernal_3;
    581 
    582   // Apply the kernal
    583   tmp_ptr = src_ptr - stride - 1;
    584   for (i = 0; i < KERNEL_SIZE; ++i) {
    585     for (j = 0; j < KERNEL_SIZE; ++j) {
    586       diff = abs((int)centre_val - (int)tmp_ptr[j]);
    587       max_diff = VPXMAX(max_diff, diff);
    588       if (diff <= FP_DN_THRESH) {
    589         sum_weight += *kernal_ptr;
    590         sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr;
    591       }
    592       ++kernal_ptr;
    593     }
    594     tmp_ptr += stride;
    595   }
    596 
    597   if (max_diff < FP_MAX_DN_THRESH)
    598     // Update the source value with the new filtered value
    599     dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
    600   else
    601     dn_val = *src_ptr;
    602 
    603   // return the noise energy as the square of the difference between the
    604   // denoised and raw value.
    605   dn_diff = (int)*src_ptr - (int)dn_val;
    606   return dn_diff * dn_diff;
    607 }
    608 #if CONFIG_VP9_HIGHBITDEPTH
    609 static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
    610   int sum_weight = 0;
    611   int sum_val = 0;
    612   int i, j;
    613   int max_diff = 0;
    614   int diff;
    615   int dn_diff;
    616   uint8_t *tmp_ptr;
    617   uint16_t *tmp_ptr16;
    618   uint8_t *kernal_ptr;
    619   uint16_t dn_val;
    620   uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr);
    621 
    622   kernal_ptr = fp_dn_kernal_3;
    623 
    624   // Apply the kernal
    625   tmp_ptr = src_ptr - stride - 1;
    626   for (i = 0; i < KERNEL_SIZE; ++i) {
    627     tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr);
    628     for (j = 0; j < KERNEL_SIZE; ++j) {
    629       diff = abs((int)centre_val - (int)tmp_ptr16[j]);
    630       max_diff = VPXMAX(max_diff, diff);
    631       if (diff <= FP_DN_THRESH) {
    632         sum_weight += *kernal_ptr;
    633         sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr;
    634       }
    635       ++kernal_ptr;
    636     }
    637     tmp_ptr += stride;
    638   }
    639 
    640   if (max_diff < FP_MAX_DN_THRESH)
    641     // Update the source value with the new filtered value
    642     dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
    643   else
    644     dn_val = *CONVERT_TO_SHORTPTR(src_ptr);
    645 
    646   // return the noise energy as the square of the difference between the
    647   // denoised and raw value.
    648   dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val;
    649   return dn_diff * dn_diff;
    650 }
    651 #endif
    652 
    653 // Estimate noise for a block.
    654 static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) {
    655 #if CONFIG_VP9_HIGHBITDEPTH
    656   MACROBLOCKD *xd = &x->e_mbd;
    657 #endif
    658   uint8_t *src_ptr = &x->plane[0].src.buf[0];
    659   const int width = num_4x4_blocks_wide_lookup[bsize] * 4;
    660   const int height = num_4x4_blocks_high_lookup[bsize] * 4;
    661   int w, h;
    662   int stride = x->plane[0].src.stride;
    663   int block_noise = 0;
    664 
    665   // Sampled points to reduce cost overhead.
    666   for (h = 0; h < height; h += 2) {
    667     for (w = 0; w < width; w += 2) {
    668 #if CONFIG_VP9_HIGHBITDEPTH
    669       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    670         block_noise += fp_highbd_estimate_point_noise(src_ptr, stride);
    671       else
    672         block_noise += fp_estimate_point_noise(src_ptr, stride);
    673 #else
    674       block_noise += fp_estimate_point_noise(src_ptr, stride);
    675 #endif
    676       ++src_ptr;
    677     }
    678     src_ptr += (stride - width);
    679   }
    680   return block_noise << 2;  // Scale << 2 to account for sampling.
    681 }
    682 
    683 // This function is called to test the functionality of row based
    684 // multi-threading in unit tests for bit-exactness
    685 static void accumulate_floating_point_stats(VP9_COMP *cpi,
    686                                             TileDataEnc *first_tile_col) {
    687   VP9_COMMON *const cm = &cpi->common;
    688   int mb_row, mb_col;
    689   first_tile_col->fp_data.intra_factor = 0;
    690   first_tile_col->fp_data.brightness_factor = 0;
    691   first_tile_col->fp_data.neutral_count = 0;
    692   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
    693     for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
    694       const int mb_index = mb_row * cm->mb_cols + mb_col;
    695       first_tile_col->fp_data.intra_factor +=
    696           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor;
    697       first_tile_col->fp_data.brightness_factor +=
    698           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor;
    699       first_tile_col->fp_data.neutral_count +=
    700           cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count;
    701     }
    702   }
    703 }
    704 
    705 static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps,
    706                                  FIRSTPASS_DATA *fp_acc_data) {
    707   VP9_COMMON *const cm = &cpi->common;
    708   // The minimum error here insures some bit allocation to frames even
    709   // in static regions. The allocation per MB declines for larger formats
    710   // where the typical "real" energy per MB also falls.
    711   // Initial estimate here uses sqrt(mbs) to define the min_err, where the
    712   // number of mbs is proportional to the image area.
    713   const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
    714                                                              : cpi->common.MBs;
    715   const double min_err = 200 * sqrt(num_mbs);
    716 
    717   // Clamp the image start to rows/2. This number of rows is discarded top
    718   // and bottom as dead data so rows / 2 means the frame is blank.
    719   if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) ||
    720       (fp_acc_data->image_data_start_row == INVALID_ROW)) {
    721     fp_acc_data->image_data_start_row = cm->mb_rows / 2;
    722   }
    723   // Exclude any image dead zone
    724   if (fp_acc_data->image_data_start_row > 0) {
    725     fp_acc_data->intra_skip_count =
    726         VPXMAX(0, fp_acc_data->intra_skip_count -
    727                       (fp_acc_data->image_data_start_row * cm->mb_cols * 2));
    728   }
    729 
    730   fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs;
    731   fp_acc_data->brightness_factor =
    732       fp_acc_data->brightness_factor / (double)num_mbs;
    733   fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor;
    734 
    735   fps->frame = cm->current_video_frame;
    736   fps->spatial_layer_id = cpi->svc.spatial_layer_id;
    737 
    738   fps->coded_error =
    739       ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs;
    740   fps->sr_coded_error =
    741       ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs;
    742   fps->intra_error =
    743       ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs;
    744 
    745   fps->frame_noise_energy =
    746       (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs;
    747   fps->count = 1.0;
    748   fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs;
    749   fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs;
    750   fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs;
    751   fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs;
    752   fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs;
    753   fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs;
    754   fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs;
    755   fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row);
    756   // Currently set to 0 as most issues relate to letter boxing.
    757   fps->inactive_zone_cols = (double)0;
    758 
    759   if (fp_acc_data->mvcount > 0) {
    760     fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount;
    761     fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount;
    762     fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount;
    763     fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount;
    764     fps->MVrv = ((double)(fp_acc_data->sum_mvrs) -
    765                  ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) /
    766                   fp_acc_data->mvcount)) /
    767                 fp_acc_data->mvcount;
    768     fps->MVcv = ((double)(fp_acc_data->sum_mvcs) -
    769                  ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) /
    770                   fp_acc_data->mvcount)) /
    771                 fp_acc_data->mvcount;
    772     fps->mv_in_out_count =
    773         (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2);
    774     fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs;
    775   } else {
    776     fps->MVr = 0.0;
    777     fps->mvr_abs = 0.0;
    778     fps->MVc = 0.0;
    779     fps->mvc_abs = 0.0;
    780     fps->MVrv = 0.0;
    781     fps->MVcv = 0.0;
    782     fps->mv_in_out_count = 0.0;
    783     fps->pcnt_motion = 0.0;
    784   }
    785 }
    786 
    787 static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile,
    788                                       FIRSTPASS_DATA *fp_acc_data) {
    789   this_tile->fp_data.intra_factor += fp_acc_data->intra_factor;
    790   this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor;
    791   this_tile->fp_data.coded_error += fp_acc_data->coded_error;
    792   this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error;
    793   this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy;
    794   this_tile->fp_data.intra_error += fp_acc_data->intra_error;
    795   this_tile->fp_data.intercount += fp_acc_data->intercount;
    796   this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count;
    797   this_tile->fp_data.neutral_count += fp_acc_data->neutral_count;
    798   this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low;
    799   this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high;
    800   this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count;
    801   this_tile->fp_data.mvcount += fp_acc_data->mvcount;
    802   this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr;
    803   this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs;
    804   this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc;
    805   this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs;
    806   this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs;
    807   this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs;
    808   this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors;
    809   this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count;
    810   this_tile->fp_data.image_data_start_row =
    811       VPXMIN(this_tile->fp_data.image_data_start_row,
    812              fp_acc_data->image_data_start_row) == INVALID_ROW
    813           ? VPXMAX(this_tile->fp_data.image_data_start_row,
    814                    fp_acc_data->image_data_start_row)
    815           : VPXMIN(this_tile->fp_data.image_data_start_row,
    816                    fp_acc_data->image_data_start_row);
    817 }
    818 
    819 void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td,
    820                                        FIRSTPASS_DATA *fp_acc_data,
    821                                        TileDataEnc *tile_data, MV *best_ref_mv,
    822                                        int mb_row) {
    823   int mb_col;
    824   MACROBLOCK *const x = &td->mb;
    825   VP9_COMMON *const cm = &cpi->common;
    826   MACROBLOCKD *const xd = &x->e_mbd;
    827   TileInfo tile = tile_data->tile_info;
    828   struct macroblock_plane *const p = x->plane;
    829   struct macroblockd_plane *const pd = xd->plane;
    830   const PICK_MODE_CONTEXT *ctx = &td->pc_root->none;
    831   int i, c;
    832   int num_mb_cols = get_num_cols(tile_data->tile_info, 1);
    833 
    834   int recon_yoffset, recon_uvoffset;
    835   const int intrapenalty = INTRA_MODE_PENALTY;
    836   const MV zero_mv = { 0, 0 };
    837   int recon_y_stride, recon_uv_stride, uv_mb_height;
    838 
    839   YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
    840   YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
    841   YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
    842   const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
    843 
    844   LAYER_CONTEXT *const lc =
    845       is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
    846                            : NULL;
    847   MODE_INFO mi_above, mi_left;
    848 
    849   double mb_intra_factor;
    850   double mb_brightness_factor;
    851   double mb_neutral_count;
    852 
    853   // First pass code requires valid last and new frame buffers.
    854   assert(new_yv12 != NULL);
    855   assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
    856 
    857   if (lc != NULL) {
    858     // Use either last frame or alt frame for motion search.
    859     if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
    860       first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
    861       if (first_ref_buf == NULL)
    862         first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
    863     }
    864 
    865     if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
    866       gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
    867       if (gld_yv12 == NULL) {
    868         gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
    869       }
    870     } else {
    871       gld_yv12 = NULL;
    872     }
    873   }
    874 
    875   xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) +
    876            (tile.mi_col_start >> 1);
    877   xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + (tile.mi_col_start >> 1);
    878 
    879   for (i = 0; i < MAX_MB_PLANE; ++i) {
    880     p[i].coeff = ctx->coeff_pbuf[i][1];
    881     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
    882     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
    883     p[i].eobs = ctx->eobs_pbuf[i][1];
    884   }
    885 
    886   recon_y_stride = new_yv12->y_stride;
    887   recon_uv_stride = new_yv12->uv_stride;
    888   uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
    889 
    890   // Reset above block coeffs.
    891   recon_yoffset =
    892       (mb_row * recon_y_stride * 16) + (tile.mi_col_start >> 1) * 16;
    893   recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height) +
    894                    (tile.mi_col_start >> 1) * uv_mb_height;
    895 
    896   // Set up limit values for motion vectors to prevent them extending
    897   // outside the UMV borders.
    898   x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
    899   x->mv_limits.row_max =
    900       ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
    901 
    902   for (mb_col = tile.mi_col_start >> 1, c = 0; mb_col < (tile.mi_col_end >> 1);
    903        ++mb_col, c++) {
    904     int this_error;
    905     int this_intra_error;
    906     const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
    907     const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
    908     double log_intra;
    909     int level_sample;
    910     const int mb_index = mb_row * cm->mb_cols + mb_col;
    911 
    912 #if CONFIG_FP_MB_STATS
    913     const int mb_index = mb_row * cm->mb_cols + mb_col;
    914 #endif
    915 
    916     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c);
    917 
    918     // Adjust to the next column of MBs.
    919     x->plane[0].src.buf = cpi->Source->y_buffer +
    920                           mb_row * 16 * x->plane[0].src.stride + mb_col * 16;
    921     x->plane[1].src.buf = cpi->Source->u_buffer +
    922                           mb_row * uv_mb_height * x->plane[1].src.stride +
    923                           mb_col * uv_mb_height;
    924     x->plane[2].src.buf = cpi->Source->v_buffer +
    925                           mb_row * uv_mb_height * x->plane[1].src.stride +
    926                           mb_col * uv_mb_height;
    927 
    928     vpx_clear_system_state();
    929 
    930     xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
    931     xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
    932     xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
    933     xd->mi[0]->sb_type = bsize;
    934     xd->mi[0]->ref_frame[0] = INTRA_FRAME;
    935     set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize],
    936                    mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows,
    937                    cm->mi_cols);
    938     // Are edges available for intra prediction?
