Home | History | Annotate | Download | only in Analysis
      1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
     11 // See the documentation below for BlockFrequencyInfoImpl for details.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/PostOrderIterator.h"
     22 #include "llvm/ADT/iterator_range.h"
     23 #include "llvm/IR/BasicBlock.h"
     24 #include "llvm/Support/BlockFrequency.h"
     25 #include "llvm/Support/BranchProbability.h"
     26 #include "llvm/Support/DOTGraphTraits.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/Format.h"
     29 #include "llvm/Support/ScaledNumber.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <deque>
     32 #include <list>
     33 #include <string>
     34 #include <vector>
     35 
     36 #define DEBUG_TYPE "block-freq"
     37 
     38 namespace llvm {
     39 
     40 class BasicBlock;
     41 class BranchProbabilityInfo;
     42 class Function;
     43 class Loop;
     44 class LoopInfo;
     45 class MachineBasicBlock;
     46 class MachineBranchProbabilityInfo;
     47 class MachineFunction;
     48 class MachineLoop;
     49 class MachineLoopInfo;
     50 
     51 namespace bfi_detail {
     52 
     53 struct IrreducibleGraph;
     54 
     55 // This is part of a workaround for a GCC 4.7 crash on lambdas.
     56 template <class BT> struct BlockEdgesAdder;
     57 
     58 /// \brief Mass of a block.
     59 ///
     60 /// This class implements a sort of fixed-point fraction always between 0.0 and
     61 /// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
     62 ///
     63 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
     64 /// so arithmetic operations never overflow or underflow.
     65 ///
     66 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
     67 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
     68 /// quite, maximum precision).
     69 ///
     70 /// Masses can be scaled by \a BranchProbability at maximum precision.
     71 class BlockMass {
     72   uint64_t Mass;
     73 
     74 public:
     75   BlockMass() : Mass(0) {}
     76   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
     77 
     78   static BlockMass getEmpty() { return BlockMass(); }
     79   static BlockMass getFull() { return BlockMass(UINT64_MAX); }
     80 
     81   uint64_t getMass() const { return Mass; }
     82 
     83   bool isFull() const { return Mass == UINT64_MAX; }
     84   bool isEmpty() const { return !Mass; }
     85 
     86   bool operator!() const { return isEmpty(); }
     87 
     88   /// \brief Add another mass.
     89   ///
     90   /// Adds another mass, saturating at \a isFull() rather than overflowing.
     91   BlockMass &operator+=(BlockMass X) {
     92     uint64_t Sum = Mass + X.Mass;
     93     Mass = Sum < Mass ? UINT64_MAX : Sum;
     94     return *this;
     95   }
     96 
     97   /// \brief Subtract another mass.
     98   ///
     99   /// Subtracts another mass, saturating at \a isEmpty() rather than
    100   /// undeflowing.
    101   BlockMass &operator-=(BlockMass X) {
    102     uint64_t Diff = Mass - X.Mass;
    103     Mass = Diff > Mass ? 0 : Diff;
    104     return *this;
    105   }
    106 
    107   BlockMass &operator*=(BranchProbability P) {
    108     Mass = P.scale(Mass);
    109     return *this;
    110   }
    111 
    112   bool operator==(BlockMass X) const { return Mass == X.Mass; }
    113   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
    114   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
    115   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
    116   bool operator<(BlockMass X) const { return Mass < X.Mass; }
    117   bool operator>(BlockMass X) const { return Mass > X.Mass; }
    118 
    119   /// \brief Convert to scaled number.
    120   ///
    121   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
    122   /// gives slightly above 0.0.
    123   ScaledNumber<uint64_t> toScaled() const;
    124 
    125   void dump() const;
    126   raw_ostream &print(raw_ostream &OS) const;
    127 };
    128 
    129 inline BlockMass operator+(BlockMass L, BlockMass R) {
    130   return BlockMass(L) += R;
    131 }
    132 inline BlockMass operator-(BlockMass L, BlockMass R) {
    133   return BlockMass(L) -= R;
    134 }
    135 inline BlockMass operator*(BlockMass L, BranchProbability R) {
    136   return BlockMass(L) *= R;
    137 }
    138 inline BlockMass operator*(BranchProbability L, BlockMass R) {
    139   return BlockMass(R) *= L;
    140 }
    141 
    142 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
    143   return X.print(OS);
    144 }
    145 
    146 } // end namespace bfi_detail
    147 
    148 template <> struct isPodLike<bfi_detail::BlockMass> {
    149   static const bool value = true;
    150 };
    151 
    152 /// \brief Base class for BlockFrequencyInfoImpl
    153 ///
    154 /// BlockFrequencyInfoImplBase has supporting data structures and some
    155 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
    156 /// the block type (or that call such algorithms) are skipped here.
    157 ///
    158 /// Nevertheless, the majority of the overall algorithm documention lives with
    159 /// BlockFrequencyInfoImpl.  See there for details.
    160 class BlockFrequencyInfoImplBase {
    161 public:
    162   typedef ScaledNumber<uint64_t> Scaled64;
    163   typedef bfi_detail::BlockMass BlockMass;
    164 
    165   /// \brief Representative of a block.
    166   ///
    167   /// This is a simple wrapper around an index into the reverse-post-order
    168   /// traversal of the blocks.
    169   ///
    170   /// Unlike a block pointer, its order has meaning (location in the
    171   /// topological sort) and it's class is the same regardless of block type.
    172   struct BlockNode {
    173     typedef uint32_t IndexType;
    174     IndexType Index;
    175 
    176     bool operator==(const BlockNode &X) const { return Index == X.Index; }
    177     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    178     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    179     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    180     bool operator<(const BlockNode &X) const { return Index < X.Index; }
    181     bool operator>(const BlockNode &X) const { return Index > X.Index; }
    182 
    183     BlockNode() : Index(UINT32_MAX) {}
    184     BlockNode(IndexType Index) : Index(Index) {}
    185 
    186     bool isValid() const { return Index <= getMaxIndex(); }
    187     static size_t getMaxIndex() { return UINT32_MAX - 1; }
    188   };
    189 
    190   /// \brief Stats about a block itself.
