1 ======================= 2 Writing an LLVM Backend 3 ======================= 4 5 .. toctree:: 6 :hidden: 7 8 HowToUseInstrMappings 9 10 .. contents:: 11 :local: 12 13 Introduction 14 ============ 15 16 This document describes techniques for writing compiler backends that convert 17 the LLVM Intermediate Representation (IR) to code for a specified machine or 18 other languages. Code intended for a specific machine can take the form of 19 either assembly code or binary code (usable for a JIT compiler). 20 21 The backend of LLVM features a target-independent code generator that may 22 create output for several types of target CPUs --- including X86, PowerPC, 23 ARM, and SPARC. The backend may also be used to generate code targeted at SPUs 24 of the Cell processor or GPUs to support the execution of compute kernels. 25 26 The document focuses on existing examples found in subdirectories of 27 ``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document 28 focuses on the example of creating a static compiler (one that emits text 29 assembly) for a SPARC target, because SPARC has fairly standard 30 characteristics, such as a RISC instruction set and straightforward calling 31 conventions. 32 33 Audience 34 -------- 35 36 The audience for this document is anyone who needs to write an LLVM backend to 37 generate code for a specific hardware or software target. 38 39 Prerequisite Reading 40 -------------------- 41 42 These essential documents must be read before reading this document: 43 44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for 45 the LLVM assembly language. 46 47 * :doc:`CodeGenerator` --- a guide to the components (classes and code 48 generation algorithms) for translating the LLVM internal representation into 49 machine code for a specified target. Pay particular attention to the 50 descriptions of code generation stages: Instruction Selection, Scheduling and 51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code 52 Insertion, Late Machine Code Optimizations, and Code Emission. 53 54 * :doc:`TableGen/index` --- a document that describes the TableGen 55 (``tblgen``) application that manages domain-specific information to support 56 LLVM code generation. TableGen processes input from a target description 57 file (``.td`` suffix) and generates C++ code that can be used for code 58 generation. 59 60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as 61 are several ``SelectionDAG`` processing steps. 62 63 To follow the SPARC examples in this document, have a copy of `The SPARC 64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for 65 reference. For details about the ARM instruction set, refer to the `ARM 66 Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about 67 the GNU Assembler format (``GAS``), see `Using As 68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the 69 assembly printer. "Using As" contains a list of target machine dependent 70 features. 71 72 Basic Steps 73 ----------- 74 75 To write a compiler backend for LLVM that converts the LLVM IR to code for a 76 specified target (machine or other language), follow these steps: 77 78 * Create a subclass of the ``TargetMachine`` class that describes 79 characteristics of your target machine. Copy existing examples of specific 80 ``TargetMachine`` class and header files; for example, start with 81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file 82 names for your target. Similarly, change code that references "``Sparc``" to 83 reference your target. 84 85 * Describe the register set of the target. Use TableGen to generate code for 86 register definition, register aliases, and register classes from a 87 target-specific ``RegisterInfo.td`` input file. You should also write 88 additional code for a subclass of the ``TargetRegisterInfo`` class that 89 represents the class register file data used for register allocation and also 90 describes the interactions between registers. 91 92 * Describe the instruction set of the target. Use TableGen to generate code 93 for target-specific instructions from target-specific versions of 94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write 95 additional code for a subclass of the ``TargetInstrInfo`` class to represent 96 machine instructions supported by the target machine. 97 98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic 99 Graph (DAG) representation of instructions to native target-specific 100 instructions. Use TableGen to generate code that matches patterns and 101 selects instructions based on additional information in a target-specific 102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``, 103 where ``XXX`` identifies the specific target, to perform pattern matching and 104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp`` 105 to replace or remove operations and data types that are not supported 106 natively in a SelectionDAG. 107 108 * Write code for an assembly printer that converts LLVM IR to a GAS format for 109 your target machine. You should add assembly strings to the instructions 110 defined in your target-specific version of ``TargetInstrInfo.td``. You 111 should also write code for a subclass of ``AsmPrinter`` that performs the 112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``. 113 114 * Optionally, add support for subtargets (i.e., variants with different 115 capabilities). You should also write code for a subclass of the 116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and 117 ``-mattr=`` command-line options. 118 119 * Optionally, add JIT support and create a machine code emitter (subclass of 120 ``TargetJITInfo``) that is used to emit binary code directly into memory. 121 122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then 123 implement them later. Initially, you may not know which private members that 124 the class will need and which components will need to be subclassed. 125 126 Preliminaries 127 ------------- 128 129 To actually create your compiler backend, you need to create and modify a few 130 files. The absolute minimum is discussed here. But to actually use the LLVM 131 target-independent code generator, you must perform the steps described in the 132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document. 133 134 First, you should create a subdirectory under ``lib/Target`` to hold all the 135 files related to your target. If your target is called "Dummy", create the 136 directory ``lib/Target/Dummy``. 137 138 In this new directory, create a ``CMakeLists.txt``. It is easiest to copy a 139 ``CMakeLists.txt`` of another target and modify it. It should at least contain 140 the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy`` 141 (for example, see the MIPS target). Alternatively, you can split the library 142 into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which 143 should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example, 144 see the PowerPC target). 145 146 Note that these two naming schemes are hardcoded into ``llvm-config``. Using 147 any other naming scheme will confuse ``llvm-config`` and produce a lot of 148 (seemingly unrelated) linker errors when linking ``llc``. 149 150 To make your target actually do something, you need to implement a subclass of 151 ``TargetMachine``. This implementation should typically be in the file 152 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target`` 153 directory will be built and should work. To use LLVM's target independent code 154 generator, you should do what all current machine backends do: create a 155 subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a 156 subclass of ``TargetMachine``.) 157 158 To get LLVM to actually build and link your target, you need to run ``cmake`` 159 with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your 160 target without needing to add it to the list of all the targets. 161 162 Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable 163 located in the main ``CMakeLists.txt``. 164 165 Target Machine 166 ============== 167 168 ``LLVMTargetMachine`` is designed as a base class for targets implemented with 169 the LLVM target-independent code generator. The ``LLVMTargetMachine`` class 170 should be specialized by a concrete target class that implements the various 171 virtual methods. ``LLVMTargetMachine`` is defined as a subclass of 172 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The 173 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes 174 numerous command-line options. 175 176 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start 177 by copying an existing ``TargetMachine`` class and header. You should name the 178 files that you create to reflect your specific target. For instance, for the 179 SPARC target, name the files ``SparcTargetMachine.h`` and 180 ``SparcTargetMachine.cpp``. 181 182 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must 183 have access methods to obtain objects that represent target components. These 184 methods are named ``get*Info``, and are intended to obtain the instruction set 185 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout 186 (``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also 187 implement the ``getDataLayout`` method to access an object with target-specific 188 data characteristics, such as data type size and alignment requirements. 189 190 For instance, for the SPARC target, the header file ``SparcTargetMachine.h`` 191 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that 192 simply return a class member. 