Home | History | Annotate | Download | only in ParallelJIT
      1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Parallel JIT
     11 //
     12 // This test program creates two LLVM functions then calls them from three
     13 // separate threads.  It requires the pthreads library.
     14 // The three threads are created and then block waiting on a condition variable.
     15 // Once all threads are blocked on the conditional variable, the main thread
     16 // wakes them up. This complicated work is performed so that all three threads
     17 // call into the JIT at the same time (or the best possible approximation of the
     18 // same time). This test had assertion errors until I got the locking right.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/ADT/APInt.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ExecutionEngine/ExecutionEngine.h"
     25 #include "llvm/ExecutionEngine/GenericValue.h"
     26 #include "llvm/IR/Argument.h"
     27 #include "llvm/IR/BasicBlock.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/InstrTypes.h"
     32 #include "llvm/IR/Instruction.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Type.h"
     37 #include "llvm/Support/Casting.h"
     38 #include "llvm/Support/TargetSelect.h"
     39 #include <algorithm>
     40 #include <cassert>
     41 #include <cstddef>
     42 #include <cstdint>
     43 #include <iostream>
     44 #include <memory>
     45 #include <vector>
     46 #include <pthread.h>
     47 
     48 using namespace llvm;
     49 
     50 static Function* createAdd1(Module *M) {
     51   // Create the add1 function entry and insert this entry into module M.  The
     52   // function will have a return type of "int" and take an argument of "int".
     53   // The '0' terminates the list of argument types.
     54   Function *Add1F =
     55     cast<Function>(M->getOrInsertFunction("add1",
     56                                           Type::getInt32Ty(M->getContext()),
     57                                           Type::getInt32Ty(M->getContext()),
     58                                           nullptr));
     59 
     60   // Add a basic block to the function. As before, it automatically inserts
     61   // because of the last argument.
     62   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
     63 
     64   // Get pointers to the constant `1'.
     65   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     66 
     67   // Get pointers to the integer argument of the add1 function...
     68   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
     69   Argument *ArgX = &*Add1F->arg_begin();          // Get the arg
     70   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
     71 
     72   // Create the add instruction, inserting it into the end of BB.
     73   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
     74 
     75   // Create the return instruction and add it to the basic block
     76   ReturnInst::Create(M->getContext(), Add, BB);
     77 
     78   // Now, function add1 is ready.
     79   return Add1F;
     80 }
     81 
     82 static Function *CreateFibFunction(Module *M) {
     83   // Create the fib function and insert it into module M.  This function is said
     84   // to return an int and take an int parameter.
     85   Function *FibF =
     86     cast<Function>(M->getOrInsertFunction("fib",
     87                                           Type::getInt32Ty(M->getContext()),
     88                                           Type::getInt32Ty(M->getContext()),
     89                                           nullptr));
     90 
     91   // Add a basic block to the function.
     92   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
     93 
     94   // Get pointers to the constants.
     95   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     96   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
     97 
     98   // Get pointer to the integer argument of the add1 function...
     99   Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
    100   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
    101 
    102   // Create the true_block.
    103   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
    104   // Create an exit block.
    105   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
    106 
    107   // Create the "if (arg < 2) goto exitbb"
    108   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
    109   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
    110 
    111   // Create: ret int 1
    112   ReturnInst::Create(M->getContext(), One, RetBB);
    113 
    114   // create fib(x-1)
    115   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
    116   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
    117 
    118   // create fib(x-2)
    119   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
    120   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
    121 
    122   // fib(x-1)+fib(x-2)
    123   Value *Sum =
    124     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
    125 
    126   // Create the return instruction and add it to the basic block
    127   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
    128 
    129   return FibF;
    130 }
    131 
    132 struct threadParams {
    133   ExecutionEngine* EE;
    134   Function* F;
    135   int value;
    136 };
    137 
    138 // We block the subthreads just before they begin to execute:
    139 // we want all of them to call into the JIT at the same time,
    140 // to verify that the locking is working correctly.