    939     // Since the firstpass does not populate the mi_grid_visible,
    940     // above_mi/left_mi must be overwritten with a nonzero value when edges
    941     // are available.  Required by vp9_predict_intra_block().
    942     xd->above_mi = (mb_row != 0) ? &mi_above : NULL;
    943     xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL;
    944 
    945     // Do intra 16x16 prediction.
    946     x->skip_encode = 0;
    947     x->fp_src_pred = 0;
    948     // Do intra prediction based on source pixels for tile boundaries
    949     if ((mb_col == (tile.mi_col_start >> 1)) && mb_col != 0) {
    950       xd->left_mi = &mi_left;
    951       x->fp_src_pred = 1;
    952     }
    953     xd->mi[0]->mode = DC_PRED;
    954     xd->mi[0]->tx_size =
    955         use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
    956     // Fix - zero the 16x16 block first. This ensures correct this_error for
    957     // block sizes smaller than 16x16.
    958     vp9_zero_array(x->plane[0].src_diff, 256);
    959     vp9_encode_intra_block_plane(x, bsize, 0, 0);
    960     this_error = vpx_get_mb_ss(x->plane[0].src_diff);
    961     this_intra_error = this_error;
    962 
    963     // Keep a record of blocks that have very low intra error residual
    964     // (i.e. are in effect completely flat and untextured in the intra
    965     // domain). In natural videos this is uncommon, but it is much more
    966     // common in animations, graphics and screen content, so may be used
    967     // as a signal to detect these types of content.
    968     if (this_error < get_ul_intra_threshold(cm)) {
    969       ++(fp_acc_data->intra_skip_count);
    970     } else if ((mb_col > 0) &&
    971                (fp_acc_data->image_data_start_row == INVALID_ROW)) {
    972       fp_acc_data->image_data_start_row = mb_row;
    973     }
    974 
    975     // Blocks that are mainly smooth in the intra domain.
    976     // Some special accounting for CQ but also these are better for testing
    977     // noise levels.
    978     if (this_error < get_smooth_intra_threshold(cm)) {
    979       ++(fp_acc_data->intra_smooth_count);
    980     }
    981 
    982     // Special case noise measurement for first frame.
    983     if (cm->current_video_frame == 0) {
    984       if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
    985         fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
    986       } else {
    987         fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
    988       }
    989     }
    990 
    991 #if CONFIG_VP9_HIGHBITDEPTH
    992     if (cm->use_highbitdepth) {
    993       switch (cm->bit_depth) {
    994         case VPX_BITS_8: break;
    995         case VPX_BITS_10: this_error >>= 4; break;
    996         case VPX_BITS_12: this_error >>= 8; break;
    997         default:
    998           assert(0 &&
    999                  "cm->bit_depth should be VPX_BITS_8, "
   1000                  "VPX_BITS_10 or VPX_BITS_12");
   1001           return;
   1002       }
   1003     }
   1004 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1005 
   1006     vpx_clear_system_state();
   1007     log_intra = log(this_error + 1.0);
   1008     if (log_intra < 10.0) {
   1009       mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05);
   1010       fp_acc_data->intra_factor += mb_intra_factor;
   1011       if (cpi->row_mt_bit_exact)
   1012         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor =
   1013             mb_intra_factor;
   1014     } else {
   1015       fp_acc_data->intra_factor += 1.0;
   1016       if (cpi->row_mt_bit_exact)
   1017         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0;
   1018     }
   1019 
   1020 #if CONFIG_VP9_HIGHBITDEPTH
   1021     if (cm->use_highbitdepth)
   1022       level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
   1023     else
   1024       level_sample = x->plane[0].src.buf[0];
   1025 #else
   1026     level_sample = x->plane[0].src.buf[0];
   1027 #endif
   1028     if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
   1029       mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample));
   1030       fp_acc_data->brightness_factor += mb_brightness_factor;
   1031       if (cpi->row_mt_bit_exact)
   1032         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
   1033             mb_brightness_factor;
   1034     } else {
   1035       fp_acc_data->brightness_factor += 1.0;
   1036       if (cpi->row_mt_bit_exact)
   1037         cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
   1038             1.0;
   1039     }
   1040 
   1041     // Intrapenalty below deals with situations where the intra and inter
   1042     // error scores are very low (e.g. a plain black frame).
   1043     // We do not have special cases in first pass for 0,0 and nearest etc so
   1044     // all inter modes carry an overhead cost estimate for the mv.
   1045     // When the error score is very low this causes us to pick all or lots of
   1046     // INTRA modes and throw lots of key frames.
   1047     // This penalty adds a cost matching that of a 0,0 mv to the intra case.
   1048     this_error += intrapenalty;
   1049 
   1050     // Accumulate the intra error.
   1051     fp_acc_data->intra_error += (int64_t)this_error;
   1052 
   1053 #if CONFIG_FP_MB_STATS
   1054     if (cpi->use_fp_mb_stats) {
   1055       // initialization
   1056       cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
   1057     }
   1058 #endif
   1059 
   1060     // Set up limit values for motion vectors to prevent them extending
   1061     // outside the UMV borders.
   1062     x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
   1063     x->mv_limits.col_max =
   1064         ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
   1065 
   1066     // Other than for the first frame do a motion search.
   1067     if ((lc == NULL && cm->current_video_frame > 0) ||
   1068         (lc != NULL && lc->current_video_frame_in_layer > 0)) {
   1069       int tmp_err, motion_error, raw_motion_error;
   1070       // Assume 0,0 motion with no mv overhead.
   1071       MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
   1072       struct buf_2d unscaled_last_source_buf_2d;
   1073 
   1074       xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
   1075 #if CONFIG_VP9_HIGHBITDEPTH
   1076       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
   1077         motion_error = highbd_get_prediction_error(
   1078             bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
   1079       } else {
   1080         motion_error =
   1081             get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
   1082       }
   1083 #else
   1084       motion_error =
   1085           get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
   1086 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1087 
   1088       // Compute the motion error of the 0,0 motion using the last source
   1089       // frame as the reference. Skip the further motion search on
   1090       // reconstructed frame if this error is small.
   1091       unscaled_last_source_buf_2d.buf =
   1092           cpi->unscaled_last_source->y_buffer + recon_yoffset;
   1093       unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
   1094 #if CONFIG_VP9_HIGHBITDEPTH
   1095       if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
   1096         raw_motion_error = highbd_get_prediction_error(
   1097             bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
   1098       } else {
   1099         raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
   1100                                                 &unscaled_last_source_buf_2d);
   1101       }
   1102 #else
   1103       raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
   1104                                               &unscaled_last_source_buf_2d);
   1105 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1106 
   1107       // TODO(pengchong): Replace the hard-coded threshold
   1108       if (raw_motion_error > 25 || lc != NULL) {
   1109         // Test last reference frame using the previous best mv as the
   1110         // starting point (best reference) for the search.
   1111         first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error);
   1112 
   1113         // If the current best reference mv is not centered on 0,0 then do a
   1114         // 0,0 based search as well.
   1115         if (!is_zero_mv(best_ref_mv)) {
   1116           tmp_err = INT_MAX;
   1117           first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
   1118 
   1119           if (tmp_err < motion_error) {
   1120             motion_error = tmp_err;
   1121             mv = tmp_mv;
   1122           }
   1123         }
   1124 
   1125         // Search in an older reference frame.
   1126         if (((lc == NULL && cm->current_video_frame > 1) ||
   1127              (lc != NULL && lc->current_video_frame_in_layer > 1)) &&
   1128             gld_yv12 != NULL) {
   1129           // Assume 0,0 motion with no mv overhead.
   1130           int gf_motion_error;
   1131 
   1132           xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
   1133 #if CONFIG_VP9_HIGHBITDEPTH
   1134           if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
   1135             gf_motion_error = highbd_get_prediction_error(
   1136                 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
   1137           } else {
   1138             gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
   1139                                                    &xd->plane[0].pre[0]);
   1140           }
   1141 #else
   1142           gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
   1143                                                  &xd->plane[0].pre[0]);
   1144 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1145 
   1146           first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error);
   1147 
   1148           if (gf_motion_error < motion_error && gf_motion_error < this_error)
   1149             ++(fp_acc_data->second_ref_count);
   1150 
   1151           // Reset to last frame as reference buffer.
   1152           xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
   1153           xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
   1154           xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
   1155 
   1156           // In accumulating a score for the older reference frame take the
   1157           // best of the motion predicted score and the intra coded error
   1158           // (just as will be done for) accumulation of "coded_error" for
   1159           // the last frame.
   1160           if (gf_motion_error < this_error)
   1161             fp_acc_data->sr_coded_error += gf_motion_error;
   1162           else
   1163             fp_acc_data->sr_coded_error += this_error;
   1164         } else {
   1165           fp_acc_data->sr_coded_error += motion_error;
   1166         }
   1167       } else {
   1168         fp_acc_data->sr_coded_error += motion_error;
   1169       }
   1170 
   1171       // Start by assuming that intra mode is best.
   1172       best_ref_mv->row = 0;
   1173       best_ref_mv->col = 0;
   1174 
   1175 #if CONFIG_FP_MB_STATS
   1176       if (cpi->use_fp_mb_stats) {
   1177         // intra prediction statistics
   1178         cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
   1179         cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
   1180         cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
   1181         if (this_error > FPMB_ERROR_LARGE_TH) {
   1182           cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
   1183         } else if (this_error < FPMB_ERROR_SMALL_TH) {
   1184           cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
   1185         }
   1186       }
   1187 #endif
   1188 
   1189       if (motion_error <= this_error) {
   1190         vpx_clear_system_state();
   1191 
   1192         // Keep a count of cases where the inter and intra were very close
   1193         // and very low. This helps with scene cut detection for example in
   1194         // cropped clips with black bars at the sides or top and bottom.
   1195         if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
   1196             (this_error < (2 * intrapenalty))) {
   1197           fp_acc_data->neutral_count += 1.0;
   1198           if (cpi->row_mt_bit_exact)
   1199             cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
   1200                 1.0;
   1201           // Also track cases where the intra is not much worse than the inter
   1202           // and use this in limiting the GF/arf group length.
   1203         } else if ((this_error > NCOUNT_INTRA_THRESH) &&
   1204                    (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
   1205           mb_neutral_count =
   1206               (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
   1207           fp_acc_data->neutral_count += mb_neutral_count;
   1208           if (cpi->row_mt_bit_exact)
   1209             cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
   1210                 mb_neutral_count;
   1211         }
   1212 
   1213         mv.row *= 8;
   1214         mv.col *= 8;
   1215         this_error = motion_error;
   1216         xd->mi[0]->mode = NEWMV;
   1217         xd->mi[0]->mv[0].as_mv = mv;
   1218         xd->mi[0]->tx_size = TX_4X4;
   1219         xd->mi[0]->ref_frame[0] = LAST_FRAME;
   1220         xd->mi[0]->ref_frame[1] = NONE;
   1221         vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
   1222         vp9_encode_sby_pass1(x, bsize);
   1223         fp_acc_data->sum_mvr += mv.row;
   1224         fp_acc_data->sum_mvr_abs += abs(mv.row);
   1225         fp_acc_data->sum_mvc += mv.col;
   1226         fp_acc_data->sum_mvc_abs += abs(mv.col);
   1227         fp_acc_data->sum_mvrs += mv.row * mv.row;
   1228         fp_acc_data->sum_mvcs += mv.col * mv.col;
   1229         ++(fp_acc_data->intercount);
   1230 
   1231         *best_ref_mv = mv;
   1232 
   1233 #if CONFIG_FP_MB_STATS
   1234         if (cpi->use_fp_mb_stats) {
   1235           // inter prediction statistics
   1236           cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
   1237           cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
   1238           cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
   1239           if (this_error > FPMB_ERROR_LARGE_TH) {
   1240             cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
   1241           } else if (this_error < FPMB_ERROR_SMALL_TH) {
   1242             cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
   1243           }
   1244         }
   1245 #endif
   1246 
   1247         if (!is_zero_mv(&mv)) {
   1248           ++(fp_acc_data->mvcount);
   1249 
   1250 #if CONFIG_FP_MB_STATS
   1251           if (cpi->use_fp_mb_stats) {
   1252             cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK;
   1253             // check estimated motion direction
   1254             if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
   1255               // right direction
   1256               cpi->twopass.frame_mb_stats_buf[mb_index] |=
   1257                   FPMB_MOTION_RIGHT_MASK;
   1258             } else if (mv.as_mv.row < 0 &&
   1259                        abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
   1260               // up direction
   1261               cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK;
   1262             } else if (mv.as_mv.col < 0 &&
   1263                        abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
   1264               // left direction
   1265               cpi->twopass.frame_mb_stats_buf[mb_index] |=
   1266                   FPMB_MOTION_LEFT_MASK;
   1267             } else {
   1268               // down direction
   1269               cpi->twopass.frame_mb_stats_buf[mb_index] |=
   1270                   FPMB_MOTION_DOWN_MASK;
   1271             }
   1272           }
   1273 #endif
   1274 
   1275           // Does the row vector point inwards or outwards?
   1276           if (mb_row < cm->mb_rows / 2) {
   1277             if (mv.row > 0)
   1278               --(fp_acc_data->sum_in_vectors);
   1279             else if (mv.row < 0)
   1280               ++(fp_acc_data->sum_in_vectors);
   1281           } else if (mb_row > cm->mb_rows / 2) {
   1282             if (mv.row > 0)
   1283               ++(fp_acc_data->sum_in_vectors);
   1284             else if (mv.row < 0)
   1285               --(fp_acc_data->sum_in_vectors);
   1286           }
   1287 
   1288           // Does the col vector point inwards or outwards?