    191   struct FrequencyData {
    192     Scaled64 Scaled;
    193     uint64_t Integer;
    194   };
    195 
    196   /// \brief Data about a loop.
    197   ///
    198   /// Contains the data necessary to represent a loop as a pseudo-node once it's
    199   /// packaged.
    200   struct LoopData {
    201     typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
    202     typedef SmallVector<BlockNode, 4> NodeList;
    203     typedef SmallVector<BlockMass, 1> HeaderMassList;
    204     LoopData *Parent;            ///< The parent loop.
    205     bool IsPackaged;             ///< Whether this has been packaged.
    206     uint32_t NumHeaders;         ///< Number of headers.
    207     ExitMap Exits;               ///< Successor edges (and weights).
    208     NodeList Nodes;              ///< Header and the members of the loop.
    209     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
    210     BlockMass Mass;
    211     Scaled64 Scale;
    212 
    213     LoopData(LoopData *Parent, const BlockNode &Header)
    214         : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header),
    215           BackedgeMass(1) {}
    216     template <class It1, class It2>
    217     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
    218              It2 LastOther)
    219         : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
    220       NumHeaders = Nodes.size();
    221       Nodes.insert(Nodes.end(), FirstOther, LastOther);
    222       BackedgeMass.resize(NumHeaders);
    223     }
    224     bool isHeader(const BlockNode &Node) const {
    225       if (isIrreducible())
    226         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
    227                                   Node);
    228       return Node == Nodes[0];
    229     }
    230     BlockNode getHeader() const { return Nodes[0]; }
    231     bool isIrreducible() const { return NumHeaders > 1; }
    232 
    233     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
    234       assert(isHeader(B) && "this is only valid on loop header blocks");
    235       if (isIrreducible())
    236         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
    237                Nodes.begin();
    238       return 0;
    239     }
    240 
    241     NodeList::const_iterator members_begin() const {
    242       return Nodes.begin() + NumHeaders;
    243     }
    244     NodeList::const_iterator members_end() const { return Nodes.end(); }
    245     iterator_range<NodeList::const_iterator> members() const {
    246       return make_range(members_begin(), members_end());
    247     }
    248   };
    249 
    250   /// \brief Index of loop information.
    251   struct WorkingData {
    252     BlockNode Node; ///< This node.
    253     LoopData *Loop; ///< The loop this block is inside.
    254     BlockMass Mass; ///< Mass distribution from the entry block.
    255 
    256     WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
    257 
    258     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
    259     bool isDoubleLoopHeader() const {
    260       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
    261              Loop->Parent->isHeader(Node);
    262     }
    263 
    264     LoopData *getContainingLoop() const {
    265       if (!isLoopHeader())
    266         return Loop;
    267       if (!isDoubleLoopHeader())
    268         return Loop->Parent;
    269       return Loop->Parent->Parent;
    270     }
    271 
    272     /// \brief Resolve a node to its representative.
    273     ///
    274     /// Get the node currently representing Node, which could be a containing
    275     /// loop.
    276     ///
    277     /// This function should only be called when distributing mass.  As long as
    278     /// there are no irreducible edges to Node, then it will have complexity
    279     /// O(1) in this context.
    280     ///
    281     /// In general, the complexity is O(L), where L is the number of loop
    282     /// headers Node has been packaged into.  Since this method is called in
    283     /// the context of distributing mass, L will be the number of loop headers
    284     /// an early exit edge jumps out of.
    285     BlockNode getResolvedNode() const {
    286       auto L = getPackagedLoop();
    287       return L ? L->getHeader() : Node;
    288     }
    289     LoopData *getPackagedLoop() const {
    290       if (!Loop || !Loop->IsPackaged)
    291         return nullptr;
    292       auto L = Loop;
    293       while (L->Parent && L->Parent->IsPackaged)
    294         L = L->Parent;
    295       return L;
    296     }
    297 
    298     /// \brief Get the appropriate mass for a node.
    299     ///
    300     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
    301     /// has been packaged), returns the mass of its pseudo-node.  If it's a
    302     /// node inside a packaged loop, it returns the loop's mass.
    303     BlockMass &getMass() {
    304       if (!isAPackage())
    305         return Mass;
    306       if (!isADoublePackage())
    307         return Loop->Mass;
    308       return Loop->Parent->Mass;
    309     }
    310 
    311     /// \brief Has ContainingLoop been packaged up?
    312     bool isPackaged() const { return getResolvedNode() != Node; }
    313     /// \brief Has Loop been packaged up?
    314     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
    315     /// \brief Has Loop been packaged up twice?
    316     bool isADoublePackage() const {
    317       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
    318     }
    319   };
    320 
    321   /// \brief Unscaled probability weight.
    322   ///
    323   /// Probability weight for an edge in the graph (including the
    324   /// successor/target node).
    325   ///
    326   /// All edges in the original function are 32-bit.  However, exit edges from
    327   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
    328   /// space in general.
    329   ///
    330   /// In addition to the raw weight amount, Weight stores the type of the edge
    331   /// in the current context (i.e., the context of the loop being processed).
    332   /// Is this a local edge within the loop, an exit from the loop, or a
    333   /// backedge to the loop header?
    334   struct Weight {
    335     enum DistType { Local, Exit, Backedge };
    336     DistType Type;
    337     BlockNode TargetNode;
    338     uint64_t Amount;
    339     Weight() : Type(Local), Amount(0) {}
    340     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
    341         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
    342   };
    343 
    344   /// \brief Distribution of unscaled probability weight.
    345   ///
    346   /// Distribution of unscaled probability weight to a set of successors.
    347   ///
    348   /// This class collates the successor edge weights for later processing.
    349   ///
    350   /// \a DidOverflow indicates whether \a Total did overflow while adding to
    351   /// the distribution.  It should never overflow twice.
    352   struct Distribution {
    353     typedef SmallVector<Weight, 4> WeightList;
    354     WeightList Weights;    ///< Individual successor weights.
    355     uint64_t Total;        ///< Sum of all weights.
    356     bool DidOverflow;      ///< Whether \a Total did overflow.