193 194 .. code-block:: c++ 195 196 namespace llvm { 197 198 class Module; 199 200 class SparcTargetMachine : public LLVMTargetMachine { 201 const DataLayout DataLayout; // Calculates type size & alignment 202 SparcSubtarget Subtarget; 203 SparcInstrInfo InstrInfo; 204 TargetFrameInfo FrameInfo; 205 206 protected: 207 virtual const TargetAsmInfo *createTargetAsmInfo() const; 208 209 public: 210 SparcTargetMachine(const Module &M, const std::string &FS); 211 212 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } 213 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } 214 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } 215 virtual const TargetRegisterInfo *getRegisterInfo() const { 216 return &InstrInfo.getRegisterInfo(); 217 } 218 virtual const DataLayout *getDataLayout() const { return &DataLayout; } 219 static unsigned getModuleMatchQuality(const Module &M); 220 221 // Pass Pipeline Configuration 222 virtual bool addInstSelector(PassManagerBase &PM, bool Fast); 223 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); 224 }; 225 226 } // end namespace llvm 227 228 * ``getInstrInfo()`` 229 * ``getRegisterInfo()`` 230 * ``getFrameInfo()`` 231 * ``getDataLayout()`` 232 * ``getSubtargetImpl()`` 233 234 For some targets, you also need to support the following methods: 235 236 * ``getTargetLowering()`` 237 * ``getJITInfo()`` 238 239 Some architectures, such as GPUs, do not support jumping to an arbitrary 240 program location and implement branching using masked execution and loop using 241 special instructions around the loop body. In order to avoid CFG modifications 242 that introduce irreducible control flow not handled by such hardware, a target 243 must call `setRequiresStructuredCFG(true)` when being initialized. 244 245 In addition, the ``XXXTargetMachine`` constructor should specify a 246 ``TargetDescription`` string that determines the data layout for the target 247 machine, including characteristics such as pointer size, alignment, and 248 endianness. For example, the constructor for ``SparcTargetMachine`` contains 249 the following: 250 251 .. code-block:: c++ 252 253 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) 254 : DataLayout("E-p:32:32-f128:128:128"), 255 Subtarget(M, FS), InstrInfo(Subtarget), 256 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { 257 } 258 259 Hyphens separate portions of the ``TargetDescription`` string. 260 261 * An upper-case "``E``" in the string indicates a big-endian target data model. 262 A lower-case "``e``" indicates little-endian. 263 264 * "``p:``" is followed by pointer information: size, ABI alignment, and 265 preferred alignment. If only two figures follow "``p:``", then the first 266 value is pointer size, and the second value is both ABI and preferred 267 alignment. 268 269 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or 270 "``a``" (corresponding to integer, floating point, vector, or aggregate). 271 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred 272 alignment. "``f``" is followed by three values: the first indicates the size 273 of a long double, then ABI alignment, and then ABI preferred alignment. 274 275 Target Registration 276 =================== 277 278 You must also register your target with the ``TargetRegistry``, which is what 279 other LLVM tools use to be able to lookup and use your target at runtime. The 280 ``TargetRegistry`` can be used directly, but for most targets there are helper 281 templates which should take care of the work for you. 282 283 All targets should declare a global ``Target`` object which is used to 284 represent the target during registration. Then, in the target's ``TargetInfo`` 285 library, the target should define that object and use the ``RegisterTarget`` 286 template to register the target. For example, the Sparc registration code 287 looks like this: 288 289 .. code-block:: c++ 290 291 Target llvm::TheSparcTarget; 292 293 extern "C" void LLVMInitializeSparcTargetInfo() { 294 RegisterTarget<Triple::sparc, /*HasJIT=*/false> 295 X(TheSparcTarget, "sparc", "Sparc"); 296 } 297 298 This allows the ``TargetRegistry`` to look up the target by name or by target 299 triple. In addition, most targets will also register additional features which 300 are available in separate libraries. These registration steps are separate, 301 because some clients may wish to only link in some parts of the target --- the 302 JIT code generator does not require the use of the assembler printer, for 303 example. Here is an example of registering the Sparc assembly printer: 304 305 .. code-block:: c++ 306 307 extern "C" void LLVMInitializeSparcAsmPrinter() { 308 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); 309 } 310 311 For more information, see "`llvm/Target/TargetRegistry.h 312 </doxygen/TargetRegistry_8h-source.html>`_". 313 314 Register Set and Register Classes 315 ================================= 316 317 You should describe a concrete target-specific class that represents the 318 register file of a target machine. This class is called ``XXXRegisterInfo`` 319 (where ``XXX`` identifies the target) and represents the class register file 320 data that is used for register allocation. It also describes the interactions 321 between registers. 322 323 You also need to define register classes to categorize related registers. A 324 register class should be added for groups of registers that are all treated the 325 same way for some instruction. Typical examples are register classes for 326 integer, floating-point, or vector registers. A register allocator allows an 327 instruction to use any register in a specified register class to perform the 328 instruction in a similar manner. Register classes allocate virtual registers 329 to instructions from these sets, and register classes let the 330 target-independent register allocator automatically choose the actual 331 registers. 332 333 Much of the code for registers, including register definition, register 334 aliases, and register classes, is generated by TableGen from 335 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc`` 336 and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the 337 implementation of ``XXXRegisterInfo`` requires hand-coding. 338 339 Defining a Register 340 ------------------- 341 342 The ``XXXRegisterInfo.td`` file typically starts with register definitions for 343 a target machine. The ``Register`` class (specified in ``Target.td``) is used 344 to define an object for each register. The specified string ``n`` becomes the 345 ``Name`` of the register. The basic ``Register`` object does not have any 346 subregisters and does not specify any aliases. 347 348 .. code-block:: llvm 349 350 class Register<string n> { 351 string Namespace = ""; 352 string AsmName = n; 353 string Name = n; 354 int SpillSize = 0; 355 int SpillAlignment = 0; 356 list<Register> Aliases = []; 357 list<Register> SubRegs = []; 358 list<int> DwarfNumbers = []; 359 } 360 361 For example, in the ``X86RegisterInfo.td`` file, there are register definitions 362 that utilize the ``Register`` class, such as: 363 364 .. code-block:: llvm 365 366 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; 367 368 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``) 369 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a 370 register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values 371 representing 3 different modes: the first element is for X86-64, the second for 372 exception handling (EH) on X86-32, and the third is generic. -1 is a special 373 Dwarf number that indicates the gcc number is undefined, and -2 indicates the 374 register number is invalid for this mode. 375 376 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen 377 generates this code in the ``X86GenRegisterInfo.inc`` file: 378 379 .. code-block:: c++ 380 381 static const unsigned GR8[] = { X86::AL, ... }; 382 383 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; 384 385 const TargetRegisterDesc RegisterDescriptors[] = { 386 ... 387 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... 388 389 From the register info file, TableGen generates a ``TargetRegisterDesc`` object 390 for each register. ``TargetRegisterDesc`` is defined in 391 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields: 392 393 .. code-block:: c++ 394 395 struct TargetRegisterDesc { 396 const char *AsmName; // Assembly language name for the register 397 const char *Name; // Printable name for the reg (for debugging) 398 const unsigned *AliasSet; // Register Alias Set 399 const unsigned *SubRegs; // Sub-register set 400 const unsigned *ImmSubRegs; // Immediate sub-register set 401 const unsigned *SuperRegs; // Super-register set 402 }; 403 404 TableGen uses the entire target description file (``.td``) to determine text 405 names for the register (in the ``AsmName`` and ``Name`` fields of 406 ``TargetRegisterDesc``) and the relationships of other registers to the defined 407 register (in the other ``TargetRegisterDesc`` fields). In this example, other 408 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as 409 aliases for one another, so TableGen generates a null-terminated array 410 (``AL_AliasSet``) for this register alias set. 411 412 The ``Register`` class is commonly used as a base class for more complex 413 classes. In ``Target.td``, the ``Register`` class is the base for the 414 ``RegisterWithSubRegs`` class that is used to define registers that need to 415 specify subregisters in the ``SubRegs`` list, as shown here: 416 417 .. code-block:: llvm 418 419 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { 420 let SubRegs = subregs; 421 } 422 423 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC: 424 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``, 425 and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a 426 feature common to these subclasses. Note the use of "``let``" expressions to 427 override values that are initially defined in a superclass (such as ``SubRegs`` 428 field in the ``Rd`` class). 429 430 .. code-block:: llvm 431 432 class SparcReg<string n> : Register<n> { 433 field bits<5> Num; 434 let Namespace = "SP"; 435 } 436 // Ri - 32-bit integer registers 437 class Ri<bits<5> num, string n> : 438 SparcReg<n> { 439 let Num = num; 440 } 441 // Rf - 32-bit floating-point registers 442 class Rf<bits<5> num, string n> : 443 SparcReg<n> { 444 let Num = num; 445 } 446 // Rd - Slots in the FP register file for 64-bit floating-point values. 447 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { 448 let Num = num; 449 let SubRegs = subregs; 450 } 451 452 In the ``SparcRegisterInfo.td`` file, there are register definitions that 453 utilize these subclasses of ``Register``, such as: 454 455 .. code-block:: llvm 456 457 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>; 458 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; 459 ... 460 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>; 461 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>; 462 ... 