   1289           if (mb_col < cm->mb_cols / 2) {
   1290             if (mv.col > 0)
   1291               --(fp_acc_data->sum_in_vectors);
   1292             else if (mv.col < 0)
   1293               ++(fp_acc_data->sum_in_vectors);
   1294           } else if (mb_col > cm->mb_cols / 2) {
   1295             if (mv.col > 0)
   1296               ++(fp_acc_data->sum_in_vectors);
   1297             else if (mv.col < 0)
   1298               --(fp_acc_data->sum_in_vectors);
   1299           }
   1300           fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
   1301         } else if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
   1302           fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
   1303         } else {  // 0,0 mv but high error
   1304           fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
   1305         }
   1306       } else {  // Intra < inter error
   1307         int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH);
   1308         if (this_intra_error < scaled_low_intra_thresh) {
   1309           fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
   1310           if (motion_error < scaled_low_intra_thresh) {
   1311             fp_acc_data->intra_count_low += 1.0;
   1312           } else {
   1313             fp_acc_data->intra_count_high += 1.0;
   1314           }
   1315         } else {
   1316           fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
   1317           fp_acc_data->intra_count_high += 1.0;
   1318         }
   1319       }
   1320     } else {
   1321       fp_acc_data->sr_coded_error += (int64_t)this_error;
   1322     }
   1323     fp_acc_data->coded_error += (int64_t)this_error;
   1324 
   1325     recon_yoffset += 16;
   1326     recon_uvoffset += uv_mb_height;
   1327 
   1328     // Accumulate row level stats to the corresponding tile stats
   1329     if (cpi->row_mt && mb_col == (tile.mi_col_end >> 1) - 1)
   1330       accumulate_fp_mb_row_stat(tile_data, fp_acc_data);
   1331 
   1332     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c,
   1333                                     num_mb_cols);
   1334   }
   1335   vpx_clear_system_state();
   1336 }
   1337 
   1338 static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) {
   1339   VP9_COMMON *const cm = &cpi->common;
   1340   int mb_row;
   1341   TileDataEnc tile_data;
   1342   TileInfo *tile = &tile_data.tile_info;
   1343   MV zero_mv = { 0, 0 };
   1344   MV best_ref_mv;
   1345   // Tiling is ignored in the first pass.
   1346   vp9_tile_init(tile, cm, 0, 0);
   1347 
   1348   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
   1349     best_ref_mv = zero_mv;
   1350     vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data,
   1351                                       &best_ref_mv, mb_row);
   1352   }
   1353 }
   1354 
   1355 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
   1356   MACROBLOCK *const x = &cpi->td.mb;
   1357   VP9_COMMON *const cm = &cpi->common;
   1358   MACROBLOCKD *const xd = &x->e_mbd;
   1359   TWO_PASS *twopass = &cpi->twopass;
   1360 
   1361   YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
   1362   YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
   1363   YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
   1364   const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
   1365 
   1366   LAYER_CONTEXT *const lc =
   1367       is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
   1368                            : NULL;
   1369   BufferPool *const pool = cm->buffer_pool;
   1370 
   1371   FIRSTPASS_DATA fp_temp_data;
   1372   FIRSTPASS_DATA *fp_acc_data = &fp_temp_data;
   1373 
   1374   vpx_clear_system_state();
   1375   vp9_zero(fp_temp_data);
   1376   fp_acc_data->image_data_start_row = INVALID_ROW;
   1377 
   1378   // First pass code requires valid last and new frame buffers.
   1379   assert(new_yv12 != NULL);
   1380   assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
   1381 
   1382 #if CONFIG_FP_MB_STATS
   1383   if (cpi->use_fp_mb_stats) {
   1384     vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
   1385   }
   1386 #endif
   1387 
   1388   set_first_pass_params(cpi);
   1389   vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
   1390 
   1391   if (lc != NULL) {
   1392     twopass = &lc->twopass;
   1393 
   1394     cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
   1395     cpi->ref_frame_flags = VP9_LAST_FLAG;
   1396 
   1397     if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
   1398         REF_FRAMES) {
   1399       cpi->gld_fb_idx =
   1400           cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
   1401       cpi->ref_frame_flags |= VP9_GOLD_FLAG;
   1402       cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
   1403     } else {
   1404       cpi->refresh_golden_frame = 0;
   1405     }
   1406 
   1407     if (lc->current_video_frame_in_layer == 0) cpi->ref_frame_flags = 0;
   1408 
   1409     vp9_scale_references(cpi);
   1410 
   1411     // Use either last frame or alt frame for motion search.
   1412     if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
   1413       first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
   1414       if (first_ref_buf == NULL)
   1415         first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
   1416     }
   1417 
   1418     if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
   1419       gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
   1420       if (gld_yv12 == NULL) {
   1421         gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
   1422       }
   1423     } else {
   1424       gld_yv12 = NULL;
   1425     }
   1426 
   1427     set_ref_ptrs(cm, xd,
   1428                  (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME : NONE,
   1429                  (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
   1430 
   1431     cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
   1432                                         &cpi->scaled_source, 0, EIGHTTAP, 0);
   1433   }
   1434 
   1435   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
   1436 
   1437   vp9_setup_src_planes(x, cpi->Source, 0, 0);
   1438   vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
   1439 
   1440   if (!frame_is_intra_only(cm)) {
   1441     vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
   1442   }
   1443 
   1444   xd->mi = cm->mi_grid_visible;
   1445   xd->mi[0] = cm->mi;
   1446 
   1447   vp9_frame_init_quantizer(cpi);
   1448 
   1449   x->skip_recode = 0;
   1450 
   1451   vp9_init_mv_probs(cm);
   1452   vp9_initialize_rd_consts(cpi);
   1453 
   1454   cm->log2_tile_rows = 0;
   1455 
   1456   if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL)
   1457     CHECK_MEM_ERROR(
   1458         cm, cpi->twopass.fp_mb_float_stats,
   1459         vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1));
   1460 
   1461   {
   1462     FIRSTPASS_STATS fps;
   1463     TileDataEnc *first_tile_col;
   1464     if (!cpi->row_mt) {
   1465       cm->log2_tile_cols = 0;
   1466       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
   1467       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
   1468       first_pass_encode(cpi, fp_acc_data);
   1469       first_pass_stat_calc(cpi, &fps, fp_acc_data);
   1470     } else {
   1471       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
   1472       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
   1473       if (cpi->row_mt_bit_exact) {
   1474         cm->log2_tile_cols = 0;
   1475         vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs);
   1476       }
   1477       vp9_encode_fp_row_mt(cpi);
   1478       first_tile_col = &cpi->tile_data[0];
   1479       if (cpi->row_mt_bit_exact)
   1480         accumulate_floating_point_stats(cpi, first_tile_col);
   1481       first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data));
   1482     }
   1483 
   1484     // Dont allow a value of 0 for duration.
   1485     // (Section duration is also defaulted to minimum of 1.0).
   1486     fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start));
   1487 
   1488     // Don't want to do output stats with a stack variable!
   1489     twopass->this_frame_stats = fps;
   1490     output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
   1491     accumulate_stats(&twopass->total_stats, &fps);
   1492 
   1493 #if CONFIG_FP_MB_STATS
   1494     if (cpi->use_fp_mb_stats) {
   1495       output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
   1496     }
   1497 #endif
   1498   }
   1499 
   1500   // Copy the previous Last Frame back into gf and and arf buffers if
   1501   // the prediction is good enough... but also don't allow it to lag too far.
   1502   if ((twopass->sr_update_lag > 3) ||
   1503       ((cm->current_video_frame > 0) &&
   1504        (twopass->this_frame_stats.pcnt_inter > 0.20) &&
   1505        ((twopass->this_frame_stats.intra_error /
   1506          DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
   1507     if (gld_yv12 != NULL) {
   1508       ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
   1509                  cm->ref_frame_map[cpi->lst_fb_idx]);
   1510     }
   1511     twopass->sr_update_lag = 1;
   1512   } else {
   1513     ++twopass->sr_update_lag;
   1514   }
   1515 
   1516   vpx_extend_frame_borders(new_yv12);
   1517 
   1518   if (lc != NULL) {
   1519     vp9_update_reference_frames(cpi);
   1520   } else {
   1521     // The frame we just compressed now becomes the last frame.
   1522     ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
   1523                cm->new_fb_idx);
   1524   }
   1525 
   1526   // Special case for the first frame. Copy into the GF buffer as a second
   1527   // reference.
   1528   if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX &&
   1529       lc == NULL) {
   1530     ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
   1531                cm->ref_frame_map[cpi->lst_fb_idx]);
   1532   }
   1533 
   1534   // Use this to see what the first pass reconstruction looks like.
   1535   if (0) {
   1536     char filename[512];
   1537     FILE *recon_file;
   1538     snprintf(filename, sizeof(filename), "enc%04d.yuv",
   1539              (int)cm->current_video_frame);
   1540 
   1541     if (cm->current_video_frame == 0)
   1542       recon_file = fopen(filename, "wb");
   1543     else
   1544       recon_file = fopen(filename, "ab");
   1545 
   1546     (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
   1547     fclose(recon_file);
   1548   }
   1549 
   1550   ++cm->current_video_frame;
   1551   if (cpi->use_svc) vp9_inc_frame_in_layer(cpi);
   1552 }
   1553 
   1554 static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = {
   1555   0.65, 0.70, 0.75, 0.85, 0.90, 0.90, 0.90, 1.00, 1.25
   1556 };
   1557 
   1558 static double calc_correction_factor(double err_per_mb, double err_divisor,
   1559                                      int q) {
   1560   const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor);
   1561   const int index = q >> 5;
   1562   double power_term;
   1563 
   1564   assert((index >= 0) && (index < (QINDEX_RANGE >> 5)));
   1565 
   1566   // Adjustment based on quantizer to the power term.
   1567   power_term =
   1568       q_pow_term[index] +
   1569       (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
   1570 
   1571   // Calculate correction factor.
   1572   if (power_term < 1.0) assert(error_term >= 0.0);
   1573 
   1574   return fclamp(pow(error_term, power_term), 0.05, 5.0);
   1575 }
   1576 
   1577 #define ERR_DIVISOR 115.0
   1578 #define NOISE_FACTOR_MIN 0.9
   1579 #define NOISE_FACTOR_MAX 1.1
   1580 static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err,
   1581                                      double inactive_zone, double section_noise,
   1582                                      int section_target_bandwidth) {
   1583   const RATE_CONTROL *const rc = &cpi->rc;
   1584   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1585   TWO_PASS *const twopass = &cpi->twopass;
   1586 
   1587   // Clamp the target rate to VBR min / max limts.
   1588   const int target_rate =
   1589       vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth);
   1590   double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5);
   1591   noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX);
   1592   inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
   1593 
   1594   if (target_rate <= 0) {
   1595     return rc->worst_quality;  // Highest value allowed
   1596   } else {
   1597     const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
   1598                             ? cpi->initial_mbs
   1599                             : cpi->common.MBs;
   1600     const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone);
   1601     const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct);
   1602     const double av_err_per_mb = section_err / active_pct;
   1603     const double speed_term = 1.0 + 0.04 * oxcf->speed;
   1604     double last_group_rate_err;
   1605     const int target_norm_bits_per_mb =
   1606         (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs);
   1607     int q;
   1608 
   1609     // based on recent history adjust expectations of bits per macroblock.
   1610     last_group_rate_err =
   1611         (double)twopass->rolling_arf_group_actual_bits /
   1612         DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
   1613     last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
   1614     twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
   1615     twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
   1616 
   1617     // Try and pick a max Q that will be high enough to encode the
   1618     // content at the given rate.
   1619     for (q = rc->best_quality; q < rc->worst_quality; ++q) {
   1620       const double factor =
   1621           calc_correction_factor(av_err_per_mb, ERR_DIVISOR, q);
   1622       const int bits_per_mb = vp9_rc_bits_per_mb(
   1623           INTER_FRAME, q,
   1624           factor * speed_term * cpi->twopass.bpm_factor * noise_factor,
   1625           cpi->common.bit_depth);
   1626       if (bits_per_mb <= target_norm_bits_per_mb) break;
   1627     }
   1628 
   1629     // Restriction on active max q for constrained quality mode.
   1630     if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level);
   1631     return q;
   1632   }
   1633 }
   1634 
   1635 static void setup_rf_level_maxq(VP9_COMP *cpi) {
   1636   int i;
   1637   RATE_CONTROL *const rc = &cpi->rc;
   1638   for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
   1639     int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
   1640     rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
   1641   }
   1642 }
   1643 
   1644 static void init_subsampling(VP9_COMP *cpi) {
   1645   const VP9_COMMON *const cm = &cpi->common;
   1646   RATE_CONTROL *const rc = &cpi->rc;
   1647   const int w = cm->width;
   1648   const int h = cm->height;
   1649   int i;
   1650 
   1651   for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
   1652     // Note: Frames with odd-sized dimensions may result from this scaling.