    357 
    358     Distribution() : Total(0), DidOverflow(false) {}
    359     void addLocal(const BlockNode &Node, uint64_t Amount) {
    360       add(Node, Amount, Weight::Local);
    361     }
    362     void addExit(const BlockNode &Node, uint64_t Amount) {
    363       add(Node, Amount, Weight::Exit);
    364     }
    365     void addBackedge(const BlockNode &Node, uint64_t Amount) {
    366       add(Node, Amount, Weight::Backedge);
    367     }
    368 
    369     /// \brief Normalize the distribution.
    370     ///
    371     /// Combines multiple edges to the same \a Weight::TargetNode and scales
    372     /// down so that \a Total fits into 32-bits.
    373     ///
    374     /// This is linear in the size of \a Weights.  For the vast majority of
    375     /// cases, adjacent edge weights are combined by sorting WeightList and
    376     /// combining adjacent weights.  However, for very large edge lists an
    377     /// auxiliary hash table is used.
    378     void normalize();
    379 
    380   private:
    381     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
    382   };
    383 
    384   /// \brief Data about each block.  This is used downstream.
    385   std::vector<FrequencyData> Freqs;
    386 
    387   /// \brief Loop data: see initializeLoops().
    388   std::vector<WorkingData> Working;
    389 
    390   /// \brief Indexed information about loops.
    391   std::list<LoopData> Loops;
    392 
    393   /// \brief Add all edges out of a packaged loop to the distribution.
    394   ///
    395   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
    396   /// successor edge.
    397   ///
    398   /// \return \c true unless there's an irreducible backedge.
    399   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
    400                                Distribution &Dist);
    401 
    402   /// \brief Add an edge to the distribution.
    403   ///
    404   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
    405   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
    406   /// every edge should be a local edge (since all the loops are packaged up).
    407   ///
    408   /// \return \c true unless aborted due to an irreducible backedge.
    409   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
    410                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
    411 
    412   LoopData &getLoopPackage(const BlockNode &Head) {
    413     assert(Head.Index < Working.size());
    414     assert(Working[Head.Index].isLoopHeader());
    415     return *Working[Head.Index].Loop;
    416   }
    417 
    418   /// \brief Analyze irreducible SCCs.
    419   ///
    420   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
    421   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
    422   /// Insert them into \a Loops before \c Insert.
    423   ///
    424   /// \return the \c LoopData nodes representing the irreducible SCCs.
    425   iterator_range<std::list<LoopData>::iterator>
    426   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
    427                      std::list<LoopData>::iterator Insert);
    428 
    429   /// \brief Update a loop after packaging irreducible SCCs inside of it.
    430   ///
    431   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
    432   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
    433   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
    434   /// up need to be removed from \a OuterLoop::Nodes.
    435   void updateLoopWithIrreducible(LoopData &OuterLoop);
    436 
    437   /// \brief Distribute mass according to a distribution.
    438   ///
    439   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
    440   /// backedges and exits are stored in its entry in Loops.
    441   ///
    442   /// Mass is distributed in parallel from two copies of the source mass.
    443   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
    444                       Distribution &Dist);
    445 
    446   /// \brief Compute the loop scale for a loop.
    447   void computeLoopScale(LoopData &Loop);
    448 
    449   /// Adjust the mass of all headers in an irreducible loop.
    450   ///
    451   /// Initially, irreducible loops are assumed to distribute their mass
    452   /// equally among its headers. This can lead to wrong frequency estimates
    453   /// since some headers may be executed more frequently than others.
    454   ///
    455   /// This adjusts header mass distribution so it matches the weights of
    456   /// the backedges going into each of the loop headers.
    457   void adjustLoopHeaderMass(LoopData &Loop);
    458 
    459   /// \brief Package up a loop.
    460   void packageLoop(LoopData &Loop);
    461 
    462   /// \brief Unwrap loops.
    463   void unwrapLoops();
    464 
    465   /// \brief Finalize frequency metrics.
    466   ///
    467   /// Calculates final frequencies and cleans up no-longer-needed data
    468   /// structures.
    469   void finalizeMetrics();
    470 
    471   /// \brief Clear all memory.
    472   void clear();
    473 
    474   virtual std::string getBlockName(const BlockNode &Node) const;
    475   std::string getLoopName(const LoopData &Loop) const;
    476 
    477   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
    478   void dump() const { print(dbgs()); }
    479 
    480   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
    481 
    482   BlockFrequency getBlockFreq(const BlockNode &Node) const;
    483   Optional<uint64_t> getBlockProfileCount(const Function &F,
    484                                           const BlockNode &Node) const;
    485 
    486   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
    487 
    488   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
    489   raw_ostream &printBlockFreq(raw_ostream &OS,
    490                               const BlockFrequency &Freq) const;
    491 
    492   uint64_t getEntryFreq() const {
    493     assert(!Freqs.empty());
    494     return Freqs[0].Integer;
    495   }
    496   /// \brief Virtual destructor.
    497   ///
    498   /// Need a virtual destructor to mask the compiler warning about
    499   /// getBlockName().
    500   virtual ~BlockFrequencyInfoImplBase() {}
    501 };
    502 
    503 namespace bfi_detail {
    504 template <class BlockT> struct TypeMap {};
    505 template <> struct TypeMap<BasicBlock> {
    506   typedef BasicBlock BlockT;
    507   typedef Function FunctionT;
    508   typedef BranchProbabilityInfo BranchProbabilityInfoT;
    509   typedef Loop LoopT;
    510   typedef LoopInfo LoopInfoT;
    511 };
    512 template <> struct TypeMap<MachineBasicBlock> {
    513   typedef MachineBasicBlock BlockT;
    514   typedef MachineFunction FunctionT;
    515   typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
    516   typedef MachineLoop LoopT;
    517   typedef MachineLoopInfo LoopInfoT;
    518 };
    519 
    520 /// \brief Get the name of a MachineBasicBlock.
    521 ///
    522 /// Get the name of a MachineBasicBlock.  It's templated so that including from
    523 /// CodeGen is unnecessary (that would be a layering issue).