463 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>; 464 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>; 465 466 The last two registers shown above (``D0`` and ``D1``) are double-precision 467 floating-point registers that are aliases for pairs of single-precision 468 floating-point sub-registers. In addition to aliases, the sub-register and 469 super-register relationships of the defined register are in fields of a 470 register's ``TargetRegisterDesc``. 471 472 Defining a Register Class 473 ------------------------- 474 475 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an 476 object that represents a group of related registers and also defines the 477 default allocation order of the registers. A target description file 478 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes 479 using the following class: 480 481 .. code-block:: llvm 482 483 class RegisterClass<string namespace, 484 list<ValueType> regTypes, int alignment, dag regList> { 485 string Namespace = namespace; 486 list<ValueType> RegTypes = regTypes; 487 int Size = 0; // spill size, in bits; zero lets tblgen pick the size 488 int Alignment = alignment; 489 490 // CopyCost is the cost of copying a value between two registers 491 // default value 1 means a single instruction 492 // A negative value means copying is extremely expensive or impossible 493 int CopyCost = 1; 494 dag MemberList = regList; 495 496 // for register classes that are subregisters of this class 497 list<RegisterClass> SubRegClassList = []; 498 499 code MethodProtos = [{}]; // to insert arbitrary code 500 code MethodBodies = [{}]; 501 } 502 503 To define a ``RegisterClass``, use the following 4 arguments: 504 505 * The first argument of the definition is the name of the namespace. 506 507 * The second argument is a list of ``ValueType`` register type values that are 508 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include 509 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean), 510 floating-point types (``f32``, ``f64``), and vector types (for example, 511 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass`` 512 must have the same ``ValueType``, but some registers may store vector data in 513 different configurations. For example a register that can process a 128-bit 514 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4 515 32-bit integers, and so on. 516 517 * The third argument of the ``RegisterClass`` definition specifies the 518 alignment required of the registers when they are stored or loaded to 519 memory. 520 521 * The final argument, ``regList``, specifies which registers are in this class. 522 If an alternative allocation order method is not specified, then ``regList`` 523 also defines the order of allocation used by the register allocator. Besides 524 simply listing registers with ``(add R0, R1, ...)``, more advanced set 525 operators are available. See ``include/llvm/Target/Target.td`` for more 526 information. 527 528 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined: 529 ``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the 530 first argument defines the namespace with the string "``SP``". ``FPRegs`` 531 defines a group of 32 single-precision floating-point registers (``F0`` to 532 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers 533 (``D0-D15``). 534 535 .. code-block:: llvm 536 537 // F0, F1, F2, ..., F31 538 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; 539 540 def DFPRegs : RegisterClass<"SP", [f64], 64, 541 (add D0, D1, D2, D3, D4, D5, D6, D7, D8, 542 D9, D10, D11, D12, D13, D14, D15)>; 543 544 def IntRegs : RegisterClass<"SP", [i32], 32, 545 (add L0, L1, L2, L3, L4, L5, L6, L7, 546 I0, I1, I2, I3, I4, I5, 547 O0, O1, O2, O3, O4, O5, O7, 548 G1, 549 // Non-allocatable regs: 550 G2, G3, G4, 551 O6, // stack ptr 552 I6, // frame ptr 553 I7, // return address 554 G0, // constant zero 555 G5, G6, G7 // reserved for kernel 556 )>; 557 558 Using ``SparcRegisterInfo.td`` with TableGen generates several output files 559 that are intended for inclusion in other source code that you write. 560 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should 561 be included in the header file for the implementation of the SPARC register 562 implementation that you write (``SparcRegisterInfo.h``). In 563 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called 564 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also 565 specifies types, based upon the defined register classes: ``DFPRegsClass``, 566 ``FPRegsClass``, and ``IntRegsClass``. 567 568 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is 569 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register 570 implementation. The code below shows only the generated integer registers and 571 associated register classes. The order of registers in ``IntRegs`` reflects 572 the order in the definition of ``IntRegs`` in the target description file. 573 574 .. code-block:: c++ 575 576 // IntRegs Register Class... 577 static const unsigned IntRegs[] = { 578 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, 579 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, 580 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, 581 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, 582 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, 583 SP::G6, SP::G7, 584 }; 585 586 // IntRegsVTs Register Class Value Types... 587 static const MVT::ValueType IntRegsVTs[] = { 588 MVT::i32, MVT::Other 589 }; 590 591 namespace SP { // Register class instances 592 DFPRegsClass DFPRegsRegClass; 593 FPRegsClass FPRegsRegClass; 594 IntRegsClass IntRegsRegClass; 595 ... 596 // IntRegs Sub-register Classess... 597 static const TargetRegisterClass* const IntRegsSubRegClasses [] = { 598 NULL 599 }; 600 ... 601 // IntRegs Super-register Classess... 602 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { 603 NULL 604 }; 605 ... 606 // IntRegs Register Class sub-classes... 607 static const TargetRegisterClass* const IntRegsSubclasses [] = { 608 NULL 609 }; 610 ... 611 // IntRegs Register Class super-classes... 612 static const TargetRegisterClass* const IntRegsSuperclasses [] = { 613 NULL 614 }; 615 616 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 617 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 618 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} 619 } 620 621 The register allocators will avoid using reserved registers, and callee saved 622 registers are not used until all the volatile registers have been used. That 623 is usually good enough, but in some cases it may be necessary to provide custom 624 allocation orders. 625 626 Implement a subclass of ``TargetRegisterInfo`` 627 ---------------------------------------------- 628 629 The final step is to hand code portions of ``XXXRegisterInfo``, which 630 implements the interface described in ``TargetRegisterInfo.h`` (see 631 :ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or 632 ``false``, unless overridden. Here is a list of functions that are overridden 633 for the SPARC implementation in ``SparcRegisterInfo.cpp``: 634 635 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the 636 order of the desired callee-save stack frame offset. 637 638 * ``getReservedRegs`` --- Returns a bitset indexed by physical register 639 numbers, indicating if a particular register is unavailable. 640 641 * ``hasFP`` --- Return a Boolean indicating if a function should have a 642 dedicated frame pointer register. 643 644 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo 645 instructions are used, this can be called to eliminate them. 646 647 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from 648 instructions that may use them. 649 650 * ``emitPrologue`` --- Insert prologue code into the function. 651 652 * ``emitEpilogue`` --- Insert epilogue code into the function. 653 654 .. _instruction-set: 655 656 Instruction Set 657 =============== 658 659 During the early stages of code generation, the LLVM IR code is converted to a 660 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class 661 containing target instructions. An ``SDNode`` has an opcode, operands, type 662 requirements, and operation properties. For example, is an operation 663 commutative, does an operation load from memory. The various operation node 664 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file 665 (values of the ``NodeType`` enum in the ``ISD`` namespace). 666 667 TableGen uses the following target description (``.td``) input files to 668 generate much of the code for instruction definition: 669 670 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and 671 other fundamental classes are defined. 672 673 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection 674 generators, contains ``SDTC*`` classes (selection DAG type constraint), 675 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``, 676 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``, 677 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``. 678 679 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific 680 instructions. 681 682 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates, 683 condition codes, and instructions of an instruction set. For architecture 684 modifications, a different file name may be used. For example, for Pentium 685 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with 686 MMX, this file is ``X86InstrMMX.td``. 687 688 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of 689 the target. The ``XXX.td`` file includes the other ``.td`` input files, but 690 its contents are only directly important for subtargets. 691 692 You should describe a concrete target-specific class ``XXXInstrInfo`` that 693 represents machine instructions supported by a target machine. 694 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of 695 which describes one instruction. An instruction descriptor defines: 696 697 * Opcode mnemonic 698 * Number of operands 699 * List of implicit register definitions and uses 700 * Target-independent properties (such as memory access, is commutable) 701 * Target-specific flags 702 703 The Instruction class (defined in ``Target.td``) is mostly used as a base for 704 more complex instruction classes. 705 706 .. code-block:: llvm 707 708 class Instruction { 709 string Namespace = ""; 710 dag OutOperandList; // A dag containing the MI def operand list. 711 dag InOperandList; // A dag containing the MI use operand list. 712 string AsmString = ""; // The .s format to print the instruction with. 713 list<dag> Pattern; // Set to the DAG pattern for this instruction. 