   1653     rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
   1654     rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
   1655   }
   1656 
   1657   setup_rf_level_maxq(cpi);
   1658 }
   1659 
   1660 void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width,
   1661                           int *scaled_frame_height) {
   1662   RATE_CONTROL *const rc = &cpi->rc;
   1663   *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
   1664   *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
   1665 }
   1666 
   1667 void vp9_init_second_pass(VP9_COMP *cpi) {
   1668   SVC *const svc = &cpi->svc;
   1669   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   1670   const int is_two_pass_svc =
   1671       (svc->number_spatial_layers > 1) || (svc->number_temporal_layers > 1);
   1672   RATE_CONTROL *const rc = &cpi->rc;
   1673   TWO_PASS *const twopass =
   1674       is_two_pass_svc ? &svc->layer_context[svc->spatial_layer_id].twopass
   1675                       : &cpi->twopass;
   1676   double frame_rate;
   1677   FIRSTPASS_STATS *stats;
   1678 
   1679   zero_stats(&twopass->total_stats);
   1680   zero_stats(&twopass->total_left_stats);
   1681 
   1682   if (!twopass->stats_in_end) return;
   1683 
   1684   stats = &twopass->total_stats;
   1685 
   1686   *stats = *twopass->stats_in_end;
   1687   twopass->total_left_stats = *stats;
   1688 
   1689   frame_rate = 10000000.0 * stats->count / stats->duration;
   1690   // Each frame can have a different duration, as the frame rate in the source
   1691   // isn't guaranteed to be constant. The frame rate prior to the first frame
   1692   // encoded in the second pass is a guess. However, the sum duration is not.
   1693   // It is calculated based on the actual durations of all frames from the
   1694   // first pass.
   1695 
   1696   if (is_two_pass_svc) {
   1697     vp9_update_spatial_layer_framerate(cpi, frame_rate);
   1698     twopass->bits_left =
   1699         (int64_t)(stats->duration *
   1700                   svc->layer_context[svc->spatial_layer_id].target_bandwidth /
   1701                   10000000.0);
   1702   } else {
   1703     vp9_new_framerate(cpi, frame_rate);
   1704     twopass->bits_left =
   1705         (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
   1706   }
   1707 
   1708   // This variable monitors how far behind the second ref update is lagging.
   1709   twopass->sr_update_lag = 1;
   1710 
   1711   // Scan the first pass file and calculate a modified score for each
   1712   // frame that is used to distribute bits. The modified score is assumed
   1713   // to provide a linear basis for bit allocation. I.e a frame A with a score
   1714   // that is double that of frame B will be allocated 2x as many bits.
   1715   {
   1716     const FIRSTPASS_STATS *s = twopass->stats_in;
   1717     double modified_score_total = 0.0;
   1718 
   1719     // The first scan is unclamped and gives a raw average.
   1720     while (s < twopass->stats_in_end) {
   1721       modified_score_total += calculate_mod_frame_score(cpi, twopass, oxcf, s);
   1722       ++s;
   1723     }
   1724 
   1725     // The average error from this first scan is used to define the midpoint
   1726     // error for the rate distribution function.
   1727     twopass->mean_mod_score =
   1728         modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count);
   1729 
   1730     // Second scan using clamps based on the previous cycle average.
   1731     // This may modify the total and average somewhat but we dont bother with
   1732     // further itterations.
   1733     s = twopass->stats_in;
   1734     modified_score_total = 0.0;
   1735     while (s < twopass->stats_in_end) {
   1736       modified_score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s);
   1737       ++s;
   1738     }
   1739     twopass->normalized_score_left = modified_score_total;
   1740   }
   1741 
   1742   // Reset the vbr bits off target counters
   1743   rc->vbr_bits_off_target = 0;
   1744   rc->vbr_bits_off_target_fast = 0;
   1745   rc->rate_error_estimate = 0;
   1746 
   1747   // Static sequence monitor variables.
   1748   twopass->kf_zeromotion_pct = 100;
   1749   twopass->last_kfgroup_zeromotion_pct = 100;
   1750 
   1751   // Initialize bits per macro_block estimate correction factor.
   1752   twopass->bpm_factor = 1.0;
   1753   // Initialize actual and target bits counters for ARF groups so that
   1754   // at the start we have a neutral bpm adjustment.
   1755   twopass->rolling_arf_group_target_bits = 1;
   1756   twopass->rolling_arf_group_actual_bits = 1;
   1757 
   1758   if (oxcf->resize_mode != RESIZE_NONE) {
   1759     init_subsampling(cpi);
   1760   }
   1761 
   1762   // Initialize the arnr strangth adjustment to 0
   1763   twopass->arnr_strength_adjustment = 0;
   1764 }
   1765 
   1766 #define SR_DIFF_PART 0.0015
   1767 #define INTRA_PART 0.005
   1768 #define DEFAULT_DECAY_LIMIT 0.75
   1769 #define LOW_SR_DIFF_TRHESH 0.1
   1770 #define SR_DIFF_MAX 128.0
   1771 #define LOW_CODED_ERR_PER_MB 10.0
   1772 #define NCOUNT_FRAME_II_THRESH 6.0
   1773 
   1774 static double get_sr_decay_rate(const VP9_COMP *cpi,
   1775                                 const FIRSTPASS_STATS *frame) {
   1776   double sr_diff = (frame->sr_coded_error - frame->coded_error);
   1777   double sr_decay = 1.0;
   1778   double modified_pct_inter;
   1779   double modified_pcnt_intra;
   1780   const double motion_amplitude_part =
   1781       frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) /
   1782                             (cpi->initial_height + cpi->initial_width));
   1783 
   1784   modified_pct_inter = frame->pcnt_inter;
   1785   if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
   1786       ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
   1787        (double)NCOUNT_FRAME_II_THRESH)) {
   1788     modified_pct_inter =
   1789         frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral;
   1790   }
   1791   modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
   1792 
   1793   if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
   1794     sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
   1795     sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part -
   1796                (INTRA_PART * modified_pcnt_intra);
   1797   }
   1798   return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT);
   1799 }
   1800 
   1801 // This function gives an estimate of how badly we believe the prediction
   1802 // quality is decaying from frame to frame.
   1803 static double get_zero_motion_factor(const VP9_COMP *cpi,
   1804                                      const FIRSTPASS_STATS *frame) {
   1805   const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
   1806   double sr_decay = get_sr_decay_rate(cpi, frame);
   1807   return VPXMIN(sr_decay, zero_motion_pct);
   1808 }
   1809 
   1810 #define ZM_POWER_FACTOR 0.75
   1811 
   1812 static double get_prediction_decay_rate(const VP9_COMP *cpi,
   1813                                         const FIRSTPASS_STATS *next_frame) {
   1814   const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
   1815   const double zero_motion_factor =
   1816       (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
   1817                   ZM_POWER_FACTOR));
   1818 
   1819   return VPXMAX(zero_motion_factor,
   1820                 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
   1821 }
   1822 
   1823 // Function to test for a condition where a complex transition is followed
   1824 // by a static section. For example in slide shows where there is a fade
   1825 // between slides. This is to help with more optimal kf and gf positioning.
   1826 static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval,
   1827                                       int still_interval,
   1828                                       double loop_decay_rate,
   1829                                       double last_decay_rate) {
   1830   TWO_PASS *const twopass = &cpi->twopass;
   1831   RATE_CONTROL *const rc = &cpi->rc;
   1832 
   1833   // Break clause to detect very still sections after motion
   1834   // For example a static image after a fade or other transition
   1835   // instead of a clean scene cut.
   1836   if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
   1837       last_decay_rate < 0.9) {
   1838     int j;
   1839 
   1840     // Look ahead a few frames to see if static condition persists...
   1841     for (j = 0; j < still_interval; ++j) {
   1842       const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
   1843       if (stats >= twopass->stats_in_end) break;
   1844 
   1845       if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
   1846     }
   1847 
   1848     // Only if it does do we signal a transition to still.
   1849     return j == still_interval;
   1850   }
   1851 
   1852   return 0;
   1853 }
   1854 
   1855 // This function detects a flash through the high relative pcnt_second_ref
   1856 // score in the frame following a flash frame. The offset passed in should
   1857 // reflect this.
   1858 static int detect_flash(const TWO_PASS *twopass, int offset) {
   1859   const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
   1860 
   1861   // What we are looking for here is a situation where there is a
   1862   // brief break in prediction (such as a flash) but subsequent frames
   1863   // are reasonably well predicted by an earlier (pre flash) frame.
   1864   // The recovery after a flash is indicated by a high pcnt_second_ref
   1865   // compared to pcnt_inter.
   1866   return next_frame != NULL &&
   1867          next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
   1868          next_frame->pcnt_second_ref >= 0.5;
   1869 }
   1870 
   1871 // Update the motion related elements to the GF arf boost calculation.
   1872 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
   1873                                           double *mv_in_out,
   1874                                           double *mv_in_out_accumulator,
   1875                                           double *abs_mv_in_out_accumulator,
   1876                                           double *mv_ratio_accumulator) {
   1877   const double pct = stats->pcnt_motion;
   1878 
   1879   // Accumulate Motion In/Out of frame stats.
   1880   *mv_in_out = stats->mv_in_out_count * pct;
   1881   *mv_in_out_accumulator += *mv_in_out;
   1882   *abs_mv_in_out_accumulator += fabs(*mv_in_out);
   1883 
   1884   // Accumulate a measure of how uniform (or conversely how random) the motion
   1885   // field is (a ratio of abs(mv) / mv).
   1886   if (pct > 0.05) {
   1887     const double mvr_ratio =
   1888         fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
   1889     const double mvc_ratio =
   1890         fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
   1891 
   1892     *mv_ratio_accumulator +=
   1893         pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
   1894     *mv_ratio_accumulator +=
   1895         pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
   1896   }
   1897 }
   1898 
   1899 #define BASELINE_ERR_PER_MB 12500.0
   1900 static double calc_frame_boost(VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame,
   1901                                double *sr_accumulator,
   1902                                double this_frame_mv_in_out, double max_boost) {
   1903   double frame_boost;
   1904   const double lq = vp9_convert_qindex_to_q(
   1905       cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
   1906   const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
   1907   const double active_area = calculate_active_area(cpi, this_frame);
   1908 
   1909   // Underlying boost factor is based on inter error ratio.
   1910   frame_boost = (BASELINE_ERR_PER_MB * active_area) /
   1911                 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
   1912 
   1913   // Update the accumulator for second ref error difference.
   1914   // This is intended to give an indication of how much the coded error is
   1915   // increasing over time.
   1916   *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
   1917   *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
   1918 
   1919   // Small adjustment for cases where there is a zoom out
   1920   if (this_frame_mv_in_out > 0.0)
   1921     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
   1922 
   1923   // Q correction and scalling
   1924   frame_boost = frame_boost * boost_q_correction;
   1925 
   1926   return VPXMIN(frame_boost, max_boost * boost_q_correction);
   1927 }
   1928 
   1929 #define KF_BASELINE_ERR_PER_MB 12500.0
   1930 static double calc_kf_frame_boost(VP9_COMP *cpi,
   1931                                   const FIRSTPASS_STATS *this_frame,
   1932                                   double *sr_accumulator,
   1933                                   double this_frame_mv_in_out,
   1934                                   double max_boost) {
   1935   double frame_boost;
   1936   const double lq = vp9_convert_qindex_to_q(
   1937       cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
   1938   const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00);
   1939   const double active_area = calculate_active_area(cpi, this_frame);
   1940 
   1941   // Underlying boost factor is based on inter error ratio.
   1942   frame_boost = (KF_BASELINE_ERR_PER_MB * active_area) /
   1943                 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
   1944 
   1945   // Update the accumulator for second ref error difference.
   1946   // This is intended to give an indication of how much the coded error is
   1947   // increasing over time.
   1948   *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
   1949   *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
   1950 
   1951   // Small adjustment for cases where there is a zoom out
   1952   if (this_frame_mv_in_out > 0.0)
   1953     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
   1954 
   1955   // Q correction and scalling
   1956   frame_boost = frame_boost * boost_q_correction;
   1957 
   1958   return VPXMIN(frame_boost, max_boost * boost_q_correction);
   1959 }
   1960 
   1961 static int calc_arf_boost(VP9_COMP *cpi, int offset, int f_frames, int b_frames,
   1962                           int *f_boost, int *b_boost) {
   1963   TWO_PASS *const twopass = &cpi->twopass;
   1964   int i;
   1965   double boost_score = 0.0;
   1966   double mv_ratio_accumulator = 0.0;
   1967   double decay_accumulator = 1.0;
   1968   double this_frame_mv_in_out = 0.0;
   1969   double mv_in_out_accumulator = 0.0;
   1970   double abs_mv_in_out_accumulator = 0.0;
   1971   double sr_accumulator = 0.0;
   1972   int arf_boost;
   1973   int flash_detected = 0;
   1974 
   1975   // Search forward from the proposed arf/next gf position.
   1976   for (i = 0; i < f_frames; ++i) {
   1977     const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
   1978     if (this_frame == NULL) break;
   1979 
   1980     // Update the motion related elements to the boost calculation.
   1981     accumulate_frame_motion_stats(
   1982         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
   1983         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
   1984 
   1985     // We want to discount the flash frame itself and the recovery
   1986     // frame that follows as both will have poor scores.
   1987     flash_detected = detect_flash(twopass, i + offset) ||
   1988                      detect_flash(twopass, i + offset + 1);
   1989 
   1990     // Accumulate the effect of prediction quality decay.
   1991     if (!flash_detected) {
   1992       decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
   1993       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
   1994                               ? MIN_DECAY_FACTOR
   1995                               : decay_accumulator;
   1996     }
   1997 
   1998     sr_accumulator = 0.0;
   1999     boost_score += decay_accumulator *
   2000                    calc_frame_boost(cpi, this_frame, &sr_accumulator,
   2001                                     this_frame_mv_in_out, GF_MAX_BOOST);
   2002   }
   2003 
   2004   *f_boost = (int)boost_score;
   2005 
   2006   // Reset for backward looking loop.