    524 ///
    525 /// This is used mainly for debug output.  The name is similar to
    526 /// MachineBasicBlock::getFullName(), but skips the name of the function.
    527 template <class BlockT> std::string getBlockName(const BlockT *BB) {
    528   assert(BB && "Unexpected nullptr");
    529   auto MachineName = "BB" + Twine(BB->getNumber());
    530   if (BB->getBasicBlock())
    531     return (MachineName + "[" + BB->getName() + "]").str();
    532   return MachineName.str();
    533 }
    534 /// \brief Get the name of a BasicBlock.
    535 template <> inline std::string getBlockName(const BasicBlock *BB) {
    536   assert(BB && "Unexpected nullptr");
    537   return BB->getName().str();
    538 }
    539 
    540 /// \brief Graph of irreducible control flow.
    541 ///
    542 /// This graph is used for determining the SCCs in a loop (or top-level
    543 /// function) that has irreducible control flow.
    544 ///
    545 /// During the block frequency algorithm, the local graphs are defined in a
    546 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
    547 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
    548 /// latter only has successor information.
    549 ///
    550 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
    551 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
    552 /// and it explicitly lists predecessors and successors.  The initialization
    553 /// that relies on \c MachineBasicBlock is defined in the header.
    554 struct IrreducibleGraph {
    555   typedef BlockFrequencyInfoImplBase BFIBase;
    556 
    557   BFIBase &BFI;
    558 
    559   typedef BFIBase::BlockNode BlockNode;
    560   struct IrrNode {
    561     BlockNode Node;
    562     unsigned NumIn;
    563     std::deque<const IrrNode *> Edges;
    564     IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
    565 
    566     typedef std::deque<const IrrNode *>::const_iterator iterator;
    567     iterator pred_begin() const { return Edges.begin(); }
    568     iterator succ_begin() const { return Edges.begin() + NumIn; }
    569     iterator pred_end() const { return succ_begin(); }
    570     iterator succ_end() const { return Edges.end(); }
    571   };
    572   BlockNode Start;
    573   const IrrNode *StartIrr;
    574   std::vector<IrrNode> Nodes;
    575   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
    576 
    577   /// \brief Construct an explicit graph containing irreducible control flow.
    578   ///
    579   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
    580   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
    581   /// addBlockEdges to add block successors that have not been packaged into
    582   /// loops.
    583   ///
    584   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
    585   /// user of this.
    586   template <class BlockEdgesAdder>
    587   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
    588                    BlockEdgesAdder addBlockEdges)
    589       : BFI(BFI), StartIrr(nullptr) {
    590     initialize(OuterLoop, addBlockEdges);
    591   }
    592 
    593   template <class BlockEdgesAdder>
    594   void initialize(const BFIBase::LoopData *OuterLoop,
    595                   BlockEdgesAdder addBlockEdges);
    596   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
    597   void addNodesInFunction();
    598   void addNode(const BlockNode &Node) {
    599     Nodes.emplace_back(Node);
    600     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
    601   }
    602   void indexNodes();
    603   template <class BlockEdgesAdder>
    604   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
    605                 BlockEdgesAdder addBlockEdges);
    606   void addEdge(IrrNode &Irr, const BlockNode &Succ,
    607                const BFIBase::LoopData *OuterLoop);
    608 };
    609 template <class BlockEdgesAdder>
    610 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
    611                                   BlockEdgesAdder addBlockEdges) {
    612   if (OuterLoop) {
    613     addNodesInLoop(*OuterLoop);
    614     for (auto N : OuterLoop->Nodes)
    615       addEdges(N, OuterLoop, addBlockEdges);
    616   } else {
    617     addNodesInFunction();
    618     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    619       addEdges(Index, OuterLoop, addBlockEdges);
    620   }
    621   StartIrr = Lookup[Start.Index];
    622 }
    623 template <class BlockEdgesAdder>
    624 void IrreducibleGraph::addEdges(const BlockNode &Node,
    625                                 const BFIBase::LoopData *OuterLoop,
    626                                 BlockEdgesAdder addBlockEdges) {
    627   auto L = Lookup.find(Node.Index);
    628   if (L == Lookup.end())
    629     return;
    630   IrrNode &Irr = *L->second;
    631   const auto &Working = BFI.Working[Node.Index];
    632 
    633   if (Working.isAPackage())
    634     for (const auto &I : Working.Loop->Exits)
    635       addEdge(Irr, I.first, OuterLoop);
    636   else
    637     addBlockEdges(*this, Irr, OuterLoop);
    638 }
    639 }
    640 
    641 /// \brief Shared implementation for block frequency analysis.
    642 ///
    643 /// This is a shared implementation of BlockFrequencyInfo and
    644 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
    645 /// blocks.
    646 ///
    647 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
    648 /// which is called the header.  A given loop, L, can have sub-loops, which are
    649 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
    650 /// consists of a single block that does not have a self-edge.)
    651 ///
    652 /// In addition to loops, this algorithm has limited support for irreducible
    653 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
    654 /// discovered on they fly, and modelled as loops with multiple headers.
    655 ///
    656 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
    657 /// nodes that are targets of a backedge within it (excluding backedges within
    658 /// true sub-loops).  Block frequency calculations act as if a block is
    659 /// inserted that intercepts all the edges to the headers.  All backedges and
    660 /// entries point to this block.  Its successors are the headers, which split
    661 /// the frequency evenly.
    662 ///
    663 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
    664 /// separates mass distribution from loop scaling, and dithers to eliminate
    665 /// probability mass loss.
    666 ///
    667 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
    668 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
    669 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
    670 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
    671 /// reverse-post order.  This gives two advantages:  it's easy to compare the
    672 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
    673 /// by vectors.
    674 ///
    675 /// This algorithm is O(V+E), unless there is irreducible control flow, in
    676 /// which case it's O(V*E) in the worst case.
    677 ///
    678 /// These are the main stages:
    679 ///
    680 ///  0. Reverse post-order traversal (\a initializeRPOT()).
    681 ///
    682 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
    683 ///     All other stages make use of this ordering.  Save a lookup from BlockT
    684 ///     to BlockNode (the index into RPOT) in Nodes.
