1 ============= 2 Type Metadata 3 ============= 4 5 Type metadata is a mechanism that allows IR modules to co-operatively build 6 pointer sets corresponding to addresses within a given set of globals. LLVM's 7 `control flow integrity`_ implementation uses this metadata to efficiently 8 check (at each call site) that a given address corresponds to either a 9 valid vtable or function pointer for a given class or function type, and its 10 whole-program devirtualization pass uses the metadata to identify potential 11 callees for a given virtual call. 12 13 To use the mechanism, a client creates metadata nodes with two elements: 14 15 1. a byte offset into the global (generally zero for functions) 16 2. a metadata object representing an identifier for the type 17 18 These metadata nodes are associated with globals by using global object 19 metadata attachments with the ``!type`` metadata kind. 20 21 Each type identifier must exclusively identify either global variables 22 or functions. 23 24 .. admonition:: Limitation 25 26 The current implementation only supports attaching metadata to functions on 27 the x86-32 and x86-64 architectures. 28 29 An intrinsic, :ref:`llvm.type.test <type.test>`, is used to test whether a 30 given pointer is associated with a type identifier. 31 32 .. _control flow integrity: http://clang.llvm.org/docs/ControlFlowIntegrity.html 33 34 Representing Type Information using Type Metadata 35 ================================================= 36 37 This section describes how Clang represents C++ type information associated with 38 virtual tables using type metadata. 39 40 Consider the following inheritance hierarchy: 41 42 .. code-block:: c++ 43 44 struct A { 45 virtual void f(); 46 }; 47 48 struct B : A { 49 virtual void f(); 50 virtual void g(); 51 }; 52 53 struct C { 54 virtual void h(); 55 }; 56 57 struct D : A, C { 58 virtual void f(); 59 virtual void h(); 60 }; 61 62 The virtual table objects for A, B, C and D look like this (under the Itanium ABI): 63 64 .. csv-table:: Virtual Table Layout for A, B, C, D 65 :header: Class, 0, 1, 2, 3, 4, 5, 6 66 67 A, A::offset-to-top, &A::rtti, &A::f 68 B, B::offset-to-top, &B::rtti, &B::f, &B::g 69 C, C::offset-to-top, &C::rtti, &C::h 70 D, D::offset-to-top, &D::rtti, &D::f, &D::h, D::offset-to-top, &D::rtti, thunk for &D::h 71 72 When an object of type A is constructed, the address of ``&A::f`` in A's 73 virtual table object is stored in the object's vtable pointer. In ABI parlance 74 this address is known as an `address point`_. Similarly, when an object of type 75 B is constructed, the address of ``&B::f`` is stored in the vtable pointer. In 76 this way, the vtable in B's virtual table object is compatible with A's vtable. 77 78 D is a little more complicated, due to the use of multiple inheritance. Its 79 virtual table object contains two vtables, one compatible with A's vtable and 80 the other compatible with C's vtable. Objects of type D contain two virtual 81 pointers, one belonging to the A subobject and containing the address of 82 the vtable compatible with A's vtable, and the other belonging to the C 83 subobject and containing the address of the vtable compatible with C's vtable. 84 85 The full set of compatibility information for the above class hierarchy is 86 shown below. The following table shows the name of a class, the offset of an 87 address point within that class's vtable and the name of one of the classes 88 with which that address point is compatible. 89 90 .. csv-table:: Type Offsets for A, B, C, D 91 :header: VTable for, Offset, Compatible Class 92 93 A, 16, A 94 B, 16, A 95 , , B 96 C, 16, C 97 D, 16, A 98 , , D 99 , 48, C 100 101 The next step is to encode this compatibility information into the IR. The way 102 this is done is to create type metadata named after each of the compatible 103 classes, with which we associate each of the compatible address points in 104 each vtable. For example, these type metadata entries encode the compatibility 105 information for the above hierarchy: 106 107 :: 108 109 @_ZTV1A = constant [...], !type !0 110 @_ZTV1B = constant [...], !type !0, !type !1 111 @_ZTV1C = constant [...], !type !2 112 @_ZTV1D = constant [...], !type !0, !type !3, !type !4 113 114 !0 = !{i64 16, !"_ZTS1A"} 115 !1 = !{i64 16, !"_ZTS1B"} 116 !2 = !{i64 16, !"_ZTS1C"} 117 !3 = !{i64 16, !"_ZTS1D"} 118 !4 = !{i64 48, !"