   2007   boost_score = 0.0;
   2008   mv_ratio_accumulator = 0.0;
   2009   decay_accumulator = 1.0;
   2010   this_frame_mv_in_out = 0.0;
   2011   mv_in_out_accumulator = 0.0;
   2012   abs_mv_in_out_accumulator = 0.0;
   2013   sr_accumulator = 0.0;
   2014 
   2015   // Search backward towards last gf position.
   2016   for (i = -1; i >= -b_frames; --i) {
   2017     const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
   2018     if (this_frame == NULL) break;
   2019 
   2020     // Update the motion related elements to the boost calculation.
   2021     accumulate_frame_motion_stats(
   2022         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
   2023         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
   2024 
   2025     // We want to discount the the flash frame itself and the recovery
   2026     // frame that follows as both will have poor scores.
   2027     flash_detected = detect_flash(twopass, i + offset) ||
   2028                      detect_flash(twopass, i + offset + 1);
   2029 
   2030     // Cumulative effect of prediction quality decay.
   2031     if (!flash_detected) {
   2032       decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
   2033       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
   2034                               ? MIN_DECAY_FACTOR
   2035                               : decay_accumulator;
   2036     }
   2037 
   2038     sr_accumulator = 0.0;
   2039     boost_score += decay_accumulator *
   2040                    calc_frame_boost(cpi, this_frame, &sr_accumulator,
   2041                                     this_frame_mv_in_out, GF_MAX_BOOST);
   2042   }
   2043   *b_boost = (int)boost_score;
   2044 
   2045   arf_boost = (*f_boost + *b_boost);
   2046   if (arf_boost < ((b_frames + f_frames) * 20))
   2047     arf_boost = ((b_frames + f_frames) * 20);
   2048   arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
   2049 
   2050   return arf_boost;
   2051 }
   2052 
   2053 // Calculate a section intra ratio used in setting max loop filter.
   2054 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
   2055                                          const FIRSTPASS_STATS *end,
   2056                                          int section_length) {
   2057   const FIRSTPASS_STATS *s = begin;
   2058   double intra_error = 0.0;
   2059   double coded_error = 0.0;
   2060   int i = 0;
   2061 
   2062   while (s < end && i < section_length) {
   2063     intra_error += s->intra_error;
   2064     coded_error += s->coded_error;
   2065     ++s;
   2066     ++i;
   2067   }
   2068 
   2069   return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
   2070 }
   2071 
   2072 // Calculate the total bits to allocate in this GF/ARF group.
   2073 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
   2074                                              double gf_group_err) {
   2075   const RATE_CONTROL *const rc = &cpi->rc;
   2076   const TWO_PASS *const twopass = &cpi->twopass;
   2077   const int max_bits = frame_max_bits(rc, &cpi->oxcf);
   2078   int64_t total_group_bits;
   2079 
   2080   // Calculate the bits to be allocated to the group as a whole.
   2081   if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) {
   2082     total_group_bits = (int64_t)(twopass->kf_group_bits *
   2083                                  (gf_group_err / twopass->kf_group_error_left));
   2084   } else {
   2085     total_group_bits = 0;
   2086   }
   2087 
   2088   // Clamp odd edge cases.
   2089   total_group_bits = (total_group_bits < 0)
   2090                          ? 0
   2091                          : (total_group_bits > twopass->kf_group_bits)
   2092                                ? twopass->kf_group_bits
   2093                                : total_group_bits;
   2094 
   2095   // Clip based on user supplied data rate variability limit.
   2096   if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
   2097     total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
   2098 
   2099   return total_group_bits;
   2100 }
   2101 
   2102 // Calculate the number bits extra to assign to boosted frames in a group.
   2103 static int calculate_boost_bits(int frame_count, int boost,
   2104                                 int64_t total_group_bits) {
   2105   int allocation_chunks;
   2106 
   2107   // return 0 for invalid inputs (could arise e.g. through rounding errors)
   2108   if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
   2109 
   2110   allocation_chunks = (frame_count * 100) + boost;
   2111 
   2112   // Prevent overflow.
   2113   if (boost > 1023) {
   2114     int divisor = boost >> 10;
   2115     boost /= divisor;
   2116     allocation_chunks /= divisor;
   2117   }
   2118 
   2119   // Calculate the number of extra bits for use in the boosted frame or frames.
   2120   return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
   2121                 0);
   2122 }
   2123 
   2124 // Current limit on maximum number of active arfs in a GF/ARF group.
   2125 #define MAX_ACTIVE_ARFS 2
   2126 #define ARF_SLOT1 2
   2127 #define ARF_SLOT2 3
   2128 // This function indirects the choice of buffers for arfs.
   2129 // At the moment the values are fixed but this may change as part of
   2130 // the integration process with other codec features that swap buffers around.
   2131 static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
   2132   arf_buffer_indices[0] = ARF_SLOT1;
   2133   arf_buffer_indices[1] = ARF_SLOT2;
   2134 }
   2135 
   2136 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
   2137                                    int gf_arf_bits) {
   2138   RATE_CONTROL *const rc = &cpi->rc;
   2139   TWO_PASS *const twopass = &cpi->twopass;
   2140   GF_GROUP *const gf_group = &twopass->gf_group;
   2141   FIRSTPASS_STATS frame_stats;
   2142   int i;
   2143   int frame_index = 1;
   2144   int target_frame_size;
   2145   int key_frame;
   2146   const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
   2147   int64_t total_group_bits = gf_group_bits;
   2148   int mid_boost_bits = 0;
   2149   int mid_frame_idx;
   2150   unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
   2151   int alt_frame_index = frame_index;
   2152   int has_temporal_layers =
   2153       is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1;
   2154   int normal_frames;
   2155   int normal_frame_bits;
   2156   int last_frame_bits;
   2157   int last_frame_reduction;
   2158 
   2159   // Only encode alt reference frame in temporal base layer.
   2160   if (has_temporal_layers) alt_frame_index = cpi->svc.number_temporal_layers;
   2161 
   2162   key_frame =
   2163       cpi->common.frame_type == KEY_FRAME || vp9_is_upper_layer_key_frame(cpi);
   2164 
   2165   get_arf_buffer_indices(arf_buffer_indices);
   2166 
   2167   // For key frames the frame target rate is already set and it
   2168   // is also the golden frame.
   2169   if (!key_frame) {
   2170     if (rc->source_alt_ref_active) {
   2171       gf_group->update_type[0] = OVERLAY_UPDATE;
   2172       gf_group->rf_level[0] = INTER_NORMAL;
   2173       gf_group->bit_allocation[0] = 0;
   2174     } else {
   2175       gf_group->update_type[0] = GF_UPDATE;
   2176       gf_group->rf_level[0] = GF_ARF_STD;
   2177       gf_group->bit_allocation[0] = gf_arf_bits;
   2178     }
   2179     gf_group->arf_update_idx[0] = arf_buffer_indices[0];
   2180     gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
   2181 
   2182     // Step over the golden frame / overlay frame
   2183     if (EOF == input_stats(twopass, &frame_stats)) return;
   2184   }
   2185 
   2186   // Deduct the boost bits for arf (or gf if it is not a key frame)
   2187   // from the group total.
   2188   if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
   2189 
   2190   // Store the bits to spend on the ARF if there is one.
   2191   if (rc->source_alt_ref_pending) {
   2192     gf_group->update_type[alt_frame_index] = ARF_UPDATE;
   2193     gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
   2194     gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
   2195 
   2196     if (has_temporal_layers)
   2197       gf_group->arf_src_offset[alt_frame_index] =
   2198           (unsigned char)(rc->baseline_gf_interval -
   2199                           cpi->svc.number_temporal_layers);
   2200     else
   2201       gf_group->arf_src_offset[alt_frame_index] =
   2202           (unsigned char)(rc->baseline_gf_interval - 1);
   2203 
   2204     gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
   2205     gf_group->arf_ref_idx[alt_frame_index] =
   2206         arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
   2207                            rc->source_alt_ref_active];
   2208     if (!has_temporal_layers) ++frame_index;
   2209 
   2210     if (cpi->multi_arf_enabled) {
   2211       // Set aside a slot for a level 1 arf.
   2212       gf_group->update_type[frame_index] = ARF_UPDATE;
   2213       gf_group->rf_level[frame_index] = GF_ARF_LOW;
   2214       gf_group->arf_src_offset[frame_index] =
   2215           (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
   2216       gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
   2217       gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
   2218       ++frame_index;
   2219     }
   2220   }
   2221 
   2222   // Note index of the first normal inter frame int eh group (not gf kf arf)
   2223   gf_group->first_inter_index = frame_index;
   2224 
   2225   // Define middle frame
   2226   mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
   2227 
   2228   normal_frames = (rc->baseline_gf_interval - rc->source_alt_ref_pending);
   2229 
   2230   // The last frame in the group is used less as a predictor so reduce
   2231   // its allocation a little.
   2232   if (normal_frames > 1) {
   2233     normal_frame_bits = (int)(total_group_bits / normal_frames);
   2234     last_frame_reduction = normal_frame_bits / 16;
   2235     last_frame_bits = normal_frame_bits - last_frame_reduction;
   2236   } else {
   2237     normal_frame_bits = (int)total_group_bits;
   2238     last_frame_bits = normal_frame_bits;
   2239     last_frame_reduction = 0;
   2240   }
   2241 
   2242   // Allocate bits to the other frames in the group.
   2243   for (i = 0; i < normal_frames; ++i) {
   2244     int arf_idx = 0;
   2245     if (EOF == input_stats(twopass, &frame_stats)) break;
   2246 
   2247     if (has_temporal_layers && frame_index == alt_frame_index) {
   2248       ++frame_index;
   2249     }
   2250 
   2251     target_frame_size = (i == (normal_frames - 1))
   2252                             ? last_frame_bits
   2253                             : (i == mid_frame_idx)
   2254                                   ? normal_frame_bits + last_frame_reduction
   2255                                   : normal_frame_bits;
   2256 
   2257     if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
   2258       mid_boost_bits += (target_frame_size >> 4);
   2259       target_frame_size -= (target_frame_size >> 4);
   2260 
   2261       if (frame_index <= mid_frame_idx) arf_idx = 1;
   2262     }
   2263     gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
   2264     gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
   2265 
   2266     target_frame_size =
   2267         clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
   2268 
   2269     gf_group->update_type[frame_index] = LF_UPDATE;
   2270     gf_group->rf_level[frame_index] = INTER_NORMAL;
   2271 
   2272     gf_group->bit_allocation[frame_index] = target_frame_size;
   2273     ++frame_index;
   2274   }
   2275 
   2276   // Note:
   2277   // We need to configure the frame at the end of the sequence + 1 that will be
   2278   // the start frame for the next group. Otherwise prior to the call to
   2279   // vp9_rc_get_second_pass_params() the data will be undefined.
   2280   gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
   2281   gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
   2282 
   2283   if (rc->source_alt_ref_pending) {
   2284     gf_group->update_type[frame_index] = OVERLAY_UPDATE;
   2285     gf_group->rf_level[frame_index] = INTER_NORMAL;
   2286 
   2287     // Final setup for second arf and its overlay.
   2288     if (cpi->multi_arf_enabled) {
   2289       gf_group->bit_allocation[2] =
   2290           gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
   2291       gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
   2292       gf_group->bit_allocation[mid_frame_idx] = 0;
   2293     }
   2294   } else {
   2295     gf_group->update_type[frame_index] = GF_UPDATE;
   2296     gf_group->rf_level[frame_index] = GF_ARF_STD;
   2297   }
   2298 
   2299   // Note whether multi-arf was enabled this group for next time.
   2300   cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
   2301 }
   2302 
   2303 // Adjusts the ARNF filter for a GF group.
   2304 static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise,
   2305                                      double section_inter,
   2306                                      double section_motion) {
   2307   TWO_PASS *const twopass = &cpi->twopass;
   2308   double section_zeromv = section_inter - section_motion;
   2309 
   2310   twopass->arnr_strength_adjustment = 0;
   2311 
   2312   if ((section_zeromv < 0.10) || (section_noise <= (SECTION_NOISE_DEF * 0.75)))
   2313     twopass->arnr_strength_adjustment -= 1;
   2314   if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1;
   2315 }
   2316 
   2317 // Analyse and define a gf/arf group.
   2318 #define ARF_DECAY_BREAKOUT 0.10
   2319 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
   2320   VP9_COMMON *const cm = &cpi->common;
   2321   RATE_CONTROL *const rc = &cpi->rc;
   2322   VP9EncoderConfig *const oxcf = &cpi->oxcf;
   2323   TWO_PASS *const twopass = &cpi->twopass;
   2324   FIRSTPASS_STATS next_frame;
   2325   const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
   2326   int i;
   2327 
   2328   double boost_score = 0.0;
   2329   double old_boost_score = 0.0;
   2330   double gf_group_err = 0.0;
   2331   double gf_group_raw_error = 0.0;
   2332   double gf_group_noise = 0.0;
   2333   double gf_group_skip_pct = 0.0;
   2334   double gf_group_inactive_zone_rows = 0.0;
   2335   double gf_group_inter = 0.0;
   2336   double gf_group_motion = 0.0;
   2337   double gf_first_frame_err = 0.0;
   2338   double mod_frame_err = 0.0;
   2339 
   2340   double mv_ratio_accumulator = 0.0;
   2341   double decay_accumulator = 1.0;
   2342   double zero_motion_accumulator = 1.0;
   2343   double loop_decay_rate = 1.00;
   2344   double last_loop_decay_rate = 1.00;
   2345 
   2346   double this_frame_mv_in_out = 0.0;
   2347   double mv_in_out_accumulator = 0.0;
   2348   double abs_mv_in_out_accumulator = 0.0;
   2349   double mv_ratio_accumulator_thresh;
   2350   double mv_in_out_thresh;
   2351   double abs_mv_in_out_thresh;
   2352   double sr_accumulator = 0.0;
   2353   unsigned int allow_alt_ref = is_altref_enabled(cpi);
   2354 
   2355   int f_boost = 0;
   2356   int b_boost = 0;
   2357   int flash_detected;
   2358   int active_max_gf_interval;
   2359   int active_min_gf_interval;
   2360   int64_t gf_group_bits;
   2361   int gf_arf_bits;
   2362   const int is_key_frame = frame_is_intra_only(cm);
   2363   const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
   2364 
   2365   // Reset the GF group data structures unless this is a key
   2366   // frame in which case it will already have been done.