    685 ///
    686 ///  1. Loop initialization (\a initializeLoops()).
    687 ///
    688 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
    689 ///     the algorithm.  In particular, store the immediate members of each loop
    690 ///     in reverse post-order.
    691 ///
    692 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
    693 ///
    694 ///     For each loop (bottom-up), distribute mass through the DAG resulting
    695 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
    696 ///     Track the backedge mass distributed to the loop header, and use it to
    697 ///     calculate the loop scale (number of loop iterations).  Immediate
    698 ///     members that represent sub-loops will already have been visited and
    699 ///     packaged into a pseudo-node.
    700 ///
    701 ///     Distributing mass in a loop is a reverse-post-order traversal through
    702 ///     the loop.  Start by assigning full mass to the Loop header.  For each
    703 ///     node in the loop:
    704 ///
    705 ///         - Fetch and categorize the weight distribution for its successors.
    706 ///           If this is a packaged-subloop, the weight distribution is stored
    707 ///           in \a LoopData::Exits.  Otherwise, fetch it from
    708 ///           BranchProbabilityInfo.
    709 ///
    710 ///         - Each successor is categorized as \a Weight::Local, a local edge
    711 ///           within the current loop, \a Weight::Backedge, a backedge to the
    712 ///           loop header, or \a Weight::Exit, any successor outside the loop.
    713 ///           The weight, the successor, and its category are stored in \a
    714 ///           Distribution.  There can be multiple edges to each successor.
    715 ///
    716 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
    717 ///           The usual flow is temporarily aborted.  \a
    718 ///           computeIrreducibleMass() finds the irreducible SCCs within the
    719 ///           loop, packages them up, and restarts the flow.
    720 ///
    721 ///         - Normalize the distribution:  scale weights down so that their sum
    722 ///           is 32-bits, and coalesce multiple edges to the same node.
    723 ///
    724 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
    725 ///           as described in \a distributeMass().
    726 ///
    727 ///     In the case of irreducible loops, instead of a single loop header,
    728 ///     there will be several. The computation of backedge masses is similar
    729 ///     but instead of having a single backedge mass, there will be one
    730 ///     backedge per loop header. In these cases, each backedge will carry
    731 ///     a mass proportional to the edge weights along the corresponding
    732 ///     path.
    733 ///
    734 ///     At the end of propagation, the full mass assigned to the loop will be
    735 ///     distributed among the loop headers proportionally according to the
    736 ///     mass flowing through their backedges.
    737 ///
    738 ///     Finally, calculate the loop scale from the accumulated backedge mass.
    739 ///
    740 ///  3. Distribute mass in the function (\a computeMassInFunction()).
    741 ///
    742 ///     Finally, distribute mass through the DAG resulting from packaging all
    743 ///     loops in the function.  This uses the same algorithm as distributing
    744 ///     mass in a loop, except that there are no exit or backedge edges.
    745 ///
    746 ///  4. Unpackage loops (\a unwrapLoops()).
    747 ///
    748 ///     Initialize each block's frequency to a floating point representation of
    749 ///     its mass.
    750 ///
    751 ///     Visit loops top-down, scaling the frequencies of its immediate members
    752 ///     by the loop's pseudo-node's frequency.
    753 ///
    754 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
    755 ///
    756 ///     Using the min and max frequencies as a guide, translate floating point
    757 ///     frequencies to an appropriate range in uint64_t.
    758 ///
    759 /// It has some known flaws.
    760 ///
    761 ///   - The model of irreducible control flow is a rough approximation.
    762 ///
    763 ///     Modelling irreducible control flow exactly involves setting up and
    764 ///     solving a group of infinite geometric series.  Such precision is
    765 ///     unlikely to be worthwhile, since most of our algorithms give up on
    766 ///     irreducible control flow anyway.
    767 ///
    768 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
    769 ///     of TODO list for the model with diminishing returns, to be completed as
    770 ///     necessary.
    771 ///
    772 ///       - The headers for the \a LoopData representing an irreducible SCC
    773 ///         include non-entry blocks.  When these extra blocks exist, they
    774 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
    775 ///         as sub-loops, rather than arbitrarily shoving the problematic
    776 ///         blocks into the headers of the main irreducible SCC.
    777 ///
    778 ///       - Entry frequencies are assumed to be evenly split between the
    779 ///         headers of a given irreducible SCC, which is the only option if we
    780 ///         need to compute mass in the SCC before its parent loop.  Instead,
    781 ///         we could partially compute mass in the parent loop, and stop when
    782 ///         we get to the SCC.  Here, we have the correct ratio of entry
    783 ///         masses, which we can use to adjust their relative frequencies.
    784 ///         Compute mass in the SCC, and then continue propagation in the
    785 ///         parent.
    786 ///
    787 ///       - We can propagate mass iteratively through the SCC, for some fixed
    788 ///         number of iterations.  Each iteration starts by assigning the entry
    789 ///         blocks their backedge mass from the prior iteration.  The final
    790 ///         mass for each block (and each exit, and the total backedge mass
    791 ///         used for computing loop scale) is the sum of all iterations.
    792 ///         (Running this until fixed point would "solve" the geometric
    793 ///         series by simulation.)
    794 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
    795   typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
    796   typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
    797   typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
    798   BranchProbabilityInfoT;
    799   typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
    800   typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
    801 
    802   // This is part of a workaround for a GCC 4.7 crash on lambdas.
    803   friend struct bfi_detail::BlockEdgesAdder<BT>;
    804 
    805   typedef GraphTraits<const BlockT *> Successor;
    806   typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
    807 
    808   const BranchProbabilityInfoT *BPI;
    809   const LoopInfoT *LI;
    810   const FunctionT *F;
    811 
    812   // All blocks in reverse postorder.