_ZTS1C"} 119 120 With this type metadata, we can now use the ``llvm.type.test`` intrinsic to 121 test whether a given pointer is compatible with a type identifier. Working 122 backwards, if ``llvm.type.test`` returns true for a particular pointer, 123 we can also statically determine the identities of the virtual functions 124 that a particular virtual call may call. For example, if a program assumes 125 a pointer to be a member of ``!"_ZST1A"``, we know that the address can 126 be only be one of ``_ZTV1A+16``, ``_ZTV1B+16`` or ``_ZTV1D+16`` (i.e. the 127 address points of the vtables of A, B and D respectively). If we then load 128 an address from that pointer, we know that the address can only be one of 129 ``&A::f``, ``&B::f`` or ``&D::f``. 130 131 .. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general 132 133 Testing Addresses For Type Membership 134 ===================================== 135 136 If a program tests an address using ``llvm.type.test``, this will cause 137 a link-time optimization pass, ``LowerTypeTests``, to replace calls to this 138 intrinsic with efficient code to perform type member tests. At a high level, 139 the pass will lay out referenced globals in a consecutive memory region in 140 the object file, construct bit vectors that map onto that memory region, 141 and generate code at each of the ``llvm.type.test`` call sites to test 142 pointers against those bit vectors. Because of the layout manipulation, the 143 globals' definitions must be available at LTO time. For more information, 144 see the `control flow integrity design document`_. 145 146 A type identifier that identifies functions is transformed into a jump table, 147 which is a block of code consisting of one branch instruction for each 148 of the functions associated with the type identifier that branches to the 149 target function. The pass will redirect any taken function addresses to the 150 corresponding jump table entry. In the object file's symbol table, the jump 151 table entries take the identities of the original functions, so that addresses 152 taken outside the module will pass any verification done inside the module. 153 154 Jump tables may call external functions, so their definitions need not 155 be available at LTO time. Note that if an externally defined function is 156 associated with a type identifier, there is no guarantee that its identity 157 within the module will be the same as its identity outside of the module, 158 as the former will be the jump table entry if a jump table is necessary. 159 160 The `GlobalLayoutBuilder`_ class is responsible for laying out the globals 161 efficiently to minimize the sizes of the underlying bitsets. 162 163 .. _control flow integrity design document: http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html 164 165 :Example: 166 167 :: 168 169 target datalayout = "e-p:32:32" 170 171 @a = internal global i32 0, !type !0 172 @b = internal global i32 0, !type !0, !type !1 173 @c = internal global i32 0, !type !1 174 @d = internal global [2 x i32] [i32 0, i32 0], !type !2 175 176 define void @e() !type !3 { 177 ret void 178 } 179 180 define void @f() { 181 ret void 182 } 183 184 declare void @g() !type !3 185 186 !0 = !{i32 0, !"typeid1"} 187 !1 = !{i32 0, !"typeid2"} 188 !2 = !{i32 4, !"typeid2"} 189 !3 = !{i32 0, !"typeid3"} 190 191 declare i1 @llvm.type.test(i8* %ptr, metadata %typeid) nounwind readnone 192 193 define i1 @foo(i32* %p) { 194 %pi8 = bitcast i32* %p to i8* 195 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid1") 196 ret i1 %x 197 } 198 199 define i1 @bar(i32* %p) { 200 %pi8 = bitcast i32* %p to i8* 201 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid2") 202 ret i1 %x 203 } 204 205 define i1 @baz(void ()* %p) { 206 %pi8 = bitcast void ()* %p to i8* 207 %x = call i1 @llvm.type.test(i8* %pi8, metadata !"typeid3") 208 ret i1 %x 209 } 210 211 define void @main() { 212 %a1 = call i1 @foo(i32* @a) ; returns 1 213 %b1 = call i1 @foo(i32* @b) ; returns 1 214 %c1 = call i1 @foo(i32* @c) ; returns 0 215 %a2 = call i1 @bar(i32* @a) ; returns 0 216 %b2 = call i1 @bar(i32* @b) ; returns 1 217 %c2 = call i1 @bar(i32* @c) ; returns 1 218 %d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0 219 %d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1 220 %e = call i1 @baz(void ()* @e) ; returns 1 221 %f = call i1 @baz(void ()* @f) ; returns 0 222 %g = call i1 @baz(void ()* @g) ; returns 1 223 ret void 224 } 225 226 .. _GlobalLayoutBuilder: http://llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerTypeTests.h 227