   2367   if (is_key_frame == 0) {
   2368     vp9_zero(twopass->gf_group);
   2369   }
   2370 
   2371   vpx_clear_system_state();
   2372   vp9_zero(next_frame);
   2373 
   2374   // Load stats for the current frame.
   2375   mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2376 
   2377   // Note the error of the frame at the start of the group. This will be
   2378   // the GF frame error if we code a normal gf.
   2379   gf_first_frame_err = mod_frame_err;
   2380 
   2381   // If this is a key frame or the overlay from a previous arf then
   2382   // the error score / cost of this frame has already been accounted for.
   2383   if (arf_active_or_kf) {
   2384     gf_group_err -= gf_first_frame_err;
   2385     gf_group_raw_error -= this_frame->coded_error;
   2386     gf_group_noise -= this_frame->frame_noise_energy;
   2387     gf_group_skip_pct -= this_frame->intra_skip_pct;
   2388     gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
   2389     gf_group_inter -= this_frame->pcnt_inter;
   2390     gf_group_motion -= this_frame->pcnt_motion;
   2391   }
   2392 
   2393   // Motion breakout threshold for loop below depends on image size.
   2394   mv_ratio_accumulator_thresh =
   2395       (cpi->initial_height + cpi->initial_width) / 4.0;
   2396   mv_in_out_thresh = (cpi->initial_height + cpi->initial_width) / 300.0;
   2397   abs_mv_in_out_thresh = (cpi->initial_height + cpi->initial_width) / 200.0;
   2398 
   2399   // Set a maximum and minimum interval for the GF group.
   2400   // If the image appears almost completely static we can extend beyond this.
   2401   {
   2402     int int_max_q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality,
   2403                                                   cpi->common.bit_depth));
   2404     int int_lbq = (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex,
   2405                                                 cpi->common.bit_depth));
   2406     active_min_gf_interval =
   2407         rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200);
   2408     active_min_gf_interval =
   2409         VPXMIN(active_min_gf_interval, rc->max_gf_interval + arf_active_or_kf);
   2410 
   2411     if (cpi->multi_arf_allowed) {
   2412       active_max_gf_interval = rc->max_gf_interval;
   2413     } else {
   2414       // The value chosen depends on the active Q range. At low Q we have
   2415       // bits to spare and are better with a smaller interval and smaller boost.
   2416       // At high Q when there are few bits to spare we are better with a longer
   2417       // interval to spread the cost of the GF.
   2418       active_max_gf_interval = 12 + arf_active_or_kf + VPXMIN(4, (int_lbq / 6));
   2419 
   2420       // We have: active_min_gf_interval <=
   2421       // rc->max_gf_interval + arf_active_or_kf.
   2422       if (active_max_gf_interval < active_min_gf_interval) {
   2423         active_max_gf_interval = active_min_gf_interval;
   2424       } else {
   2425         active_max_gf_interval = VPXMIN(active_max_gf_interval,
   2426                                         rc->max_gf_interval + arf_active_or_kf);
   2427       }
   2428 
   2429       // Would the active max drop us out just before the near the next kf?
   2430       if ((active_max_gf_interval <= rc->frames_to_key) &&
   2431           (active_max_gf_interval >= (rc->frames_to_key - rc->min_gf_interval)))
   2432         active_max_gf_interval = rc->frames_to_key / 2;
   2433     }
   2434   }
   2435 
   2436   i = 0;
   2437   while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
   2438     ++i;
   2439 
   2440     // Accumulate error score of frames in this gf group.
   2441     mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2442     gf_group_err += mod_frame_err;
   2443     gf_group_raw_error += this_frame->coded_error;
   2444     gf_group_noise += this_frame->frame_noise_energy;
   2445     gf_group_skip_pct += this_frame->intra_skip_pct;
   2446     gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
   2447     gf_group_inter += this_frame->pcnt_inter;
   2448     gf_group_motion += this_frame->pcnt_motion;
   2449 
   2450     if (EOF == input_stats(twopass, &next_frame)) break;
   2451 
   2452     // Test for the case where there is a brief flash but the prediction
   2453     // quality back to an earlier frame is then restored.
   2454     flash_detected = detect_flash(twopass, 0);
   2455 
   2456     // Update the motion related elements to the boost calculation.
   2457     accumulate_frame_motion_stats(
   2458         &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
   2459         &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
   2460 
   2461     // Accumulate the effect of prediction quality decay.
   2462     if (!flash_detected) {
   2463       last_loop_decay_rate = loop_decay_rate;
   2464       loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
   2465 
   2466       decay_accumulator = decay_accumulator * loop_decay_rate;
   2467 
   2468       // Monitor for static sections.
   2469       zero_motion_accumulator = VPXMIN(
   2470           zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
   2471 
   2472       // Break clause to detect very still sections after motion. For example,
   2473       // a static image after a fade or other transition.
   2474       if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
   2475                                      last_loop_decay_rate)) {
   2476         allow_alt_ref = 0;
   2477         break;
   2478       }
   2479     }
   2480 
   2481     // Calculate a boost number for this frame.
   2482     sr_accumulator = 0.0;
   2483     boost_score += decay_accumulator *
   2484                    calc_frame_boost(cpi, &next_frame, &sr_accumulator,
   2485                                     this_frame_mv_in_out, GF_MAX_BOOST);
   2486 
   2487     // Break out conditions.
   2488     if (
   2489         // Break at active_max_gf_interval unless almost totally static.
   2490         ((i >= active_max_gf_interval) && (zero_motion_accumulator < 0.995)) ||
   2491         (
   2492             // Don't break out with a very short interval.
   2493             (i >= active_min_gf_interval) &&
   2494             // If possible dont break very close to a kf
   2495             ((rc->frames_to_key - i) >= rc->min_gf_interval) &&
   2496             (!flash_detected) &&
   2497             ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
   2498              (abs_mv_in_out_accumulator > abs_mv_in_out_thresh) ||
   2499              (mv_in_out_accumulator < -mv_in_out_thresh) ||
   2500              (decay_accumulator < ARF_DECAY_BREAKOUT)))) {
   2501       boost_score = old_boost_score;
   2502       break;
   2503     }
   2504 
   2505     *this_frame = next_frame;
   2506     old_boost_score = boost_score;
   2507   }
   2508 
   2509   // Was the group length constrained by the requirement for a new KF?
   2510   rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
   2511 
   2512   // Should we use the alternate reference frame.
   2513   if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
   2514       (i >= rc->min_gf_interval)) {
   2515     // Calculate the boost for alt ref.
   2516     rc->gfu_boost =
   2517         calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
   2518     rc->source_alt_ref_pending = 1;
   2519 
   2520     // Test to see if multi arf is appropriate.
   2521     cpi->multi_arf_enabled =
   2522         (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
   2523          (zero_motion_accumulator < 0.995))
   2524             ? 1
   2525             : 0;
   2526   } else {
   2527     rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
   2528     rc->source_alt_ref_pending = 0;
   2529   }
   2530 
   2531 #ifdef AGGRESSIVE_VBR
   2532   // Limit maximum boost based on interval length.
   2533   rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 140);
   2534 #else
   2535   rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 200);
   2536 #endif
   2537 
   2538   // Set the interval until the next gf.
   2539   rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
   2540 
   2541   // Only encode alt reference frame in temporal base layer. So
   2542   // baseline_gf_interval should be multiple of a temporal layer group
   2543   // (typically the frame distance between two base layer frames)
   2544   if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
   2545     int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
   2546     int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
   2547     int j;
   2548     for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
   2549       if (EOF == input_stats(twopass, this_frame)) break;
   2550       gf_group_err +=
   2551           calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2552       gf_group_raw_error += this_frame->coded_error;
   2553       gf_group_noise += this_frame->frame_noise_energy;
   2554       gf_group_skip_pct += this_frame->intra_skip_pct;
   2555       gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
   2556       gf_group_inter += this_frame->pcnt_inter;
   2557       gf_group_motion += this_frame->pcnt_motion;
   2558     }
   2559     rc->baseline_gf_interval = new_gf_interval;
   2560   }
   2561 
   2562   rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   2563 
   2564   // Reset the file position.
   2565   reset_fpf_position(twopass, start_pos);
   2566 
   2567   // Calculate the bits to be allocated to the gf/arf group as a whole
   2568   gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
   2569 
   2570   // Calculate an estimate of the maxq needed for the group.
   2571   // We are more aggressive about correcting for sections
   2572   // where there could be significant overshoot than for easier
   2573   // sections where we do not wish to risk creating an overshoot
   2574   // of the allocated bit budget.
   2575   if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
   2576     const int vbr_group_bits_per_frame =
   2577         (int)(gf_group_bits / rc->baseline_gf_interval);
   2578     const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
   2579     const double group_av_noise = gf_group_noise / rc->baseline_gf_interval;
   2580     const double group_av_skip_pct =
   2581         gf_group_skip_pct / rc->baseline_gf_interval;
   2582     const double group_av_inactive_zone =
   2583         ((gf_group_inactive_zone_rows * 2) /
   2584          (rc->baseline_gf_interval * (double)cm->mb_rows));
   2585     int tmp_q = get_twopass_worst_quality(
   2586         cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
   2587         group_av_noise, vbr_group_bits_per_frame);
   2588     twopass->active_worst_quality =
   2589         (tmp_q + (twopass->active_worst_quality * 3)) >> 2;
   2590   }
   2591 
   2592   // Context Adjustment of ARNR filter strength
   2593   if (rc->baseline_gf_interval > 1) {
   2594     adjust_group_arnr_filter(cpi, (gf_group_noise / rc->baseline_gf_interval),
   2595                              (gf_group_inter / rc->baseline_gf_interval),
   2596                              (gf_group_motion / rc->baseline_gf_interval));
   2597   } else {
   2598     twopass->arnr_strength_adjustment = 0;
   2599   }
   2600 
   2601   // Calculate the extra bits to be used for boosted frame(s)
   2602   gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
   2603                                      gf_group_bits);
   2604 
   2605   // Adjust KF group bits and error remaining.
   2606   twopass->kf_group_error_left -= gf_group_err;
   2607 
   2608   // Allocate bits to each of the frames in the GF group.
   2609   allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits);
   2610 
   2611   // Reset the file position.
   2612   reset_fpf_position(twopass, start_pos);
   2613 
   2614   // Calculate a section intra ratio used in setting max loop filter.
   2615   if (cpi->common.frame_type != KEY_FRAME) {
   2616     twopass->section_intra_rating = calculate_section_intra_ratio(
   2617         start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
   2618   }
   2619 
   2620   if (oxcf->resize_mode == RESIZE_DYNAMIC) {
   2621     // Default to starting GF groups at normal frame size.
   2622     cpi->rc.next_frame_size_selector = UNSCALED;
   2623   }
   2624 
   2625   // Reset rolling actual and target bits counters for ARF groups.
   2626   twopass->rolling_arf_group_target_bits = 0;
   2627   twopass->rolling_arf_group_actual_bits = 0;
   2628 }
   2629 
   2630 // Threshold for use of the lagging second reference frame. High second ref
   2631 // usage may point to a transient event like a flash or occlusion rather than
   2632 // a real scene cut.
   2633 #define SECOND_REF_USEAGE_THRESH 0.1
   2634 // Minimum % intra coding observed in first pass (1.0 = 100%)
   2635 #define MIN_INTRA_LEVEL 0.25
   2636 // Minimum ratio between the % of intra coding and inter coding in the first
   2637 // pass after discounting neutral blocks (discounting neutral blocks in this
   2638 // way helps catch scene cuts in clips with very flat areas or letter box
   2639 // format clips with image padding.
   2640 #define INTRA_VS_INTER_THRESH 2.0
   2641 // Hard threshold where the first pass chooses intra for almost all blocks.
   2642 // In such a case even if the frame is not a scene cut coding a key frame
   2643 // may be a good option.
   2644 #define VERY_LOW_INTER_THRESH 0.05
   2645 // Maximum threshold for the relative ratio of intra error score vs best
   2646 // inter error score.
   2647 #define KF_II_ERR_THRESHOLD 2.5
   2648 // In real scene cuts there is almost always a sharp change in the intra
   2649 // or inter error score.
   2650 #define ERR_CHANGE_THRESHOLD 0.4
   2651 // For real scene cuts we expect an improvment in the intra inter error
   2652 // ratio in the next frame.