    141 class WaitForThreads
    142 {
    143 public:
    144   WaitForThreads()
    145   {
    146     n = 0;
    147     waitFor = 0;
    148 
    149     int result = pthread_cond_init( &condition, nullptr );
    150     assert( result == 0 );
    151 
    152     result = pthread_mutex_init( &mutex, nullptr );
    153     assert( result == 0 );
    154   }
    155 
    156   ~WaitForThreads()
    157   {
    158     int result = pthread_cond_destroy( &condition );
    159     (void)result;
    160     assert( result == 0 );
    161 
    162     result = pthread_mutex_destroy( &mutex );
    163     assert( result == 0 );
    164   }
    165 
    166   // All threads will stop here until another thread calls releaseThreads
    167   void block()
    168   {
    169     int result = pthread_mutex_lock( &mutex );
    170     (void)result;
    171     assert( result == 0 );
    172     n ++;
    173     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
    174 
    175     assert( waitFor == 0 || n <= waitFor );
    176     if ( waitFor > 0 && n == waitFor )
    177     {
    178       // There are enough threads blocked that we can release all of them
    179       std::cout << "Unblocking threads from block()" << std::endl;
    180       unblockThreads();
    181     }
    182     else
    183     {
    184       // We just need to wait until someone unblocks us
    185       result = pthread_cond_wait( &condition, &mutex );
    186       assert( result == 0 );
    187     }
    188 
    189     // unlock the mutex before returning
    190     result = pthread_mutex_unlock( &mutex );
    191     assert( result == 0 );
    192   }
    193 
    194   // If there are num or more threads blocked, it will signal them all
    195   // Otherwise, this thread blocks until there are enough OTHER threads
    196   // blocked
    197   void releaseThreads( size_t num )
    198   {
    199     int result = pthread_mutex_lock( &mutex );
    200     (void)result;
    201     assert( result == 0 );
    202 
    203     if ( n >= num ) {
    204       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
    205       unblockThreads();
    206     }
    207     else
    208     {
    209       waitFor = num;
    210       pthread_cond_wait( &condition, &mutex );
    211     }
    212 
    213     // unlock the mutex before returning
    214     result = pthread_mutex_unlock( &mutex );
    215     assert( result == 0 );
    216   }
    217 
    218 private:
    219   void unblockThreads()
    220   {
    221     // Reset the counters to zero: this way, if any new threads
    222     // enter while threads are exiting, they will block instead
    223     // of triggering a new release of threads
    224     n = 0;
    225 
    226     // Reset waitFor to zero: this way, if waitFor threads enter
    227     // while threads are exiting, they will block instead of
    228     // triggering a new release of threads
    229     waitFor = 0;
    230 
    231     int result = pthread_cond_broadcast( &condition );
    232     (void)result;
    233     assert(result == 0);
    234   }
    235 
    236   size_t n;
    237   size_t waitFor;
    238   pthread_cond_t condition;
    239   pthread_mutex_t mutex;
    240 };
    241 
    242 static WaitForThreads synchronize;
    243 
    244 void* callFunc( void* param )
    245 {
    246   struct threadParams* p = (struct threadParams*) param;
    247 
    248   // Call the `foo' function with no arguments:
    249   std::vector<GenericValue> Args(1);
    250   Args[0].IntVal = APInt(32, p->value);
    251 
    252   synchronize.block(); // wait until other threads are at this point
    253   GenericValue gv = p->EE->runFunction(p->F, Args);
    254 
    255   return (void*)(intptr_t)gv.IntVal.getZExtValue();
    256 }
    257 
    258 int main() {
    259   InitializeNativeTarget();
    260   LLVMContext Context;
    261 
    262   // Create some module to put our function into it.
    263   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
    264   Module *M = Owner.get();
    265 
    266   Function* add1F = createAdd1( M );
    267   Function* fibF = CreateFibFunction( M );
    268 
    269   // Now we create the JIT.
    270   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
    271 
    272   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
    273   //~ std::cout << "\n\nRunning foo: " << std::flush;
    274 
    275   // Create one thread for add1 and two threads for fib
    276   struct threadParams add1 = { EE, add1F, 1000 };
    277   struct threadParams fib1 = { EE, fibF, 39 };
    278   struct threadParams fib2 = { EE, fibF, 42 };
    279 
    280   pthread_t add1Thread;
    281   int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
    282   if ( result != 0 ) {
    283           std::cerr << "Could not create thread" << std::endl;
    284           return 1;
    285   }
    286 
    287   pthread_t fibThread1;
    288   result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
    289   if ( result != 0 ) {
    290           std::cerr << "Could not create thread" << std::endl;
    291           return 1;
    292   }
    293 
    294   pthread_t fibThread2;
    295   result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
    296   if ( result != 0 ) {
    297           std::cerr << "Could not create thread" << std::endl;
    298           return 1;
    299   }
    300 
    301   synchronize.releaseThreads(3); // wait until other threads are at this point
    302 
    303   void* returnValue;
    304   result = pthread_join( add1Thread, &returnValue );
    305   if ( result != 0 ) {
    306           std::cerr << "Could not join thread" << std::endl;
    307           return 1;
    308   }
    309   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
    310 
    311   result = pthread_join( fibThread1, &returnValue );
    312   if ( result != 0 ) {
    313           std::cerr << "Could not join thread" << std::endl;
    314           return 1;
    315   }
    316   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
    317 
    318   result = pthread_join( fibThread2, &returnValue );
    319   if ( result != 0 ) {
    320           std::cerr << "Could not join thread" << std::endl;
    321           return 1;
    322   }
    323   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
    324 
    325   return 0;
    326 }
    327