    813   std::vector<const BlockT *> RPOT;
    814   DenseMap<const BlockT *, BlockNode> Nodes;
    815 
    816   typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
    817 
    818   rpot_iterator rpot_begin() const { return RPOT.begin(); }
    819   rpot_iterator rpot_end() const { return RPOT.end(); }
    820 
    821   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
    822 
    823   BlockNode getNode(const rpot_iterator &I) const {
    824     return BlockNode(getIndex(I));
    825   }
    826   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
    827 
    828   const BlockT *getBlock(const BlockNode &Node) const {
    829     assert(Node.Index < RPOT.size());
    830     return RPOT[Node.Index];
    831   }
    832 
    833   /// \brief Run (and save) a post-order traversal.
    834   ///
    835   /// Saves a reverse post-order traversal of all the nodes in \a F.
    836   void initializeRPOT();
    837 
    838   /// \brief Initialize loop data.
    839   ///
    840   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
    841   /// each block to the deepest loop it's in, but we need the inverse.  For each
    842   /// loop, we store in reverse post-order its "immediate" members, defined as
    843   /// the header, the headers of immediate sub-loops, and all other blocks in
    844   /// the loop that are not in sub-loops.
    845   void initializeLoops();
    846 
    847   /// \brief Propagate to a block's successors.
    848   ///
    849   /// In the context of distributing mass through \c OuterLoop, divide the mass
    850   /// currently assigned to \c Node between its successors.
    851   ///
    852   /// \return \c true unless there's an irreducible backedge.
    853   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
    854 
    855   /// \brief Compute mass in a particular loop.
    856   ///
    857   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
    858   /// reverse post-order, distribute mass to its successors.  Only visits nodes
    859   /// that have not been packaged into sub-loops.
    860   ///
    861   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
    862   /// \return \c true unless there's an irreducible backedge.
    863   bool computeMassInLoop(LoopData &Loop);
    864 
    865   /// \brief Try to compute mass in the top-level function.
    866   ///
    867   /// Assign mass to the entry block, and then for each block in reverse
    868   /// post-order, distribute mass to its successors.  Skips nodes that have
    869   /// been packaged into loops.
    870   ///
    871   /// \pre \a computeMassInLoops() has been called.
    872   /// \return \c true unless there's an irreducible backedge.
    873   bool tryToComputeMassInFunction();
    874 
    875   /// \brief Compute mass in (and package up) irreducible SCCs.
    876   ///
    877   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
    878   /// of \c Insert), and call \a computeMassInLoop() on each of them.
    879   ///
    880   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
    881   ///
    882   /// \pre \a computeMassInLoop() has been called for each subloop of \c
    883   /// OuterLoop.
    884   /// \pre \c Insert points at the last loop successfully processed by \a
    885   /// computeMassInLoop().
    886   /// \pre \c OuterLoop has irreducible SCCs.
    887   void computeIrreducibleMass(LoopData *OuterLoop,
    888                               std::list<LoopData>::iterator Insert);
    889 
    890   /// \brief Compute mass in all loops.
    891   ///
    892   /// For each loop bottom-up, call \a computeMassInLoop().
    893   ///
    894   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
    895   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
    896   /// re-enter \a computeMassInLoop().
    897   ///
    898   /// \post \a computeMassInLoop() has returned \c true for every loop.
    899   void computeMassInLoops();
    900 
    901   /// \brief Compute mass in the top-level function.
    902   ///
    903   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
    904   /// compute mass in the top-level function.
    905   ///
    906   /// \post \a tryToComputeMassInFunction() has returned \c true.
    907   void computeMassInFunction();
    908 
    909   std::string getBlockName(const BlockNode &Node) const override {
    910     return bfi_detail::getBlockName(getBlock(Node));
    911   }
    912 
    913 public:
    914   const FunctionT *getFunction() const { return F; }
    915 
    916   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
    917                  const LoopInfoT &LI);
    918   BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
    919 
    920   using BlockFrequencyInfoImplBase::getEntryFreq;
    921   BlockFrequency getBlockFreq(const BlockT *BB) const {
    922     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
    923   }
    924   Optional<uint64_t> getBlockProfileCount(const Function &F,
    925                                           const BlockT *BB) const {
    926     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB));
    927   }
    928   void setBlockFreq(const BlockT *BB, uint64_t Freq);
    929   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
    930     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
    931   }
    932 
    933   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
    934 
    935   /// \brief Print the frequencies for the current function.
    936   ///
    937   /// Prints the frequencies for the blocks in the current function.
    938   ///
    939   /// Blocks are printed in the natural iteration order of the function, rather
    940   /// than reverse post-order.  This provides two advantages:  writing -analyze
    941   /// tests is easier (since blocks come out in source order), and even
    942   /// unreachable blocks are printed.
    943   ///
    944   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
    945   /// we need to override it here.
    946   raw_ostream &print(raw_ostream &OS) const override;
    947   using BlockFrequencyInfoImplBase::dump;
    948 
    949   using BlockFrequencyInfoImplBase::printBlockFreq;
    950   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
    951     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
    952   }
    953 };
    954 
    955 template <class BT>
    956 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
    957                                            const BranchProbabilityInfoT &BPI,
    958                                            const LoopInfoT &LI) {
    959   // Save the parameters.
    960   this->BPI = &BPI;
    961   this->LI = &LI;
    962   this->F = &F;
    963 
    964   // Clean up left-over data structures.
    965   BlockFrequencyInfoImplBase::clear();
    966   RPOT.clear();
    967   Nodes.clear();
    968 
    969   // Initialize.
    970   DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n================="
    971                << std::string(F.getName().size(), '=') << "\n");
    972   initializeRPOT();
    973   initializeLoops();
    974 
    975   // Visit loops in post-order to find the local mass distribution, and then do
    976   // the full function.
    977   computeMassInLoops();
    978   computeMassInFunction();
    979   unwrapLoops();
    980   finalizeMetrics();
    981 }
    982 
    983 template <class BT>
    984 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
    985   if (Nodes.count(BB))
    986     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
    987   else {
    988     // If BB is a newly added block after BFI is done, we need to create a new
    989     // BlockNode for it assigned with a new index. The index can be determined
    990     // by the size of Freqs.