714 list<Register> Uses = []; 715 list<Register> Defs = []; 716 list<Predicate> Predicates = []; // predicates turned into isel match code 717 ... remainder not shown for space ... 718 } 719 720 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a 721 target-specific instruction that is defined in ``XXXInstrInfo.td``. The 722 instruction objects should represent instructions from the architecture manual 723 of the target machine (such as the SPARC Architecture Manual for the SPARC 724 target). 725 726 A single instruction from the architecture manual is often modeled as multiple 727 target instructions, depending upon its operands. For example, a manual might 728 describe an add instruction that takes a register or an immediate operand. An 729 LLVM target could model this with two instructions named ``ADDri`` and 730 ``ADDrr``. 731 732 You should define a class for each instruction category and define each opcode 733 as a subclass of the category with appropriate parameters such as the fixed 734 binary encoding of opcodes and extended opcodes. You should map the register 735 bits to the bits of the instruction in which they are encoded (for the JIT). 736 Also you should specify how the instruction should be printed when the 737 automatic assembly printer is used. 738 739 As is described in the SPARC Architecture Manual, Version 8, there are three 740 major 32-bit formats for instructions. Format 1 is only for the ``CALL`` 741 instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high 742 bits of a register) instructions. Format 3 is for other instructions. 743 744 Each of these formats has corresponding classes in ``SparcInstrFormat.td``. 745 ``InstSP`` is a base class for other instruction classes. Additional base 746 classes are specified for more precise formats: for example in 747 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for 748 branches. There are three other base classes: ``F3_1`` for register/register 749 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for 750 floating-point operations. ``SparcInstrInfo.td`` also adds the base class 751 ``Pseudo`` for synthetic SPARC instructions. 752 753 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions 754 for the SPARC target. In ``SparcInstrInfo.td``, the following target 755 description file entry, ``LDrr``, defines the Load Integer instruction for a 756 Word (the ``LD`` SPARC opcode) from a memory address to a register. The first 757 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this 758 category of operation. The second parameter (``000000``\ :sub:`2`) is the 759 specific operation value for ``LD``/Load Word. The third parameter is the 760 output destination, which is a register operand and defined in the ``Register`` 761 target description file (``IntRegs``). 762 763 .. code-block:: llvm 764 765 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), 766 "ld [$addr], $dst", 767 [(set i32:$dst, (load ADDRrr:$addr))]>; 768 769 The fourth parameter is the input source, which uses the address operand 770 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``: 771 772 .. code-block:: llvm 773 774 def MEMrr : Operand<i32> { 775 let PrintMethod = "printMemOperand"; 776 let MIOperandInfo = (ops IntRegs, IntRegs); 777 } 778 779 The fifth parameter is a string that is used by the assembly printer and can be 780 left as an empty string until the assembly printer interface is implemented. 781 The sixth and final parameter is the pattern used to match the instruction 782 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`. 783 This parameter is detailed in the next section, :ref:`instruction-selector`. 784 785 Instruction class definitions are not overloaded for different operand types, 786 so separate versions of instructions are needed for register, memory, or 787 immediate value operands. For example, to perform a Load Integer instruction 788 for a Word from an immediate operand to a register, the following instruction 789 class is defined: 790 791 .. code-block:: llvm 792 793 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), 794 "ld [$addr], $dst", 795 [(set i32:$dst, (load ADDRri:$addr))]>; 796 797 Writing these definitions for so many similar instructions can involve a lot of 798 cut and paste. In ``.td`` files, the ``multiclass`` directive enables the 799 creation of templates to define several instruction classes at once (using the 800 ``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass`` 801 pattern ``F3_12`` is defined to create 2 instruction classes each time 802 ``F3_12`` is invoked: 803 804 .. code-block:: llvm 805 806 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { 807 def rr : F3_1 <2, Op3Val, 808 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 809 !strconcat(OpcStr, " $b, $c, $dst"), 810 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; 811 def ri : F3_2 <2, Op3Val, 812 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), 813 !strconcat(OpcStr, " $b, $c, $dst"), 814 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>; 815 } 816 817 So when the ``defm`` directive is used for the ``XOR`` and ``ADD`` 818 instructions, as seen below, it creates four instruction objects: ``XORrr``, 819 ``XORri``, ``ADDrr``, and ``ADDri``. 820 821 .. code-block:: llvm 822 823 defm XOR : F3_12<"xor", 0b000011, xor>; 824 defm ADD : F3_12<"add", 0b000000, add>; 825 826 ``SparcInstrInfo.td`` also includes definitions for condition codes that are 827 referenced by branch instructions. The following definitions in 828 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code. 829 For example, the 10\ :sup:`th` bit represents the "greater than" condition for 830 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for 831 floats. 832 833 .. code-block:: llvm 834 835 def ICC_NE : ICC_VAL< 9>; // Not Equal 836 def ICC_E : ICC_VAL< 1>; // Equal 837 def ICC_G : ICC_VAL<10>; // Greater 838 ... 839 def FCC_U : FCC_VAL<23>; // Unordered 840 def FCC_G : FCC_VAL<22>; // Greater 841 def FCC_UG : FCC_VAL<21>; // Unordered or Greater 842 ... 843 844 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC 845 condition codes. Care must be taken to ensure the values in ``Sparc.h`` 846 correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``, 847 ``SPCC::FCC_U = 23`` and so on.) 848 849 Instruction Operand Mapping 850 --------------------------- 851 852 The code generator backend maps instruction operands to fields in the 853 instruction. Operands are assigned to unbound fields in the instruction in the 854 order they are defined. Fields are bound when they are assigned a value. For 855 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1`` 856 format instruction having three operands. 857 858 .. code-block:: llvm 859 860 def XNORrr : F3_1<2, 0b000111, 861 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 862 "xnor $b, $c, $dst", 863 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; 864 865 The instruction templates in ``SparcInstrFormats.td`` show the base class for 866 ``F3_1`` is ``InstSP``. 867 868 .. code-block:: llvm 869 870 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { 871 field bits<32> Inst; 872 let Namespace = "SP"; 873 bits<2> op; 874 let Inst{31-30} = op; 875 dag OutOperandList = outs; 876 dag InOperandList = ins; 877 let AsmString = asmstr; 878 let Pattern = pattern; 879 } 880 881 ``InstSP`` leaves the ``op`` field unbound. 882 883 .. code-block:: llvm 884 885 class F3<dag outs, dag ins, string asmstr, list<dag> pattern> 886 : InstSP<outs, ins, asmstr, pattern> { 887 bits<5> rd; 888 bits<6> op3; 889 bits<5> rs1; 890 let op{1} = 1; // Op = 2 or 3 891 let Inst{29-25} = rd; 892 let Inst{24-19} = op3; 893 let Inst{18-14} = rs1; 894 } 895 896 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1`` 897 fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and 898 ``rs1`` fields. 899 900 .. code-block:: llvm 901 902 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, 903 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { 904 bits<8> asi = 0; // asi not currently used 905 bits<5> rs2; 906 let op = opVal; 907 let op3 = op3val; 908 let Inst{13} = 0; // i field = 0 909 let Inst{12-5} = asi; // address space identifier 910 let Inst{4-0} = rs2; 911 } 912 913 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1`` 914 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2`` 915 fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``, 916 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively. 917 918 Instruction Operand Name Mapping 919 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 920 921 TableGen will also generate a function called getNamedOperandIdx() which 922 can be used to look up an operand's index in a MachineInstr based on its 923 TableGen name. Setting the UseNamedOperandTable bit in an instruction's 924 TableGen definition will add all of its operands to an enumeration in the 925 llvm::XXX:OpName namespace and also add an entry for it into the OperandMap 926 table, which can be queried using getNamedOperandIdx() 927 928 .. code-block:: llvm 929 930 int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0 931 int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1 932 int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2 933 int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1 934 935 ... 936 937 The entries in the OpName enum are taken verbatim from the TableGen definitions, 938 so operands with lowercase names will have lower case entries in the enum. 939 940 To include the getNamedOperandIdx() function in your backend, you will need 941 to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h. 942 For example: 943 944 XXXInstrInfo.cpp: 945 946 .. code-block:: c++ 947 948 #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function 949 #include "XXXGenInstrInfo.inc" 950 951 XXXInstrInfo.h: 952 953 .. code-block:: c++ 954 955 #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum 956 #include "XXXGenInstrInfo.inc" 957 958 namespace XXX { 959 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex); 960 } // End namespace XXX 961 962 Instruction Operand Types 963 ^^^^^^^^^^^^^^^^^^^^^^^^^ 964 965 TableGen will also generate an enumeration consisting of all named Operand 966 types defined in the backend, in the llvm::XXX::OpTypes namespace. 