   2653 #define II_IMPROVEMENT_THRESHOLD 3.5
   2654 #define KF_II_MAX 128.0
   2655 #define II_FACTOR 12.5
   2656 // Test for very low intra complexity which could cause false key frames
   2657 #define V_LOW_INTRA 0.5
   2658 
   2659 static int test_candidate_kf(TWO_PASS *twopass,
   2660                              const FIRSTPASS_STATS *last_frame,
   2661                              const FIRSTPASS_STATS *this_frame,
   2662                              const FIRSTPASS_STATS *next_frame) {
   2663   int is_viable_kf = 0;
   2664   double pcnt_intra = 1.0 - this_frame->pcnt_inter;
   2665   double modified_pcnt_inter =
   2666       this_frame->pcnt_inter - this_frame->pcnt_neutral;
   2667 
   2668   // Does the frame satisfy the primary criteria of a key frame?
   2669   // See above for an explanation of the test criteria.
   2670   // If so, then examine how well it predicts subsequent frames.
   2671   if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
   2672       (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
   2673       ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
   2674        ((pcnt_intra > MIN_INTRA_LEVEL) &&
   2675         (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
   2676         ((this_frame->intra_error /
   2677           DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
   2678          KF_II_ERR_THRESHOLD) &&
   2679         ((fabs(last_frame->coded_error - this_frame->coded_error) /
   2680               DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
   2681           ERR_CHANGE_THRESHOLD) ||
   2682          (fabs(last_frame->intra_error - this_frame->intra_error) /
   2683               DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
   2684           ERR_CHANGE_THRESHOLD) ||
   2685          ((next_frame->intra_error /
   2686            DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
   2687           II_IMPROVEMENT_THRESHOLD))))) {
   2688     int i;
   2689     const FIRSTPASS_STATS *start_pos = twopass->stats_in;
   2690     FIRSTPASS_STATS local_next_frame = *next_frame;
   2691     double boost_score = 0.0;
   2692     double old_boost_score = 0.0;
   2693     double decay_accumulator = 1.0;
   2694 
   2695     // Examine how well the key frame predicts subsequent frames.
   2696     for (i = 0; i < 16; ++i) {
   2697       double next_iiratio = (II_FACTOR * local_next_frame.intra_error /
   2698                              DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
   2699 
   2700       if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
   2701 
   2702       // Cumulative effect of decay in prediction quality.
   2703       if (local_next_frame.pcnt_inter > 0.85)
   2704         decay_accumulator *= local_next_frame.pcnt_inter;
   2705       else
   2706         decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
   2707 
   2708       // Keep a running total.
   2709       boost_score += (decay_accumulator * next_iiratio);
   2710 
   2711       // Test various breakout clauses.
   2712       if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
   2713           (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
   2714             0.20) &&
   2715            (next_iiratio < 3.0)) ||
   2716           ((boost_score - old_boost_score) < 3.0) ||
   2717           (local_next_frame.intra_error < V_LOW_INTRA)) {
   2718         break;
   2719       }
   2720 
   2721       old_boost_score = boost_score;
   2722 
   2723       // Get the next frame details
   2724       if (EOF == input_stats(twopass, &local_next_frame)) break;
   2725     }
   2726 
   2727     // If there is tolerable prediction for at least the next 3 frames then
   2728     // break out else discard this potential key frame and move on
   2729     if (boost_score > 30.0 && (i > 3)) {
   2730       is_viable_kf = 1;
   2731     } else {
   2732       // Reset the file position
   2733       reset_fpf_position(twopass, start_pos);
   2734 
   2735       is_viable_kf = 0;
   2736     }
   2737   }
   2738 
   2739   return is_viable_kf;
   2740 }
   2741 
   2742 #define FRAMES_TO_CHECK_DECAY 8
   2743 #define MIN_KF_TOT_BOOST 300
   2744 #define KF_BOOST_SCAN_MAX_FRAMES 32
   2745 
   2746 #ifdef AGGRESSIVE_VBR
   2747 #define KF_MAX_FRAME_BOOST 80.0
   2748 #define MAX_KF_TOT_BOOST 4800
   2749 #else
   2750 #define KF_MAX_FRAME_BOOST 96.0
   2751 #define MAX_KF_TOT_BOOST 5400
   2752 #endif
   2753 
   2754 static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
   2755   int i, j;
   2756   RATE_CONTROL *const rc = &cpi->rc;
   2757   TWO_PASS *const twopass = &cpi->twopass;
   2758   GF_GROUP *const gf_group = &twopass->gf_group;
   2759   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
   2760   const FIRSTPASS_STATS first_frame = *this_frame;
   2761   const FIRSTPASS_STATS *const start_position = twopass->stats_in;
   2762   FIRSTPASS_STATS next_frame;
   2763   FIRSTPASS_STATS last_frame;
   2764   int kf_bits = 0;
   2765   double decay_accumulator = 1.0;
   2766   double zero_motion_accumulator = 1.0;
   2767   double boost_score = 0.0;
   2768   double kf_mod_err = 0.0;
   2769   double kf_group_err = 0.0;
   2770   double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
   2771   double sr_accumulator = 0.0;
   2772 
   2773   vp9_zero(next_frame);
   2774 
   2775   cpi->common.frame_type = KEY_FRAME;
   2776 
   2777   // Reset the GF group data structures.
   2778   vp9_zero(*gf_group);
   2779 
   2780   // Is this a forced key frame by interval.
   2781   rc->this_key_frame_forced = rc->next_key_frame_forced;
   2782 
   2783   // Clear the alt ref active flag and last group multi arf flags as they
   2784   // can never be set for a key frame.
   2785   rc->source_alt_ref_active = 0;
   2786   cpi->multi_arf_last_grp_enabled = 0;
   2787 
   2788   // KF is always a GF so clear frames till next gf counter.
   2789   rc->frames_till_gf_update_due = 0;
   2790 
   2791   rc->frames_to_key = 1;
   2792 
   2793   twopass->kf_group_bits = 0;          // Total bits available to kf group
   2794   twopass->kf_group_error_left = 0.0;  // Group modified error score.
   2795 
   2796   kf_mod_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2797 
   2798   // Initialize the decay rates for the recent frames to check
   2799   for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
   2800 
   2801   // Find the next keyframe.
   2802   i = 0;
   2803   while (twopass->stats_in < twopass->stats_in_end &&
   2804          rc->frames_to_key < cpi->oxcf.key_freq) {
   2805     // Accumulate kf group error.
   2806     kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2807 
   2808     // Load the next frame's stats.
   2809     last_frame = *this_frame;
   2810     input_stats(twopass, this_frame);
   2811 
   2812     // Provided that we are not at the end of the file...
   2813     if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
   2814       double loop_decay_rate;
   2815 
   2816       // Check for a scene cut.
   2817       if (test_candidate_kf(twopass, &last_frame, this_frame,
   2818                             twopass->stats_in))
   2819         break;
   2820 
   2821       // How fast is the prediction quality decaying?
   2822       loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
   2823 
   2824       // We want to know something about the recent past... rather than
   2825       // as used elsewhere where we are concerned with decay in prediction
   2826       // quality since the last GF or KF.
   2827       recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
   2828       decay_accumulator = 1.0;
   2829       for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
   2830         decay_accumulator *= recent_loop_decay[j];
   2831 
   2832       // Special check for transition or high motion followed by a
   2833       // static scene.
   2834       if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
   2835                                      loop_decay_rate, decay_accumulator))
   2836         break;
   2837 
   2838       // Step on to the next frame.
   2839       ++rc->frames_to_key;
   2840 
   2841       // If we don't have a real key frame within the next two
   2842       // key_freq intervals then break out of the loop.
   2843       if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
   2844     } else {
   2845       ++rc->frames_to_key;
   2846     }
   2847     ++i;
   2848   }
   2849 
   2850   // If there is a max kf interval set by the user we must obey it.
   2851   // We already breakout of the loop above at 2x max.
   2852   // This code centers the extra kf if the actual natural interval
   2853   // is between 1x and 2x.
   2854   if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
   2855     FIRSTPASS_STATS tmp_frame = first_frame;
   2856 
   2857     rc->frames_to_key /= 2;
   2858 
   2859     // Reset to the start of the group.
   2860     reset_fpf_position(twopass, start_position);
   2861 
   2862     kf_group_err = 0.0;
   2863 
   2864     // Rescan to get the correct error data for the forced kf group.
   2865     for (i = 0; i < rc->frames_to_key; ++i) {
   2866       kf_group_err +=
   2867           calculate_norm_frame_score(cpi, twopass, oxcf, &tmp_frame);
   2868       input_stats(twopass, &tmp_frame);
   2869     }
   2870     rc->next_key_frame_forced = 1;
   2871   } else if (twopass->stats_in == twopass->stats_in_end ||
   2872              rc->frames_to_key >= cpi->oxcf.key_freq) {
   2873     rc->next_key_frame_forced = 1;
   2874   } else {
   2875     rc->next_key_frame_forced = 0;
   2876   }
   2877 
   2878   if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
   2879     int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
   2880     int new_frame_to_key = (rc->frames_to_key + count) & (~count);
   2881     int j;
   2882     for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
   2883       if (EOF == input_stats(twopass, this_frame)) break;
   2884       kf_group_err +=
   2885           calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2886     }
   2887     rc->frames_to_key = new_frame_to_key;
   2888   }
   2889 
   2890   // Special case for the last key frame of the file.
   2891   if (twopass->stats_in >= twopass->stats_in_end) {
   2892     // Accumulate kf group error.
   2893     kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
   2894   }
   2895 
   2896   // Calculate the number of bits that should be assigned to the kf group.
   2897   if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) {
   2898     // Maximum number of bits for a single normal frame (not key frame).
   2899     const int max_bits = frame_max_bits(rc, &cpi->oxcf);
   2900 
   2901     // Maximum number of bits allocated to the key frame group.
   2902     int64_t max_grp_bits;
   2903 
   2904     // Default allocation based on bits left and relative
   2905     // complexity of the section.
   2906     twopass->kf_group_bits = (int64_t)(
   2907         twopass->bits_left * (kf_group_err / twopass->normalized_score_left));
   2908 
   2909     // Clip based on maximum per frame rate defined by the user.
   2910     max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
   2911     if (twopass->kf_group_bits > max_grp_bits)
   2912       twopass->kf_group_bits = max_grp_bits;
   2913   } else {
   2914     twopass->kf_group_bits = 0;
   2915   }
   2916   twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
   2917 
   2918   // Reset the first pass file position.
   2919   reset_fpf_position(twopass, start_position);
   2920 
   2921   // Scan through the kf group collating various stats used to determine
   2922   // how many bits to spend on it.
   2923   boost_score = 0.0;
   2924 
   2925   for (i = 0; i < (rc->frames_to_key - 1); ++i) {
   2926     if (EOF == input_stats(twopass, &next_frame)) break;
   2927 
   2928     if (i <= KF_BOOST_SCAN_MAX_FRAMES) {
   2929       double frame_boost;
   2930       double zm_factor;
   2931 
   2932       // Monitor for static sections.
   2933       zero_motion_accumulator = VPXMIN(
   2934           zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
   2935 
   2936       // Factor 0.75-1.25 based on how much of frame is static.
   2937       zm_factor = (0.75 + (zero_motion_accumulator / 2.0));
   2938 
   2939       // The second (lagging) ref error is not valid immediately after
   2940       // a key frame because either the lag has not built up (in the case of
   2941       // the first key frame or it points to a refernce before the new key
   2942       // frame.
   2943       if (i < 2) sr_accumulator = 0.0;
   2944       frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0,
   2945                                         KF_MAX_FRAME_BOOST * zm_factor);
   2946 
   2947       boost_score += frame_boost;
   2948       if (frame_boost < 25.00) break;
   2949     } else {
   2950       break;
   2951     }
   2952   }
   2953 
   2954   reset_fpf_position(twopass, start_position);
   2955 
   2956   // Store the zero motion percentage
   2957   twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
   2958 
   2959   // Calculate a section intra ratio used in setting max loop filter.
   2960   twopass->section_intra_rating = calculate_section_intra_ratio(
   2961       start_position, twopass->stats_in_end, rc->frames_to_key);
   2962 
   2963   // Apply various clamps for min and max boost
   2964   rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3));
   2965   rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST);
   2966   rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST);
   2967 
   2968   // Work out how many bits to allocate for the key frame itself.
   2969   kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
   2970                                  twopass->kf_group_bits);
   2971 
   2972   twopass->kf_group_bits -= kf_bits;
   2973 
   2974   // Save the bits to spend on the key frame.
   2975   gf_group->bit_allocation[0] = kf_bits;
   2976   gf_group->update_type[0] = KF_UPDATE;
   2977   gf_group->rf_level[0] = KF_STD;
   2978 
   2979   // Note the total error score of the kf group minus the key frame itself.
   2980   twopass->kf_group_error_left = (kf_group_err - kf_mod_err);
   2981 
   2982   // Adjust the count of total modified error left.
   2983   // The count of bits left is adjusted elsewhere based on real coded frame
   2984   // sizes.
   2985   twopass->normalized_score_left -= kf_group_err;
   2986 
   2987   if (oxcf->resize_mode == RESIZE_DYNAMIC) {
   2988     // Default to normal-sized frame on keyframes.
   2989     cpi->rc.next_frame_size_selector = UNSCALED;
   2990   }
   2991 }
   2992 
   2993 // Define the reference buffers that will be updated post encode.