    991     BlockNode NewNode(Freqs.size());
    992     Nodes[BB] = NewNode;
    993     Freqs.emplace_back();
    994     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
    995   }
    996 }
    997 
    998 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
    999   const BlockT *Entry = &F->front();
   1000   RPOT.reserve(F->size());
   1001   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
   1002   std::reverse(RPOT.begin(), RPOT.end());
   1003 
   1004   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
   1005          "More nodes in function than Block Frequency Info supports");
   1006 
   1007   DEBUG(dbgs() << "reverse-post-order-traversal\n");
   1008   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
   1009     BlockNode Node = getNode(I);
   1010     DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
   1011     Nodes[*I] = Node;
   1012   }
   1013 
   1014   Working.reserve(RPOT.size());
   1015   for (size_t Index = 0; Index < RPOT.size(); ++Index)
   1016     Working.emplace_back(Index);
   1017   Freqs.resize(RPOT.size());
   1018 }
   1019 
   1020 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
   1021   DEBUG(dbgs() << "loop-detection\n");
   1022   if (LI->empty())
   1023     return;
   1024 
   1025   // Visit loops top down and assign them an index.
   1026   std::deque<std::pair<const LoopT *, LoopData *>> Q;
   1027   for (const LoopT *L : *LI)
   1028     Q.emplace_back(L, nullptr);
   1029   while (!Q.empty()) {
   1030     const LoopT *Loop = Q.front().first;
   1031     LoopData *Parent = Q.front().second;
   1032     Q.pop_front();
   1033 
   1034     BlockNode Header = getNode(Loop->getHeader());
   1035     assert(Header.isValid());
   1036 
   1037     Loops.emplace_back(Parent, Header);
   1038     Working[Header.Index].Loop = &Loops.back();
   1039     DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
   1040 
   1041     for (const LoopT *L : *Loop)
   1042       Q.emplace_back(L, &Loops.back());
   1043   }
   1044 
   1045   // Visit nodes in reverse post-order and add them to their deepest containing
   1046   // loop.
   1047   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
   1048     // Loop headers have already been mostly mapped.
   1049     if (Working[Index].isLoopHeader()) {
   1050       LoopData *ContainingLoop = Working[Index].getContainingLoop();
   1051       if (ContainingLoop)
   1052         ContainingLoop->Nodes.push_back(Index);
   1053       continue;
   1054     }
   1055 
   1056     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
   1057     if (!Loop)
   1058       continue;
   1059 
   1060     // Add this node to its containing loop's member list.
   1061     BlockNode Header = getNode(Loop->getHeader());
   1062     assert(Header.isValid());
   1063     const auto &HeaderData = Working[Header.Index];
   1064     assert(HeaderData.isLoopHeader());
   1065 
   1066     Working[Index].Loop = HeaderData.Loop;
   1067     HeaderData.Loop->Nodes.push_back(Index);
   1068     DEBUG(dbgs() << " - loop = " << getBlockName(Header)
   1069                  << ": member = " << getBlockName(Index) << "\n");
   1070   }
   1071 }
   1072 
   1073 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
   1074   // Visit loops with the deepest first, and the top-level loops last.
   1075   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
   1076     if (computeMassInLoop(*L))
   1077       continue;
   1078     auto Next = std::next(L);
   1079     computeIrreducibleMass(&*L, L.base());
   1080     L = std::prev(Next);
   1081     if (computeMassInLoop(*L))
   1082       continue;
   1083     llvm_unreachable("unhandled irreducible control flow");
   1084   }
   1085 }
   1086 
   1087 template <class BT>
   1088 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
   1089   // Compute mass in loop.
   1090   DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
   1091 
   1092   if (Loop.isIrreducible()) {
   1093     BlockMass Remaining = BlockMass::getFull();
   1094     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
   1095       auto &Mass = Working[Loop.Nodes[H].Index].getMass();
   1096       Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
   1097       Remaining -= Mass;
   1098     }
   1099     for (const BlockNode &M : Loop.Nodes)
   1100       if (!propagateMassToSuccessors(&Loop, M))
   1101         llvm_unreachable("unhandled irreducible control flow");
   1102 
   1103     adjustLoopHeaderMass(Loop);
   1104   } else {
   1105     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
   1106     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
   1107       llvm_unreachable("irreducible control flow to loop header!?");
   1108     for (const BlockNode &M : Loop.members())
   1109       if (!propagateMassToSuccessors(&Loop, M))
   1110         // Irreducible backedge.
   1111         return false;
   1112   }
   1113 
   1114   computeLoopScale(Loop);
   1115   packageLoop(Loop);
   1116   return true;
   1117 }
   1118 
   1119 template <class BT>
   1120 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
   1121   // Compute mass in function.
   1122   DEBUG(dbgs() << "compute-mass-in-function\n");
   1123   assert(!Working.empty() && "no blocks in function");
   1124   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
   1125 
   1126   Working[0].getMass() = BlockMass::getFull();
   1127   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
   1128     // Check for nodes that have been packaged.
   1129     BlockNode Node = getNode(I);
   1130     if (Working[Node.Index].isPackaged())
   1131       continue;
   1132 
   1133     if (!propagateMassToSuccessors(nullptr, Node))
   1134       return false;
   1135   }
   1136   return true;
   1137 }
   1138 
   1139 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
   1140   if (tryToComputeMassInFunction())
   1141     return;
   1142   computeIrreducibleMass(nullptr, Loops.begin());
   1143   if (tryToComputeMassInFunction())
   1144     return;
   1145   llvm_unreachable("unhandled irreducible control flow");
   1146 }
   1147 
   1148 /// \note This should be a lambda, but that crashes GCC 4.7.
   1149 namespace bfi_detail {
   1150 template <class BT> struct BlockEdgesAdder {
   1151   typedef BT BlockT;
   1152   typedef BlockFrequencyInfoImplBase::LoopData LoopData;
   1153   typedef GraphTraits<const BlockT *> Successor;
   1154 
   1155   const BlockFrequencyInfoImpl<BT> &BFI;
   1156   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
   1157       : BFI(BFI) {}
   1158   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
   1159                   const LoopData *OuterLoop) {
   1160     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
   1161     for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
   1162          I != E; ++I)
   1163       G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
   1164   }
   1165 };
   1166 }
   1167 template <class BT>
   1168 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
   1169     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
   1170   DEBUG(dbgs() << "analyze-irreducible-in-";
   1171         if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
   1172         else dbgs() << "function\n");
   1173 
   1174   using namespace bfi_detail;
   1175   // Ideally, addBlockEdges() would be declared here as a lambda, but that
   1176   // crashes GCC 4.7.