967 Some common immediate Operand types (for instance i8, i32, i64, f32, f64) 968 are defined for all targets in ``include/llvm/Target/Target.td``, and are 969 available in each Target's OpTypes enum. Also, only named Operand types appear 970 in the enumeration: anonymous types are ignored. 971 For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both 972 instances of the TableGen ``Operand`` class, which represent branch target 973 operands: 974 975 .. code-block:: llvm 976 977 def brtarget : Operand<OtherVT>; 978 def brtarget8 : Operand<OtherVT>; 979 980 This results in: 981 982 .. code-block:: c++ 983 984 namespace X86 { 985 namespace OpTypes { 986 enum OperandType { 987 ... 988 brtarget, 989 brtarget8, 990 ... 991 i32imm, 992 i64imm, 993 ... 994 OPERAND_TYPE_LIST_END 995 } // End namespace OpTypes 996 } // End namespace X86 997 998 In typical TableGen fashion, to use the enum, you will need to define a 999 preprocessor macro: 1000 1001 .. code-block:: c++ 1002 1003 #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum 1004 #include "XXXGenInstrInfo.inc" 1005 1006 1007 Instruction Scheduling 1008 ---------------------- 1009 1010 Instruction itineraries can be queried using MCDesc::getSchedClass(). The 1011 value can be named by an enumemation in llvm::XXX::Sched namespace generated 1012 by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are 1013 the same as provided in XXXSchedule.td plus a default NoItinerary class. 1014 1015 Instruction Relation Mapping 1016 ---------------------------- 1017 1018 This TableGen feature is used to relate instructions with each other. It is 1019 particularly useful when you have multiple instruction formats and need to 1020 switch between them after instruction selection. This entire feature is driven 1021 by relation models which can be defined in ``XXXInstrInfo.td`` files 1022 according to the target-specific instruction set. Relation models are defined 1023 using ``InstrMapping`` class as a base. TableGen parses all the models 1024 and generates instruction relation maps using the specified information. 1025 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file 1026 along with the functions to query them. For the detailed information on how to 1027 use this feature, please refer to :doc:`HowToUseInstrMappings`. 1028 1029 Implement a subclass of ``TargetInstrInfo`` 1030 ------------------------------------------- 1031 1032 The final step is to hand code portions of ``XXXInstrInfo``, which implements 1033 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`). 1034 These functions return ``0`` or a Boolean or they assert, unless overridden. 1035 Here's a list of functions that are overridden for the SPARC implementation in 1036 ``SparcInstrInfo.cpp``: 1037 1038 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct 1039 load from a stack slot, return the register number of the destination and the 1040 ``FrameIndex`` of the stack slot. 1041 1042 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct 1043 store to a stack slot, return the register number of the destination and the 1044 ``FrameIndex`` of the stack slot. 1045 1046 * ``copyPhysReg`` --- Copy values between a pair of physical registers. 1047 1048 * ``storeRegToStackSlot`` --- Store a register value to a stack slot. 1049 1050 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot. 1051 1052 * ``storeRegToAddr`` --- Store a register value to memory. 1053 1054 * ``loadRegFromAddr`` --- Load a register value from memory. 1055 1056 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or 1057 store instruction for the specified operand(s). 1058 1059 Branch Folding and If Conversion 1060 -------------------------------- 1061 1062 Performance can be improved by combining instructions or by eliminating 1063 instructions that are never reached. The ``AnalyzeBranch`` method in 1064 ``XXXInstrInfo`` may be implemented to examine conditional instructions and 1065 remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a 1066 machine basic block (MBB) for opportunities for improvement, such as branch 1067 folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine 1068 function passes (see the source files ``BranchFolding.cpp`` and 1069 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch`` 1070 to improve the control flow graph that represents the instructions. 1071 1072 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be 1073 examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC 1074 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is 1075 shown below. 1076 1077 ``AnalyzeBranch`` returns a Boolean value and takes four parameters: 1078 1079 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined. 1080 1081 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a 1082 conditional branch that evaluates to true, ``TBB`` is the destination. 1083 1084 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to 1085 false, ``FBB`` is returned as the destination. 1086 1087 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a 1088 condition for a conditional branch. 1089 1090 In the simplest case, if a block ends without a branch, then it falls through 1091 to the successor block. No destination blocks are specified for either ``TBB`` 1092 or ``FBB``, so both parameters return ``NULL``. The start of the 1093 ``AnalyzeBranch`` (see code below for the ARM target) shows the function 1094 parameters and the code for the simplest case. 1095 1096 .. code-block:: c++ 1097 1098 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1099 MachineBasicBlock *&TBB, 1100 MachineBasicBlock *&FBB, 1101 std::vector<MachineOperand> &Cond) const 1102 { 1103 MachineBasicBlock::iterator I = MBB.end(); 1104 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) 1105 return false; 1106 1107 If a block ends with a single unconditional branch instruction, then 1108 ``AnalyzeBranch`` (shown below) should return the destination of that branch in 1109 the ``TBB`` parameter. 1110 1111 .. code-block:: c++ 1112 1113 if (LastOpc == ARM::B || LastOpc == ARM::tB) { 1114 TBB = LastInst->getOperand(0).getMBB(); 1115 return false; 1116 } 1117 1118 If a block ends with two unconditional branches, then the second branch is 1119 never reached. In that situation, as shown below, remove the last branch 1120 instruction and return the penultimate branch in the ``TBB`` parameter. 1121 1122 .. code-block:: c++ 1123 1124 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) && 1125 (LastOpc == ARM::B || LastOpc == ARM::tB)) { 1126 TBB = SecondLastInst->getOperand(0).getMBB(); 1127 I = LastInst; 1128 I->eraseFromParent(); 1129 return false; 1130 } 1131 1132 A block may end with a single conditional branch instruction that falls through 1133 to successor block if the condition evaluates to false. In that case, 1134 ``AnalyzeBranch`` (shown below) should return the destination of that 1135 conditional branch in the ``TBB`` parameter and a list of operands in the 1136 ``Cond`` parameter to evaluate the condition. 1137 1138 .. code-block:: c++ 1139 1140 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { 1141 // Block ends with fall-through condbranch. 1142 TBB = LastInst->getOperand(0).getMBB(); 1143 Cond.push_back(LastInst->getOperand(1)); 1144 Cond.push_back(LastInst->getOperand(2)); 1145 return false; 1146 } 1147 1148 If a block ends with both a conditional branch and an ensuing unconditional 1149 branch, then ``AnalyzeBranch`` (shown below) should return the conditional 1150 branch destination (assuming it corresponds to a conditional evaluation of 1151 "``true``") in the ``TBB`` parameter and the unconditional branch destination 1152 in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A 1153 list of operands to evaluate the condition should be returned in the ``Cond`` 1154 parameter. 1155 1156 .. code-block:: c++ 1157 1158 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 1159 1160 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || 1161 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { 1162 TBB = SecondLastInst->getOperand(0).getMBB(); 1163 Cond.push_back(SecondLastInst->getOperand(1)); 1164 Cond.push_back(SecondLastInst->getOperand(2)); 1165 FBB = LastInst->getOperand(0).getMBB(); 1166 return false; 1167 } 1168 1169 For the last two cases (ending with a single conditional branch or ending with 1170 one conditional and one unconditional branch), the operands returned in the 1171 ``Cond`` parameter can be passed to methods of other instructions to create new 1172 branches or perform other operations. An implementation of ``AnalyzeBranch`` 1173 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage 1174 subsequent operations. 1175 1176 ``AnalyzeBranch`` should return false indicating success in most circumstances. 1177 ``AnalyzeBranch`` should only return true when the method is stumped about what 1178 to do, for example, if a block has three terminating branches. 1179 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot 1180 handle, such as an indirect branch. 1181 1182 .. _instruction-selector: 1183 1184 Instruction Selector 1185 ==================== 1186 1187 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of 1188 the ``SelectionDAG`` ideally represent native target instructions. During code 1189 generation, instruction selection passes are performed to convert non-native 1190 DAG instructions into native target-specific instructions. The pass described 1191 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG 1192 instruction selection. Optionally, a pass may be defined (in 1193 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch 1194 instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes 1195 operations and data types not supported natively (legalizes) in a 1196 ``SelectionDAG``. 1197 1198 TableGen generates code for instruction selection using the following target 1199 description input files: 1200 1201 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a 1202 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is 1203 included in ``XXXISelDAGToDAG.cpp``. 1204 1205 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions 1206 for the target architecture, and it generates ``XXXGenCallingConv.inc``, 1207 which is included in ``XXXISelLowering.cpp``. 