   2994 static void configure_buffer_updates(VP9_COMP *cpi) {
   2995   TWO_PASS *const twopass = &cpi->twopass;
   2996 
   2997   cpi->rc.is_src_frame_alt_ref = 0;
   2998   switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
   2999     case KF_UPDATE:
   3000       cpi->refresh_last_frame = 1;
   3001       cpi->refresh_golden_frame = 1;
   3002       cpi->refresh_alt_ref_frame = 1;
   3003       break;
   3004     case LF_UPDATE:
   3005       cpi->refresh_last_frame = 1;
   3006       cpi->refresh_golden_frame = 0;
   3007       cpi->refresh_alt_ref_frame = 0;
   3008       break;
   3009     case GF_UPDATE:
   3010       cpi->refresh_last_frame = 1;
   3011       cpi->refresh_golden_frame = 1;
   3012       cpi->refresh_alt_ref_frame = 0;
   3013       break;
   3014     case OVERLAY_UPDATE:
   3015       cpi->refresh_last_frame = 0;
   3016       cpi->refresh_golden_frame = 1;
   3017       cpi->refresh_alt_ref_frame = 0;
   3018       cpi->rc.is_src_frame_alt_ref = 1;
   3019       break;
   3020     case ARF_UPDATE:
   3021       cpi->refresh_last_frame = 0;
   3022       cpi->refresh_golden_frame = 0;
   3023       cpi->refresh_alt_ref_frame = 1;
   3024       break;
   3025     default: assert(0); break;
   3026   }
   3027   if (is_two_pass_svc(cpi)) {
   3028     if (cpi->svc.temporal_layer_id > 0) {
   3029       cpi->refresh_last_frame = 0;
   3030       cpi->refresh_golden_frame = 0;
   3031     }
   3032     if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
   3033       cpi->refresh_golden_frame = 0;
   3034     if (cpi->alt_ref_source == NULL) cpi->refresh_alt_ref_frame = 0;
   3035   }
   3036 }
   3037 
   3038 static int is_skippable_frame(const VP9_COMP *cpi) {
   3039   // If the current frame does not have non-zero motion vector detected in the
   3040   // first  pass, and so do its previous and forward frames, then this frame
   3041   // can be skipped for partition check, and the partition size is assigned
   3042   // according to the variance
   3043   const SVC *const svc = &cpi->svc;
   3044   const TWO_PASS *const twopass =
   3045       is_two_pass_svc(cpi) ? &svc->layer_context[svc->spatial_layer_id].twopass
   3046                            : &cpi->twopass;
   3047 
   3048   return (!frame_is_intra_only(&cpi->common) &&
   3049           twopass->stats_in - 2 > twopass->stats_in_start &&
   3050           twopass->stats_in < twopass->stats_in_end &&
   3051           (twopass->stats_in - 1)->pcnt_inter -
   3052                   (twopass->stats_in - 1)->pcnt_motion ==
   3053               1 &&
   3054           (twopass->stats_in - 2)->pcnt_inter -
   3055                   (twopass->stats_in - 2)->pcnt_motion ==
   3056               1 &&
   3057           twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
   3058 }
   3059 
   3060 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
   3061   VP9_COMMON *const cm = &cpi->common;
   3062   RATE_CONTROL *const rc = &cpi->rc;
   3063   TWO_PASS *const twopass = &cpi->twopass;
   3064   GF_GROUP *const gf_group = &twopass->gf_group;
   3065   FIRSTPASS_STATS this_frame;
   3066 
   3067   int target_rate;
   3068   LAYER_CONTEXT *const lc =
   3069       is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
   3070                            : 0;
   3071 
   3072   if (!twopass->stats_in) return;
   3073 
   3074   // If this is an arf frame then we dont want to read the stats file or
   3075   // advance the input pointer as we already have what we need.
   3076   if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
   3077     int target_rate;
   3078     configure_buffer_updates(cpi);
   3079     target_rate = gf_group->bit_allocation[gf_group->index];
   3080     target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
   3081     rc->base_frame_target = target_rate;
   3082 
   3083     cm->frame_type = INTER_FRAME;
   3084 
   3085     if (lc != NULL) {
   3086       if (cpi->svc.spatial_layer_id == 0) {
   3087         lc->is_key_frame = 0;
   3088       } else {
   3089         lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
   3090 
   3091         if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
   3092       }
   3093     }
   3094 
   3095     // Do the firstpass stats indicate that this frame is skippable for the
   3096     // partition search?
   3097     if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
   3098         (!cpi->use_svc || is_two_pass_svc(cpi))) {
   3099       cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
   3100     }
   3101 
   3102     return;
   3103   }
   3104 
   3105   vpx_clear_system_state();
   3106 
   3107   if (cpi->oxcf.rc_mode == VPX_Q) {
   3108     twopass->active_worst_quality = cpi->oxcf.cq_level;
   3109   } else if (cm->current_video_frame == 0 ||
   3110              (lc != NULL && lc->current_video_frame_in_layer == 0)) {
   3111     const int frames_left =
   3112         (int)(twopass->total_stats.count -
   3113               ((lc != NULL) ? lc->current_video_frame_in_layer
   3114                             : cm->current_video_frame));
   3115     // Special case code for first frame.
   3116     const int section_target_bandwidth =
   3117         (int)(twopass->bits_left / frames_left);
   3118     const double section_length = twopass->total_left_stats.count;
   3119     const double section_error =
   3120         twopass->total_left_stats.coded_error / section_length;
   3121     const double section_intra_skip =
   3122         twopass->total_left_stats.intra_skip_pct / section_length;
   3123     const double section_inactive_zone =
   3124         (twopass->total_left_stats.inactive_zone_rows * 2) /
   3125         ((double)cm->mb_rows * section_length);
   3126     const double section_noise =
   3127         twopass->total_left_stats.frame_noise_energy / section_length;
   3128     int tmp_q;
   3129 
   3130     tmp_q = get_twopass_worst_quality(
   3131         cpi, section_error, section_intra_skip + section_inactive_zone,
   3132         section_noise, section_target_bandwidth);
   3133 
   3134     twopass->active_worst_quality = tmp_q;
   3135     twopass->baseline_active_worst_quality = tmp_q;
   3136     rc->ni_av_qi = tmp_q;
   3137     rc->last_q[INTER_FRAME] = tmp_q;
   3138     rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
   3139     rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
   3140     rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
   3141     rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
   3142   }
   3143   vp9_zero(this_frame);
   3144   if (EOF == input_stats(twopass, &this_frame)) return;
   3145 
   3146   // Set the frame content type flag.
   3147   if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
   3148     twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
   3149   else
   3150     twopass->fr_content_type = FC_NORMAL;
   3151 
   3152   // Keyframe and section processing.
   3153   if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
   3154     FIRSTPASS_STATS this_frame_copy;
   3155     this_frame_copy = this_frame;
   3156     // Define next KF group and assign bits to it.
   3157     find_next_key_frame(cpi, &this_frame);
   3158     this_frame = this_frame_copy;
   3159   } else {
   3160     cm->frame_type = INTER_FRAME;
   3161   }
   3162 
   3163   if (lc != NULL) {
   3164     if (cpi->svc.spatial_layer_id == 0) {
   3165       lc->is_key_frame = (cm->frame_type == KEY_FRAME);
   3166       if (lc->is_key_frame) {
   3167         cpi->ref_frame_flags &=
   3168             (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
   3169         lc->frames_from_key_frame = 0;
   3170         // Encode an intra only empty frame since we have a key frame.
   3171         cpi->svc.encode_intra_empty_frame = 1;
   3172       }
   3173     } else {
   3174       cm->frame_type = INTER_FRAME;
   3175       lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
   3176 
   3177       if (lc->is_key_frame) {
   3178         cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
   3179         lc->frames_from_key_frame = 0;
   3180       }
   3181     }
   3182   }
   3183 
   3184   // Define a new GF/ARF group. (Should always enter here for key frames).
   3185   if (rc->frames_till_gf_update_due == 0) {
   3186     define_gf_group(cpi, &this_frame);
   3187 
   3188     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   3189     if (lc != NULL) cpi->refresh_golden_frame = 1;
   3190 
   3191 #if ARF_STATS_OUTPUT
   3192     {
   3193       FILE *fpfile;
   3194       fpfile = fopen("arf.stt", "a");
   3195       ++arf_count;
   3196       fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame,
   3197               rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
   3198               rc->gfu_boost);
   3199 
   3200       fclose(fpfile);
   3201     }
   3202 #endif
   3203   }
   3204 
   3205   configure_buffer_updates(cpi);
   3206 
   3207   // Do the firstpass stats indicate that this frame is skippable for the
   3208   // partition search?
   3209   if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
   3210       (!cpi->use_svc || is_two_pass_svc(cpi))) {
   3211     cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
   3212   }
   3213 
   3214   target_rate = gf_group->bit_allocation[gf_group->index];
   3215   rc->base_frame_target = target_rate;
   3216 
   3217   // The multiplication by 256 reverses a scaling factor of (>> 8)
   3218   // applied when combining MB error values for the frame.
   3219   twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
   3220   twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
   3221 
   3222   // Update the total stats remaining structure.
   3223   subtract_stats(&twopass->total_left_stats, &this_frame);
   3224 }
   3225 
   3226 #define MINQ_ADJ_LIMIT 48
   3227 #define MINQ_ADJ_LIMIT_CQ 20
   3228 #define HIGH_UNDERSHOOT_RATIO 2
   3229 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
   3230   TWO_PASS *const twopass = &cpi->twopass;
   3231   RATE_CONTROL *const rc = &cpi->rc;
   3232   VP9_COMMON *const cm = &cpi->common;
   3233   const int bits_used = rc->base_frame_target;
   3234 
   3235   // VBR correction is done through rc->vbr_bits_off_target. Based on the
   3236   // sign of this value, a limited % adjustment is made to the target rate
   3237   // of subsequent frames, to try and push it back towards 0. This method
   3238   // is designed to prevent extreme behaviour at the end of a clip
   3239   // or group of frames.
   3240   rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
   3241   twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
   3242 
   3243   // Target vs actual bits for this arf group.
   3244   twopass->rolling_arf_group_target_bits += rc->this_frame_target;
   3245   twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
   3246 
   3247   // Calculate the pct rc error.
   3248   if (rc->total_actual_bits) {
   3249     rc->rate_error_estimate =
   3250         (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
   3251     rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
   3252   } else {
   3253     rc->rate_error_estimate = 0;
   3254   }
   3255 
   3256   if (cpi->common.frame_type != KEY_FRAME &&
   3257       !vp9_is_upper_layer_key_frame(cpi)) {
   3258     twopass->kf_group_bits -= bits_used;
   3259     twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
   3260   }
   3261   twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
   3262 
   3263   // Increment the gf group index ready for the next frame.
   3264   ++twopass->gf_group.index;
   3265 
   3266   // If the rate control is drifting consider adjustment to min or maxq.
   3267   if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) {
   3268     const int maxq_adj_limit =
   3269         rc->worst_quality - twopass->active_worst_quality;
   3270     const int minq_adj_limit =
   3271         (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
   3272     int aq_extend_min = 0;
   3273     int aq_extend_max = 0;
   3274 
   3275     // Extend min or Max Q range to account for imbalance from the base
   3276     // value when using AQ.
   3277     if (cpi->oxcf.aq_mode != NO_AQ) {
   3278       if (cm->seg.aq_av_offset < 0) {
   3279         // The balance of the AQ map tends towarda lowering the average Q.
   3280         aq_extend_min = 0;
   3281         aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset);
   3282       } else {
   3283         // The balance of the AQ map tends towards raising the average Q.
   3284         aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset);
   3285         aq_extend_max = 0;
   3286       }
   3287     }
   3288 
   3289     // Undershoot.
   3290     if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
   3291       --twopass->extend_maxq;
   3292       if (rc->rolling_target_bits >= rc->rolling_actual_bits)
   3293         ++twopass->extend_minq;
   3294       // Overshoot.
   3295     } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
   3296       --twopass->extend_minq;
   3297       if (rc->rolling_target_bits < rc->rolling_actual_bits)
   3298         ++twopass->extend_maxq;
   3299     } else {
   3300       // Adjustment for extreme local overshoot.
   3301       if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
   3302           rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
   3303         ++twopass->extend_maxq;
   3304 
   3305       // Unwind undershoot or overshoot adjustment.
   3306       if (rc->rolling_target_bits < rc->rolling_actual_bits)
   3307         --twopass->extend_minq;
   3308       else if (rc->rolling_target_bits > rc->rolling_actual_bits)
   3309         --twopass->extend_maxq;
   3310     }
   3311 
   3312     twopass->extend_minq =
   3313         clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit);
   3314     twopass->extend_maxq =
   3315         clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit);
   3316 
   3317     // If there is a big and undexpected undershoot then feed the extra
   3318     // bits back in quickly. One situation where this may happen is if a
   3319     // frame is unexpectedly almost perfectly predicted by the ARF or GF
   3320     // but not very well predcited by the previous frame.
   3321     if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
   3322       int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
   3323       if (rc->projected_frame_size < fast_extra_thresh) {
   3324         rc->vbr_bits_off_target_fast +=
   3325             fast_extra_thresh - rc->projected_frame_size;
   3326         rc->vbr_bits_off_target_fast =
   3327             VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
   3328 
   3329         // Fast adaptation of minQ if necessary to use up the extra bits.
   3330         if (rc->avg_frame_bandwidth) {
   3331           twopass->extend_minq_fast =
   3332               (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
   3333         }
   3334         twopass->extend_minq_fast = VPXMIN(
   3335             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
   3336       } else if (rc->vbr_bits_off_target_fast) {
   3337         twopass->extend_minq_fast = VPXMIN(
   3338             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
   3339       } else {
   3340         twopass->extend_minq_fast = 0;
   3341       }
   3342     }
   3343   }
   3344 }
   3345