1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Parallel JIT 11 // 12 // This test program creates two LLVM functions then calls them from three 13 // separate threads. It requires the pthreads library. 14 // The three threads are created and then block waiting on a condition variable. 15 // Once all threads are blocked on the conditional variable, the main thread 16 // wakes them up. This complicated work is performed so that all three threads 17 // call into the JIT at the same time (or the best possible approximation of the 18 // same time). This test had assertion errors until I got the locking right. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ExecutionEngine/ExecutionEngine.h" 25 #include "llvm/ExecutionEngine/GenericValue.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iostream> 44 #include <memory> 45 #include <vector> 46 #include <pthread.h> 47 48 using namespace llvm; 49 50 static Function* createAdd1(Module *M) { 51 // Create the add1 function entry and insert this entry into module M. The 52 // function will have a return type of "int" and take an argument of "int". 53 // The '0' terminates the list of argument types. 54 Function *Add1F = 55 cast<Function>(M->getOrInsertFunction("add1", 56 Type::getInt32Ty(M->getContext()), 57 Type::getInt32Ty(M->getContext()), 58 nullptr)); 59 60 // Add a basic block to the function. As before, it automatically inserts 61 // because of the last argument. 62 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F); 63 64 // Get pointers to the constant `1'. 65 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 66 67 // Get pointers to the integer argument of the add1 function... 68 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 69 Argument *ArgX = &*Add1F->arg_begin(); // Get the arg 70 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 71 72 // Create the add instruction, inserting it into the end of BB. 73 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); 74 75 // Create the return instruction and add it to the basic block 76 ReturnInst::Create(M->getContext(), Add, BB); 77 78 // Now, function add1 is ready. 79 return Add1F; 80 } 81 82 static Function *CreateFibFunction(Module *M) { 83 // Create the fib function and insert it into module M. This function is said 84 // to return an int and take an int parameter. 85 Function *FibF = 86 cast<Function>(M->getOrInsertFunction("fib", 87 Type::getInt32Ty(M->getContext()), 88 Type::getInt32Ty(M->getContext()), 89 nullptr)); 90 91 // Add a basic block to the function. 92 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF); 93 94 // Get pointers to the constants. 95 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 96 Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2); 97 98 // Get pointer to the integer argument of the add1 function... 99 Argument *ArgX = &*FibF->arg_begin(); // Get the arg. 100 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 101 102 // Create the true_block. 103 BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF); 104 // Create an exit block. 105 BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF); 106 107 // Create the "if (arg < 2) goto exitbb" 108 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); 109 BranchInst::Create(RetBB, RecurseBB, CondInst, BB); 110 111 // Create: ret int 1 112 ReturnInst::Create(M->getContext(), One, RetBB); 113 114 // create fib(x-1) 115 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); 116 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); 117 118 // create fib(x-2) 119 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); 120 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); 121 122 // fib(x-1)+fib(x-2) 123 Value *Sum = 124 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 125 126 // Create the return instruction and add it to the basic block 127 ReturnInst::Create(M->getContext(), Sum, RecurseBB); 128 129 return FibF; 130 } 131 132 struct threadParams { 133 ExecutionEngine* EE; 134 Function* F; 135 int value; 136 }; 137 138 // We block the subthreads just before they begin to execute: 139 // we want all of them to call into the JIT at the same time, 140 // to verify that the locking is working correctly. 