1208 1209 The implementation of an instruction selection pass must include a header that 1210 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In 1211 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction 1212 selection pass into the queue of passes to run. 1213 1214 The LLVM static compiler (``llc``) is an excellent tool for visualizing the 1215 contents of DAGs. To display the ``SelectionDAG`` before or after specific 1216 processing phases, use the command line options for ``llc``, described at 1217 :ref:`SelectionDAG-Process`. 1218 1219 To describe instruction selector behavior, you should add patterns for lowering 1220 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction 1221 definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``, 1222 this entry defines a register store operation, and the last parameter describes 1223 a pattern with the store DAG operator. 1224 1225 .. code-block:: llvm 1226 1227 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), 1228 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>; 1229 1230 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``: 1231 1232 .. code-block:: llvm 1233 1234 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; 1235 1236 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function 1237 defined in an implementation of the Instructor Selector (such as 1238 ``SparcISelDAGToDAG.cpp``). 1239 1240 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined 1241 below: 1242 1243 .. code-block:: llvm 1244 1245 def store : PatFrag<(ops node:$val, node:$ptr), 1246 (st node:$val, node:$ptr), [{ 1247 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) 1248 return !ST->isTruncatingStore() && 1249 ST->getAddressingMode() == ISD::UNINDEXED; 1250 return false; 1251 }]>; 1252 1253 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the 1254 ``SelectCode`` method that is used to call the appropriate processing method 1255 for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE`` 1256 for the ``ISD::STORE`` opcode. 1257 1258 .. code-block:: c++ 1259 1260 SDNode *SelectCode(SDValue N) { 1261 ... 1262 MVT::ValueType NVT = N.getNode()->getValueType(0); 1263 switch (N.getOpcode()) { 1264 case ISD::STORE: { 1265 switch (NVT) { 1266 default: 1267 return Select_ISD_STORE(N); 1268 break; 1269 } 1270 break; 1271 } 1272 ... 1273 1274 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``, 1275 code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method 1276 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this 1277 instruction. 1278 1279 .. code-block:: c++ 1280 1281 SDNode *Select_ISD_STORE(const SDValue &N) { 1282 SDValue Chain = N.getOperand(0); 1283 if (Predicate_store(N.getNode())) { 1284 SDValue N1 = N.getOperand(1); 1285 SDValue N2 = N.getOperand(2); 1286 SDValue CPTmp0; 1287 SDValue CPTmp1; 1288 1289 // Pattern: (st:void i32:i32:$src, 1290 // ADDRrr:i32:$addr)<<P:Predicate_store>> 1291 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) 1292 // Pattern complexity = 13 cost = 1 size = 0 1293 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && 1294 N1.getNode()->getValueType(0) == MVT::i32 && 1295 N2.getNode()->getValueType(0) == MVT::i32) { 1296 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); 1297 } 1298 ... 1299 1300 The SelectionDAG Legalize Phase 1301 ------------------------------- 1302 1303 The Legalize phase converts a DAG to use types and operations that are natively 1304 supported by the target. For natively unsupported types and operations, you 1305 need to add code to the target-specific ``XXXTargetLowering`` implementation to 1306 convert unsupported types and operations to supported ones. 1307 1308 In the constructor for the ``XXXTargetLowering`` class, first use the 1309 ``addRegisterClass`` method to specify which types are supported and which 1310 register classes are associated with them. The code for the register classes 1311 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in 1312 ``XXXGenRegisterInfo.h.inc``. For example, the implementation of the 1313 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``) 1314 starts with the following code: 1315 1316 .. code-block:: c++ 1317 1318 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); 1319 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); 1320 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 1321 1322 You should examine the node types in the ``ISD`` namespace 1323 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations 1324 the target natively supports. For operations that do **not** have native 1325 support, add a callback to the constructor for the ``XXXTargetLowering`` class, 1326 so the instruction selection process knows what to do. The ``TargetLowering`` 1327 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are: 1328 1329 * ``setOperationAction`` --- General operation. 1330 * ``setLoadExtAction`` --- Load with extension. 1331 * ``setTruncStoreAction`` --- Truncating store. 1332 * ``setIndexedLoadAction`` --- Indexed load. 1333 * ``setIndexedStoreAction`` --- Indexed store. 1334 * ``setConvertAction`` --- Type conversion. 1335 * ``setCondCodeAction`` --- Support for a given condition code. 1336 1337 Note: on older releases, ``setLoadXAction`` is used instead of 1338 ``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not 1339 be supported. Examine your release to see what methods are specifically 1340 supported. 1341 1342 These callbacks are used to determine that an operation does or does not work 1343 with a specified type (or types). And in all cases, the third parameter is a 1344 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or 1345 ``Legal``. ``SparcISelLowering.cpp`` contains examples of all four 1346 ``LegalAction`` values. 1347 1348 Promote 1349 ^^^^^^^ 1350 1351 For an operation without native support for a given type, the specified type 1352 may be promoted to a larger type that is supported. For example, SPARC does 1353 not support a sign-extending load for Boolean values (``i1`` type), so in 1354 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes 1355 ``i1`` type values to a large type before loading. 1356 1357 .. code-block:: c++ 1358 1359 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 1360 1361 Expand 1362 ^^^^^^ 1363 1364 For a type without native support, a value may need to be broken down further, 1365 rather than promoted. For an operation without native support, a combination 1366 of other operations may be used to similar effect. In SPARC, the 1367 floating-point sine and cosine trig operations are supported by expansion to 1368 other operations, as indicated by the third parameter, ``Expand``, to 1369 ``setOperationAction``: 1370 1371 .. code-block:: c++ 1372 1373 setOperationAction(ISD::FSIN, MVT::f32, Expand); 1374 setOperationAction(ISD::FCOS, MVT::f32, Expand); 1375 1376 Custom 1377 ^^^^^^ 1378 1379 For some operations, simple type promotion or operation expansion may be 1380 insufficient. In some cases, a special intrinsic function must be implemented. 1381 1382 For example, a constant value may require special treatment, or an operation 1383 may require spilling and restoring registers in the stack and working with 1384 register allocators. 1385 1386 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion 1387 from a floating point value to a signed integer, first the 1388 ``setOperationAction`` should be called with ``Custom`` as the third parameter: 1389 1390 .. code-block:: c++ 1391 1392 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1393 1394 In the ``LowerOperation`` method, for each ``Custom`` operation, a case 1395 statement should be added to indicate what function to call. In the following 1396 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method: 1397 1398 .. code-block:: c++ 1399 1400 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 1401 switch (Op.getOpcode()) { 1402 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1403 ... 1404 } 1405 } 1406 1407 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to 1408 convert the floating-point value to an integer. 1409 1410 .. code-block:: c++ 1411 1412 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 1413 assert(Op.getValueType() == MVT::i32); 1414 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); 1415 return DAG.getNode(ISD::BITCAST, MVT::i32, Op); 1416 } 1417 1418 Legal 1419 ^^^^^ 1420 1421 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation 1422 **is** natively supported. ``Legal`` represents the default condition, so it 1423 is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an 1424 operation to count the bits set in an integer) is natively supported only for 1425 SPARC v9. The following code enables the ``Expand`` conversion technique for 1426 non-v9 SPARC implementations. 1427 1428 .. code-block:: c++ 1429 1430 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1431 ... 1432 if (TM.getSubtarget<SparcSubtarget>().isV9()) 1433 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 1434 1435 Calling Conventions 1436 ------------------- 1437 1438 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses 1439 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in 1440 ``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor 1441 file ``XXXGenCallingConv.td`` and generate the header file 1442 ``XXXGenCallingConv.inc``, which is typically included in 1443 ``XXXISelLowering.cpp``. You can use the interfaces in 1444 ``TargetCallingConv.td`` to specify: 1445 1446 * The order of parameter allocation. 1447 1448 * Where parameters and return values are placed (that is, on the stack or in 1449 registers). 1450 1451 * Which registers may be used. 1452 1453 * Whether the caller or callee unwinds the stack. 1454 1455 The following example demonstrates the use of the ``CCIfType`` and 1456 ``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is, 1457 if the current argument is of type ``f32`` or ``f64``), then the action is 1458 performed. In this case, the ``CCAssignToReg`` action assigns the argument 1459 value to the first available register: either ``R0`` or ``R1``. 