Home | History | Annotate | Download | only in docs
      1 =============
      2 Type Metadata
      3 =============
      4 
      5 Type metadata is a mechanism that allows IR modules to co-operatively build
      6 pointer sets corresponding to addresses within a given set of globals. LLVM's
      7 `control flow integrity`_ implementation uses this metadata to efficiently
      8 check (at each call site) that a given address corresponds to either a
      9 valid vtable or function pointer for a given class or function type, and its
     10 whole-program devirtualization pass uses the metadata to identify potential
     11 callees for a given virtual call.
     12 
     13 To use the mechanism, a client creates metadata nodes with two elements:
     14 
     15 1. a byte offset into the global (generally zero for functions)
     16 2. a metadata object representing an identifier for the type
     17 
     18 These metadata nodes are associated with globals by using global object
     19 metadata attachments with the ``!type`` metadata kind.
     20 
     21 Each type identifier must exclusively identify either global variables
     22 or functions.
     23 
     24 .. admonition:: Limitation
     25 
     26   The current implementation only supports attaching metadata to functions on
     27   the x86-32 and x86-64 architectures.
     28 
     29 An intrinsic, :ref:`llvm.type.test <type.test>`, is used to test whether a
     30 given pointer is associated with a type identifier.
     31 
     32 .. _control flow integrity: http://clang.llvm.org/docs/ControlFlowIntegrity.html
     33 
     34 Representing Type Information using Type Metadata
     35 =================================================
     36 
     37 This section describes how Clang represents C++ type information associated with
     38 virtual tables using type metadata.
     39 
     40 Consider the following inheritance hierarchy:
     41 
     42 .. code-block:: c++
     43 
     44   struct A {
     45     virtual void f();
     46   };
     47 
     48   struct B : A {
     49     virtual void f();
     50     virtual void g();
     51   };
     52 
     53   struct C {
     54     virtual void h();
     55   };
     56 
     57   struct D : A, C {
     58     virtual void f();
     59     virtual void h();
     60   };
     61 
     62 The virtual table objects for A, B, C and D look like this (under the Itanium ABI):
     63 
     64 .. csv-table:: Virtual Table Layout for A, B, C, D
     65   :header: Class, 0, 1, 2, 3, 4, 5, 6
     66 
     67   A, A::offset-to-top, &A::rtti, &A::f
     68   B, B::offset-to-top, &B::rtti, &B::f, &B::g
     69   C, C::offset-to-top, &C::rtti, &C::h
     70   D, D::offset-to-top, &D::rtti, &D::f, &D::h, D::offset-to-top, &D::rtti, thunk for &D::h
     71 
     72 When an object of type A is constructed, the address of ``&A::f`` in A's
     73 virtual table object is stored in the object's vtable pointer.  In ABI parlance
     74 this address is known as an `address point`_. Similarly, when an object of type
     75 B is constructed, the address of ``&B::f`` is stored in the vtable pointer. In
     76 this way, the vtable in B's virtual table object is compatible with A's vtable.
     77 
     78 D is a little more complicated, due to the use of multiple inheritance. Its
     79 virtual table object contains two vtables, one compatible with A's vtable and
     80 the other compatible with C's vtable. Objects of type D contain two virtual
     81 pointers, one belonging to the A subobject and containing the address of
     82 the vtable compatible with A's vtable, and the other belonging to the C
     83 subobject and containing the address of the vtable compatible with C's vtable.
     84 
     85 The full set of compatibility information for the above class hierarchy is
     86 shown below. The following table shows the name of a class, the offset of an
     87 address point within that class's vtable and the name of one of the classes
     88 with which that address point is compatible.
     89 
     90 .. csv-table:: Type Offsets for A, B, C, D
     91   :header: VTable for, Offset, Compatible Class
     92 
     93   A, 16, A
     94   B, 16, A
     95    ,   , B
     96   C, 16, C
     97   D, 16, A
     98    ,   , D
     99    , 48, C
    100 
    101 The next step is to encode this compatibility information into the IR. The way
    102 this is done is to create type metadata named after each of the compatible
    103 classes, with which we associate each of the compatible address points in
    104 each vtable. For example, these type metadata entries encode the compatibility
    105 information for the above hierarchy:
    106 
    107 ::
    108 
    109   @_ZTV1A = constant [...], !type !0
    110   @_ZTV1B = constant [...], !type !0, !type !1
    111   @_ZTV1C = constant [...], !type !2
    112   @_ZTV1D = constant [...], !type !0, !type !3, !type !4
    113 
    114   !0 = !{i64 16, !"_ZTS1A"}
    115   !1 = !{i64 16, !"_ZTS1B"}
    116   !2 = !{i64 16, !"_ZTS1C"}
    117   !3 = !{i64 16, !"_ZTS1D"}
    118   !4 = !{i64 48, !"_ZTS1C"}
    119 
    120 With this type metadata, we can now use the ``llvm.type.test`` intrinsic to
    121 test whether a given pointer is compatible with a type identifier. Working
    122 backwards, if ``llvm.type.test`` returns true for a particular pointer,
    123 we can also statically determine the identities of the virtual functions
    124 that a particular virtual call may call. For example, if a program assumes
    125 a pointer to be a member of ``!"_ZST1A"``, we know that the address can
    126 be only be one of ``_ZTV1A+16``, ``_ZTV1B+16`` or ``_ZTV1D+16`` (i.e. the
    127 address points of the vtables of A, B and D respectively). If we then load
    128 an address from that pointer, we know that the address can only be one of
    129 ``&A::f``, ``&B::f`` or ``&D::f``.