   1177   BlockEdgesAdder<BT> addBlockEdges(*this);
   1178   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
   1179 
   1180   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
   1181     computeMassInLoop(L);
   1182 
   1183   if (!OuterLoop)
   1184     return;
   1185   updateLoopWithIrreducible(*OuterLoop);
   1186 }
   1187 
   1188 // A helper function that converts a branch probability into weight.
   1189 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
   1190   return Prob.getNumerator();
   1191 }
   1192 
   1193 template <class BT>
   1194 bool
   1195 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
   1196                                                       const BlockNode &Node) {
   1197   DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
   1198   // Calculate probability for successors.
   1199   Distribution Dist;
   1200   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
   1201     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
   1202     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
   1203       // Irreducible backedge.
   1204       return false;
   1205   } else {
   1206     const BlockT *BB = getBlock(Node);
   1207     for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
   1208          SI != SE; ++SI)
   1209       if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
   1210                      getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
   1211         // Irreducible backedge.
   1212         return false;
   1213   }
   1214 
   1215   // Distribute mass to successors, saving exit and backedge data in the
   1216   // loop header.
   1217   distributeMass(Node, OuterLoop, Dist);
   1218   return true;
   1219 }
   1220 
   1221 template <class BT>
   1222 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
   1223   if (!F)
   1224     return OS;
   1225   OS << "block-frequency-info: " << F->getName() << "\n";
   1226   for (const BlockT &BB : *F) {
   1227     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
   1228     getFloatingBlockFreq(&BB).print(OS, 5)
   1229         << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
   1230   }
   1231 
   1232   // Add an extra newline for readability.
   1233   OS << "\n";
   1234   return OS;
   1235 }
   1236 
   1237 // Graph trait base class for block frequency information graph
   1238 // viewer.
   1239 
   1240 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
   1241 
   1242 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
   1243 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
   1244   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
   1245       : DefaultDOTGraphTraits(isSimple) {}
   1246 
   1247   typedef GraphTraits<BlockFrequencyInfoT *> GTraits;
   1248   typedef typename GTraits::NodeType NodeType;
   1249   typedef typename GTraits::ChildIteratorType EdgeIter;
   1250   typedef typename GTraits::nodes_iterator NodeIter;
   1251 
   1252   uint64_t MaxFrequency = 0;
   1253   static std::string getGraphName(const BlockFrequencyInfoT *G) {
   1254     return G->getFunction()->getName();
   1255   }
   1256 
   1257   std::string getNodeAttributes(const NodeType *Node,
   1258                                 const BlockFrequencyInfoT *Graph,
   1259                                 unsigned HotPercentThreshold = 0) {
   1260     std::string Result;
   1261     if (!HotPercentThreshold)
   1262       return Result;
   1263 
   1264     // Compute MaxFrequency on the fly:
   1265     if (!MaxFrequency) {
   1266       for (NodeIter I = GTraits::nodes_begin(Graph),
   1267                     E = GTraits::nodes_end(Graph);
   1268            I != E; ++I) {
   1269         NodeType &N = *I;
   1270         MaxFrequency =
   1271             std::max(MaxFrequency, Graph->getBlockFreq(&N).getFrequency());
   1272       }
   1273     }
   1274     BlockFrequency Freq = Graph->getBlockFreq(Node);
   1275     BlockFrequency HotFreq =
   1276         (BlockFrequency(MaxFrequency) *
   1277          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
   1278 
   1279     if (Freq < HotFreq)
   1280       return Result;
   1281 
   1282     raw_string_ostream OS(Result);
   1283     OS << "color=\"red\"";
   1284     OS.flush();
   1285     return Result;
   1286   }
   1287 
   1288   std::string getNodeLabel(const NodeType *Node,
   1289                            const BlockFrequencyInfoT *Graph, GVDAGType GType) {
   1290     std::string Result;
   1291     raw_string_ostream OS(Result);
   1292 
   1293     OS << Node->getName().str() << " : ";
   1294     switch (GType) {
   1295     case GVDT_Fraction:
   1296       Graph->printBlockFreq(OS, Node);
   1297       break;
   1298     case GVDT_Integer:
   1299       OS << Graph->getBlockFreq(Node).getFrequency();
   1300       break;
   1301     case GVDT_Count: {
   1302       auto Count = Graph->getBlockProfileCount(Node);
   1303       if (Count)
   1304         OS << Count.getValue();
   1305       else
   1306         OS << "Unknown";
   1307       break;
   1308     }
   1309     case GVDT_None:
   1310       llvm_unreachable("If we are not supposed to render a graph we should "
   1311                        "never reach this point.");
   1312     }
   1313     return Result;
   1314   }
   1315 
   1316   std::string getEdgeAttributes(const NodeType *Node, EdgeIter EI,
   1317                                 const BlockFrequencyInfoT *BFI,
   1318                                 const BranchProbabilityInfoT *BPI,
   1319                                 unsigned HotPercentThreshold = 0) {
   1320     std::string Str;
   1321     if (!BPI)
   1322       return Str;
   1323 
   1324     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
   1325     uint32_t N = BP.getNumerator();
   1326     uint32_t D = BP.getDenominator();
   1327     double Percent = 100.0 * N / D;
   1328     raw_string_ostream OS(Str);
   1329     OS << format("label=\"%.1f%%\"", Percent);
   1330 
   1331     if (HotPercentThreshold) {
   1332       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
   1333       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
   1334                                BranchProbability(HotPercentThreshold, 100);
   1335 
   1336       if (EFreq >= HotFreq) {
   1337         OS << ",color=\"red\"";
   1338       }
   1339     }
   1340 
   1341     OS.flush();
   1342     return Str;
   1343   }
   1344 };
   1345 
   1346 } // end namespace llvm
   1347 
   1348 #undef DEBUG_TYPE
   1349 
   1350 #endif
   1351