1460 1461 .. code-block:: llvm 1462 1463 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> 1464 1465 ``SparcCallingConv.td`` contains definitions for a target-specific return-value 1466 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention 1467 (``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates 1468 which registers are used for specified scalar return types. A single-precision 1469 float is returned to register ``F0``, and a double-precision float goes to 1470 register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``. 1471 1472 .. code-block:: llvm 1473 1474 def RetCC_Sparc32 : CallingConv<[ 1475 CCIfType<[i32], CCAssignToReg<[I0, I1]>>, 1476 CCIfType<[f32], CCAssignToReg<[F0]>>, 1477 CCIfType<[f64], CCAssignToReg<[D0]>> 1478 ]>; 1479 1480 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces 1481 ``CCAssignToStack``, which assigns the value to a stack slot with the specified 1482 size and alignment. In the example below, the first parameter, 4, indicates 1483 the size of the slot, and the second parameter, also 4, indicates the stack 1484 alignment along 4-byte units. (Special cases: if size is zero, then the ABI 1485 size is used; if alignment is zero, then the ABI alignment is used.) 1486 1487 .. code-block:: llvm 1488 1489 def CC_Sparc32 : CallingConv<[ 1490 // All arguments get passed in integer registers if there is space. 1491 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, 1492 CCAssignToStack<4, 4> 1493 ]>; 1494 1495 ``CCDelegateTo`` is another commonly used interface, which tries to find a 1496 specified sub-calling convention, and, if a match is found, it is invoked. In 1497 the following example (in ``X86CallingConv.td``), the definition of 1498 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is 1499 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is 1500 invoked. 1501 1502 .. code-block:: llvm 1503 1504 def RetCC_X86_32_C : CallingConv<[ 1505 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, 1506 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, 1507 CCDelegateTo<RetCC_X86Common> 1508 ]>; 1509 1510 ``CCIfCC`` is an interface that attempts to match the given name to the current 1511 calling convention. If the name identifies the current calling convention, 1512 then a specified action is invoked. In the following example (in 1513 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then 1514 ``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in 1515 use, then ``RetCC_X86_32_SSE`` is invoked. 1516 1517 .. code-block:: llvm 1518 1519 def RetCC_X86_32 : CallingConv<[ 1520 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 1521 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, 1522 CCDelegateTo<RetCC_X86_32_C> 1523 ]>; 1524 1525 Other calling convention interfaces include: 1526 1527 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action. 1528 1529 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``" 1530 attribute, then apply the action. 1531 1532 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``" 1533 attribute, then apply the action. 1534 1535 * ``CCIfNotVarArg <action>`` --- If the current function does not take a 1536 variable number of arguments, apply the action. 1537 1538 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to 1539 ``CCAssignToReg``, but with a shadow list of registers. 1540 1541 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the 1542 minimum specified size and alignment. 1543 1544 * ``CCPromoteToType <type>`` --- Promote the current value to the specified 1545 type. 1546 1547 * ``CallingConv <[actions]>`` --- Define each calling convention that is 1548 supported. 1549 1550 Assembly Printer 1551 ================ 1552 1553 During the code emission stage, the code generator may utilize an LLVM pass to 1554 produce assembly output. To do this, you want to implement the code for a 1555 printer that converts LLVM IR to a GAS-format assembly language for your target 1556 machine, using the following steps: 1557 1558 * Define all the assembly strings for your target, adding them to the 1559 instructions defined in the ``XXXInstrInfo.td`` file. (See 1560 :ref:`instruction-set`.) TableGen will produce an output file 1561 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction`` 1562 method for the ``XXXAsmPrinter`` class. 1563 1564 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of 1565 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``). 1566 1567 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for 1568 ``TargetAsmInfo`` properties and sometimes new implementations for methods. 1569 1570 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that 1571 performs the LLVM-to-assembly conversion. 1572 1573 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the 1574 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly, 1575 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo`` 1576 replacement values that override the default values in ``TargetAsmInfo.cpp``. 1577 For example in ``SparcTargetAsmInfo.cpp``: 1578 1579 .. code-block:: c++ 1580 1581 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { 1582 Data16bitsDirective = "\t.half\t"; 1583 Data32bitsDirective = "\t.word\t"; 1584 Data64bitsDirective = 0; // .xword is only supported by V9. 1585 ZeroDirective = "\t.skip\t"; 1586 CommentString = "!"; 1587 ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; 1588 } 1589 1590 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example 1591 where the target specific ``TargetAsmInfo`` class uses an overridden methods: 1592 ``ExpandInlineAsm``. 1593 1594 A target-specific implementation of ``AsmPrinter`` is written in 1595 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts 1596 the LLVM to printable assembly. The implementation must include the following 1597 headers that have declarations for the ``AsmPrinter`` and 1598 ``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of 1599 ``FunctionPass``. 1600 1601 .. code-block:: c++ 1602 1603 #include "llvm/CodeGen/AsmPrinter.h" 1604 #include "llvm/CodeGen/MachineFunctionPass.h" 1605 1606 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set 1607 up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is 1608 instantiated to process variable names. 1609 1610 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in 1611 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In 1612 ``MachineFunctionPass``, the ``runOnFunction`` method invokes 1613 ``runOnMachineFunction``. Target-specific implementations of 1614 ``runOnMachineFunction`` differ, but generally do the following to process each 1615 machine function: 1616 1617 * Call ``SetupMachineFunction`` to perform initialization. 1618 1619 * Call ``EmitConstantPool`` to print out (to the output stream) constants which 1620 have been spilled to memory. 1621 1622 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current 1623 function. 1624 1625 * Print out the label for the current function. 1626 1627 * Print out the code for the function, including basic block labels and the 1628 assembly for the instruction (using ``printInstruction``) 1629 1630 The ``XXXAsmPrinter`` implementation must also include the code generated by 1631 TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in 1632 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction`` 1633 method that may call these methods: 1634 1635 * ``printOperand`` 1636 * ``printMemOperand`` 1637 * ``printCCOperand`` (for conditional statements) 1638 * ``printDataDirective`` 1639 * ``printDeclare`` 1640 * ``printImplicitDef`` 1641 * ``printInlineAsm`` 1642 1643 The implementations of ``printDeclare``, ``printImplicitDef``, 1644 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally 1645 adequate for printing assembly and do not need to be overridden. 1646 1647 The ``printOperand`` method is implemented with a long ``switch``/``case`` 1648 statement for the type of operand: register, immediate, basic block, external 1649 symbol, global address, constant pool index, or jump table index. For an 1650 instruction with a memory address operand, the ``printMemOperand`` method 1651 should be implemented to generate the proper output. Similarly, 1652 ``printCCOperand`` should be used to print a conditional operand. 1653 1654 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be 1655 called to shut down the assembly printer. During ``doFinalization``, global 1656 variables and constants are printed to output. 1657 1658 Subtarget Support 1659 ================= 1660 1661 Subtarget support is used to inform the code generation process of instruction 1662 set variations for a given chip set. For example, the LLVM SPARC 1663 implementation provided covers three major versions of the SPARC microprocessor 1664 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 1665 64-bit architecture), and the UltraSPARC architecture. V8 has 16 1666 double-precision floating-point registers that are also usable as either 32 1667 single-precision or 8 quad-precision registers. V8 is also purely big-endian. 1668 V9 has 32 double-precision floating-point registers that are also usable as 16 1669 quad-precision registers, but cannot be used as single-precision registers. 1670 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set 1671 extensions. 1672 1673 If subtarget support is needed, you should implement a target-specific 1674 ``XXXSubtarget`` class for your architecture. This class should process the 1675 command-line options ``-mcpu=`` and ``-mattr=``. 1676 1677 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to 1678 generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the 1679 ``SubtargetFeature`` interface is defined. The first 4 string parameters of 1680 the ``SubtargetFeature`` interface are a feature name, an attribute set by the 1681 feature, the value of the attribute, and a description of the feature. (The 1682 fifth parameter is a list of features whose presence is implied, and its 1683 default value is an empty array.) 1684 1685 .. code-block:: llvm 1686 1687 class SubtargetFeature<string n, string a, string v, string d, 1688 list<SubtargetFeature> i = []> { 1689 string Name = n; 1690 string Attribute = a; 1691 string Value = v; 1692 string Desc = d; 1693 list<SubtargetFeature> Implies = i; 1694 } 1695 1696 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the 1697 following features. 