141 class WaitForThreads 142 { 143 public: 144 WaitForThreads() 145 { 146 n = 0; 147 waitFor = 0; 148 149 int result = pthread_cond_init( &condition, nullptr ); 150 assert( result == 0 ); 151 152 result = pthread_mutex_init( &mutex, nullptr ); 153 assert( result == 0 ); 154 } 155 156 ~WaitForThreads() 157 { 158 int result = pthread_cond_destroy( &condition ); 159 (void)result; 160 assert( result == 0 ); 161 162 result = pthread_mutex_destroy( &mutex ); 163 assert( result == 0 ); 164 } 165 166 // All threads will stop here until another thread calls releaseThreads 167 void block() 168 { 169 int result = pthread_mutex_lock( &mutex ); 170 (void)result; 171 assert( result == 0 ); 172 n ++; 173 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 174 175 assert( waitFor == 0 || n <= waitFor ); 176 if ( waitFor > 0 && n == waitFor ) 177 { 178 // There are enough threads blocked that we can release all of them 179 std::cout << "Unblocking threads from block()" << std::endl; 180 unblockThreads(); 181 } 182 else 183 { 184 // We just need to wait until someone unblocks us 185 result = pthread_cond_wait( &condition, &mutex ); 186 assert( result == 0 ); 187 } 188 189 // unlock the mutex before returning 190 result = pthread_mutex_unlock( &mutex ); 191 assert( result == 0 ); 192 } 193 194 // If there are num or more threads blocked, it will signal them all 195 // Otherwise, this thread blocks until there are enough OTHER threads 196 // blocked 197 void releaseThreads( size_t num ) 198 { 199 int result = pthread_mutex_lock( &mutex ); 200 (void)result; 201 assert( result == 0 ); 202 203 if ( n >= num ) { 204 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 205 unblockThreads(); 206 } 207 else 208 { 209 waitFor = num; 210 pthread_cond_wait( &condition, &mutex ); 211 } 212 213 // unlock the mutex before returning 214 result = pthread_mutex_unlock( &mutex ); 215 assert( result == 0 ); 216 } 217 218 private: 219 void unblockThreads() 220 { 221 // Reset the counters to zero: this way, if any new threads 222 // enter while threads are exiting, they will block instead 223 // of triggering a new release of threads 224 n = 0; 225 226 // Reset waitFor to zero: this way, if waitFor threads enter 227 // while threads are exiting, they will block instead of 228 // triggering a new release of threads 229 waitFor = 0; 230 231 int result = pthread_cond_broadcast( &condition ); 232 (void)result; 233 assert(result == 0); 234 } 235 236 size_t n; 237 size_t waitFor; 238 pthread_cond_t condition; 239 pthread_mutex_t mutex; 240 }; 241 242 static WaitForThreads synchronize; 243 244 void* callFunc( void* param ) 245 { 246 struct threadParams* p = (struct threadParams*) param; 247 248 // Call the `foo' function with no arguments: 249 std::vector<GenericValue> Args(1); 250 Args[0].IntVal = APInt(32, p->value); 251 252 synchronize.block(); // wait until other threads are at this point 253 GenericValue gv = p->EE->runFunction(p->F, Args); 254 255 return (void*)(intptr_t)gv.IntVal.getZExtValue(); 256 } 257 258 int main() { 259 InitializeNativeTarget(); 260 LLVMContext Context; 261 262 // Create some module to put our function into it. 263 std::unique_ptr<Module> Owner = make_unique<Module>("test", Context); 264 Module *M = Owner.get(); 265 266 Function* add1F = createAdd1( M ); 267 Function* fibF = CreateFibFunction( M ); 268 269 // Now we create the JIT. 270 ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create(); 271 272 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 273 //~ std::cout << "\n\nRunning foo: " << std::flush; 274 275 // Create one thread for add1 and two threads for fib 276 struct threadParams add1 = { EE, add1F, 1000 }; 277 struct threadParams fib1 = { EE, fibF, 39 }; 278 struct threadParams fib2 = { EE, fibF, 42 }; 279 280 pthread_t add1Thread; 281 int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 ); 282 if ( result != 0 ) { 283 std::cerr << "Could not create thread" << std::endl; 284 return 1; 285 } 286 287 pthread_t fibThread1; 288 result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 ); 289 if ( result != 0 ) { 290 std::cerr << "Could not create thread" << std::endl; 291 return 1; 292 } 293 294 pthread_t fibThread2; 295 result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 ); 296 if ( result != 0 ) { 297 std::cerr << "Could not create thread" << std::endl; 298 return 1; 299 } 300 301 synchronize.releaseThreads(3); // wait until other threads are at this point 302 303 void* returnValue; 304 result = pthread_join( add1Thread, &returnValue ); 305 if ( result != 0 ) { 306 std::cerr << "Could not join thread" << std::endl; 307 return 1; 308 } 309 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 310 311 result = pthread_join( fibThread1, &returnValue ); 312 if ( result != 0 ) { 313 std::cerr << "Could not join thread" << std::endl; 314 return 1; 315 } 316 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 317 318 result = pthread_join( fibThread2, &returnValue ); 319 if ( result != 0 ) { 320 std::cerr << "Could not join thread" << std::endl; 321 return 1; 322 } 323 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 324 325 return 0; 326 } 327