    130 
    131 .. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
    132 
    133 Testing Addresses For Type Membership
    134 =====================================
    135 
    136 If a program tests an address using ``llvm.type.test``, this will cause
    137 a link-time optimization pass, ``LowerTypeTests``, to replace calls to this
    138 intrinsic with efficient code to perform type member tests. At a high level,
    139 the pass will lay out referenced globals in a consecutive memory region in
    140 the object file, construct bit vectors that map onto that memory region,
    141 and generate code at each of the ``llvm.type.test`` call sites to test
    142 pointers against those bit vectors. Because of the layout manipulation, the
    143 globals' definitions must be available at LTO time. For more information,
    144 see the `control flow integrity design document`_.
    145 
    146 A type identifier that identifies functions is transformed into a jump table,
    147 which is a block of code consisting of one branch instruction for each
    148 of the functions associated with the type identifier that branches to the
    149 target function. The pass will redirect any taken function addresses to the
    150 corresponding jump table entry. In the object file's symbol table, the jump
    151 table entries take the identities of the original functions, so that addresses
    152 taken outside the module will pass any verification done inside the module.
    153 
    154 Jump tables may call external functions, so their definitions need not
    155 be available at LTO time. Note that if an externally defined function is
    156 associated with a type identifier, there is no guarantee that its identity
    157 within the module will be the same as its identity outside of the module,
    158 as the former will be the jump table entry if a jump table is necessary.
    159 
    160 The `GlobalLayoutBuilder`_ class is responsible for laying out the globals
    161 efficiently to minimize the sizes of the underlying bitsets.
    162 
    163 .. _control flow integrity design document: http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
    164 
    165 :Example:
    166 
    167 ::
    168 
    169     target datalayout = "e-p:32:32"
    170 
    171     @a = internal global i32 0, !type !0
    172     @b = internal global i32 0, !type !0, !type !1
    173     @c = internal global i32 0, !type !1
    174     @d = internal global [2 x i32] [i32 0, i32 0], !type !2
    175 
    176     define void @e() !type !3 {
    177       ret void
    178     }
    179 
    180     define void @f() {
    181       ret void
    182     }
    183 
    184     declare void @g() !type !3
    185 
    186     !0 = !{i32 0, !"typeid1"}
    187     !1 = !{i32 0, !"typeid2"}
    188     !2 = !{i32 4, !"typeid2"}
    189     !3 = !{i32 0, !"typeid3"}
    190 
    191     declare i1 @llvm.type.test(i8* %ptr, metadata %typeid) nounwind readnone
    192 
    193     define i1 @foo(i32* %p) {
    194       %pi8 = bitcast i32* %p to i8*
    195       %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid1")
    196       ret i1 %x
    197     }
    198 
    199     define i1 @bar(i32* %p) {
    200       %pi8 = bitcast i32* %p to i8*
    201       %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid2")
    202       ret i1 %x
    203     }
    204 
    205     define i1 @baz(void ()* %p) {
    206       %pi8 = bitcast void ()* %p to i8*
    207       %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid3")
    208       ret i1 %x
    209     }
    210 
    211     define void @main() {
    212       %a1 = call i1 @foo(i32* @a) ; returns 1
    213       %b1 = call i1 @foo(i32* @b) ; returns 1
    214       %c1 = call i1 @foo(i32* @c) ; returns 0
    215       %a2 = call i1 @bar(i32* @a) ; returns 0
    216       %b2 = call i1 @bar(i32* @b) ; returns 1
    217       %c2 = call i1 @bar(i32* @c) ; returns 1
    218       %d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0
    219       %d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1
    220       %e = call i1 @baz(void ()* @e) ; returns 1
    221       %f = call i1 @baz(void ()* @f) ; returns 0
    222       %g = call i1 @baz(void ()* @g) ; returns 1
    223       ret void
    224     }
    225 
    226 .. _GlobalLayoutBuilder: http://llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerTypeTests.h
    227