1698 1699 .. code-block:: llvm 1700 1701 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", 1702 "Enable SPARC-V9 instructions">; 1703 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 1704 "V8DeprecatedInsts", "true", 1705 "Enable deprecated V8 instructions in V9 mode">; 1706 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", 1707 "Enable UltraSPARC Visual Instruction Set extensions">; 1708 1709 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to 1710 define particular SPARC processor subtypes that may have the previously 1711 described features. 1712 1713 .. code-block:: llvm 1714 1715 class Proc<string Name, list<SubtargetFeature> Features> 1716 : Processor<Name, NoItineraries, Features>; 1717 1718 def : Proc<"generic", []>; 1719 def : Proc<"v8", []>; 1720 def : Proc<"supersparc", []>; 1721 def : Proc<"sparclite", []>; 1722 def : Proc<"f934", []>; 1723 def : Proc<"hypersparc", []>; 1724 def : Proc<"sparclite86x", []>; 1725 def : Proc<"sparclet", []>; 1726 def : Proc<"tsc701", []>; 1727 def : Proc<"v9", [FeatureV9]>; 1728 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; 1729 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; 1730 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; 1731 1732 From ``Target.td`` and ``Sparc.td`` files, the resulting 1733 ``SparcGenSubtarget.inc`` specifies enum values to identify the features, 1734 arrays of constants to represent the CPU features and CPU subtypes, and the 1735 ``ParseSubtargetFeatures`` method that parses the features string that sets 1736 specified subtarget options. The generated ``SparcGenSubtarget.inc`` file 1737 should be included in the ``SparcSubtarget.cpp``. The target-specific 1738 implementation of the ``XXXSubtarget`` method should follow this pseudocode: 1739 1740 .. code-block:: c++ 1741 1742 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { 1743 // Set the default features 1744 // Determine default and user specified characteristics of the CPU 1745 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string 1746 // Perform any additional operations 1747 } 1748 1749 JIT Support 1750 =========== 1751 1752 The implementation of a target machine optionally includes a Just-In-Time (JIT) 1753 code generator that emits machine code and auxiliary structures as binary 1754 output that can be written directly to memory. To do this, implement JIT code 1755 generation by performing the following steps: 1756 1757 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass 1758 that transforms target-machine instructions into relocatable machine 1759 code. 1760 1761 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for 1762 target-specific code-generation activities, such as emitting machine code and 1763 stubs. 1764 1765 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object 1766 through its ``getJITInfo`` method. 1767 1768 There are several different approaches to writing the JIT support code. For 1769 instance, TableGen and target descriptor files may be used for creating a JIT 1770 code generator, but are not mandatory. For the Alpha and PowerPC target 1771 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which 1772 contains the binary coding of machine instructions and the 1773 ``getBinaryCodeForInstr`` method to access those codes. Other JIT 1774 implementations do not. 1775 1776 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the 1777 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the 1778 ``MachineCodeEmitter`` class containing code for several callback functions 1779 that write data (in bytes, words, strings, etc.) to the output stream. 1780 1781 Machine Code Emitter 1782 -------------------- 1783 1784 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is 1785 implemented as a function pass (subclass of ``MachineFunctionPass``). The 1786 target-specific implementation of ``runOnMachineFunction`` (invoked by 1787 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the 1788 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and 1789 emit binary code. ``emitInstruction`` is largely implemented with case 1790 statements on the instruction types defined in ``XXXInstrInfo.h``. For 1791 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built 1792 around the following ``switch``/``case`` statements: 1793 1794 .. code-block:: c++ 1795 1796 switch (Desc->TSFlags & X86::FormMask) { 1797 case X86II::Pseudo: // for not yet implemented instructions 1798 ... // or pseudo-instructions 1799 break; 1800 case X86II::RawFrm: // for instructions with a fixed opcode value 1801 ... 1802 break; 1803 case X86II::AddRegFrm: // for instructions that have one register operand 1804 ... // added to their opcode 1805 break; 1806 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte 1807 ... // to specify a destination (register) 1808 break; 1809 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte 1810 ... // to specify a destination (memory) 1811 break; 1812 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte 1813 ... // to specify a source (register) 1814 break; 1815 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte 1816 ... // to specify a source (memory) 1817 break; 1818 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on 1819 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and 1820 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field 1821 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data 1822 ... 1823 break; 1824 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on 1825 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and 1826 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field 1827 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data 1828 ... 1829 break; 1830 case X86II::MRMInitReg: // for instructions whose source and 1831 ... // destination are the same register 1832 break; 1833 } 1834 1835 The implementations of these case statements often first emit the opcode and 1836 then get the operand(s). Then depending upon the operand, helper methods may 1837 be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``, 1838 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is 1839 the opcode added to the register operand. Then an object representing the 1840 machine operand, ``MO1``, is extracted. The helper methods such as 1841 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``, 1842 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type. 1843 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``, 1844 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``, 1845 and ``emitJumpTableAddress`` that emit the data into the output stream.) 1846 1847 .. code-block:: c++ 1848 1849 case X86II::AddRegFrm: 1850 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); 1851 1852 if (CurOp != NumOps) { 1853 const MachineOperand &MO1 = MI.getOperand(CurOp++); 1854 unsigned Size = X86InstrInfo::sizeOfImm(Desc); 1855 if (MO1.isImmediate()) 1856 emitConstant(MO1.getImm(), Size); 1857 else { 1858 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word 1859 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); 1860 if (Opcode == X86::MOV64ri) 1861 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? 1862 if (MO1.isGlobalAddress()) { 1863 bool NeedStub = isa<Function>(MO1.getGlobal()); 1864 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); 1865 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, 1866 NeedStub, isLazy); 1867 } else if (MO1.isExternalSymbol()) 1868 emitExternalSymbolAddress(MO1.getSymbolName(), rt); 1869 else if (MO1.isConstantPoolIndex()) 1870 emitConstPoolAddress(MO1.getIndex(), rt); 1871 else if (MO1.isJumpTableIndex()) 1872 emitJumpTableAddress(MO1.getIndex(), rt); 1873 } 1874 } 1875 break; 1876 1877 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which 1878 is a ``RelocationType`` enum that may be used to relocate addresses (for 1879 example, a global address with a PIC base offset). The ``RelocationType`` enum 1880 for that target is defined in the short target-specific ``XXXRelocations.h`` 1881 file. The ``RelocationType`` is used by the ``relocate`` method defined in 1882 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols. 1883 1884 For example, ``X86Relocations.h`` specifies the following relocation types for 1885 the X86 addresses. In all four cases, the relocated value is added to the 1886 value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``, 1887 there is an additional initial adjustment. 1888 1889 .. code-block:: c++ 1890 1891 enum RelocationType { 1892 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc 1893 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base 1894 reloc_absolute_word = 2, // absolute relocation; no additional adjustment 1895 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment 1896 }; 1897 1898 Target JIT Info 1899 --------------- 1900 1901 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific 1902 code-generation activities, such as emitting machine code and stubs. At 1903 minimum, a target-specific version of ``XXXJITInfo`` implements the following: 1904 1905 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a 1906 function that is used for compilation. 1907 1908 * ``emitFunctionStub`` --- Returns a native function with a specified address 1909 for a callback function. 1910 1911 * ``relocate`` --- Changes the addresses of referenced globals, based on 1912 relocation types. 1913 1914 * Callback function that are wrappers to a function stub that is used when the 1915 real target is not initially known. 1916 1917 ``getLazyResolverFunction`` is generally trivial to implement. It makes the 1918 incoming parameter as the global ``JITCompilerFunction`` and returns the 1919 callback function that will be used a function wrapper. For the Alpha target 1920 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is 1921 simply: 1922 1923 .. code-block:: c++ 1924 1925 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( 1926 JITCompilerFn F) { 1927 JITCompilerFunction = F; 1928 return AlphaCompilationCallback; 1929 } 1930 1931 For the X86 target, the ``getLazyResolverFunction`` implementation is a little 1932 more complicated, because it returns a different callback function for 1933 processors with SSE instructions and XMM registers. 1934 1935 The callback function initially saves and later restores the callee register 1936 values, incoming arguments, and frame and return address. The callback 1937 function needs low-level access to the registers or stack, so it is typically 1938 implemented with assembler. 1939 1940