Home | History | Annotate | Download | only in Support
      1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// Generic dominator tree construction - This file provides routines to
     12 /// construct immediate dominator information for a flow-graph based on the
     13 /// algorithm described in this document:
     14 ///
     15 ///   A Fast Algorithm for Finding Dominators in a Flowgraph
     16 ///   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
     17 ///
     18 /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
     19 /// out that the theoretically slower O(n*log(n)) implementation is actually
     20 /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
     21 ///
     22 //===----------------------------------------------------------------------===//
     23 
     24 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
     25 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
     26 
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include "llvm/Support/GenericDomTree.h"
     29 
     30 namespace llvm {
     31 
     32 template<class GraphT>
     33 unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
     34                  typename GraphT::NodeType* V, unsigned N) {
     35   // This is more understandable as a recursive algorithm, but we can't use the
     36   // recursive algorithm due to stack depth issues.  Keep it here for
     37   // documentation purposes.
     38 #if 0
     39   InfoRec &VInfo = DT.Info[DT.Roots[i]];
     40   VInfo.DFSNum = VInfo.Semi = ++N;
     41   VInfo.Label = V;
     42 
     43   Vertex.push_back(V);        // Vertex[n] = V;
     44 
     45   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
     46     InfoRec &SuccVInfo = DT.Info[*SI];
     47     if (SuccVInfo.Semi == 0) {
     48       SuccVInfo.Parent = V;
     49       N = DTDFSPass(DT, *SI, N);
     50     }
     51   }
     52 #else
     53   bool IsChildOfArtificialExit = (N != 0);
     54 
     55   SmallVector<std::pair<typename GraphT::NodeType*,
     56                         typename GraphT::ChildIteratorType>, 32> Worklist;
     57   Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
     58   while (!Worklist.empty()) {
     59     typename GraphT::NodeType* BB = Worklist.back().first;
     60     typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
     61 
     62     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
     63                                                                     DT.Info[BB];
     64 
     65     // First time we visited this BB?
     66     if (NextSucc == GraphT::child_begin(BB)) {
     67       BBInfo.DFSNum = BBInfo.Semi = ++N;
     68       BBInfo.Label = BB;
     69 
     70       DT.Vertex.push_back(BB);       // Vertex[n] = V;
     71 
     72       if (IsChildOfArtificialExit)
     73         BBInfo.Parent = 1;
     74 
     75       IsChildOfArtificialExit = false;
     76     }
     77 
     78     // store the DFS number of the current BB - the reference to BBInfo might
     79     // get invalidated when processing the successors.
     80     unsigned BBDFSNum = BBInfo.DFSNum;
     81 
     82     // If we are done with this block, remove it from the worklist.
     83     if (NextSucc == GraphT::child_end(BB)) {
     84       Worklist.pop_back();
     85       continue;
     86     }
     87 
     88     // Increment the successor number for the next time we get to it.
     89     ++Worklist.back().second;
     90 
     91     // Visit the successor next, if it isn't already visited.
     92     typename GraphT::NodeType* Succ = *NextSucc;
     93 
     94     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
     95                                                                   DT.Info[Succ];
     96     if (SuccVInfo.Semi == 0) {
     97       SuccVInfo.Parent = BBDFSNum;
     98       Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
     99     }
    100   }
    101 #endif
    102     return N;
    103 }
    104 
    105 template <class GraphT>
    106 typename GraphT::NodeType *
    107 Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
    108      typename GraphT::NodeType *VIn, unsigned LastLinked) {
    109   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
    110                                                                   DT.Info[VIn];
    111   if (VInInfo.DFSNum < LastLinked)
    112     return VIn;
    113 
    114   SmallVector<typename GraphT::NodeType*, 32> Work;
    115   SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
    116 
    117   if (VInInfo.Parent >= LastLinked)
    118     Work.push_back(VIn);
    119 
    120   while (!Work.empty()) {
    121     typename GraphT::NodeType* V = Work.back();
    122     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
    123                                                                      DT.Info[V];
    124     typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
    125 
    126     // Process Ancestor first
    127     if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
    128       Work.push_back(VAncestor);
    129       continue;
    130     }
    131     Work.pop_back();
    132 
    133     // Update VInfo based on Ancestor info
    134     if (VInfo.Parent < LastLinked)
    135       continue;
    136 
    137     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
    138                                                              DT.Info[VAncestor];
    139     typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
    140     typename GraphT::NodeType* VLabel = VInfo.Label;
    141     if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
    142       VInfo.Label = VAncestorLabel;
    143     VInfo.Parent = VAInfo.Parent;
    144   }
    145 
    146   return VInInfo.Label;
    147 }
    148 
    149 template<class FuncT, class NodeT>
    150 void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
    151                FuncT& F) {
    152   typedef GraphTraits<NodeT> GraphT;
    153 
    154   unsigned N = 0;
    155   bool MultipleRoots = (DT.Roots.size() > 1);
    156   if (MultipleRoots) {
    157     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
    158         DT.Info[nullptr];
    159     BBInfo.DFSNum = BBInfo.Semi = ++N;
    160     BBInfo.Label = nullptr;
    161 
    162     DT.Vertex.push_back(nullptr);       // Vertex[n] = V;
    163   }
    164 
    165   // Step #1: Number blocks in depth-first order and initialize variables used
    166   // in later stages of the algorithm.
    167   for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
    168        i != e; ++i)
    169     N = DFSPass<GraphT>(DT, DT.Roots[i], N);
    170 
    171   // it might be that some blocks did not get a DFS number (e.g., blocks of
    172   // infinite loops). In these cases an artificial exit node is required.
    173   MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
    174 
    175   // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
    176   // bucket for each vertex. However, this is unnecessary, because each vertex
    177   // is only placed into a single bucket (that of its semidominator), and each
    178   // vertex's bucket is processed before it is added to any bucket itself.
    179   //
    180   // Instead of using a bucket per vertex, we use a single array Buckets that
    181   // has two purposes. Before the vertex V with preorder number i is processed,
    182   // Buckets[i] stores the index of the first element in V's bucket. After V's
    183   // bucket is processed, Buckets[i] stores the index of the next element in the
    184   // bucket containing V, if any.
    185   SmallVector<unsigned, 32> Buckets;
    186   Buckets.resize(N + 1);
    187   for (unsigned i = 1; i <= N; ++i)
    188     Buckets[i] = i;
    189 
    190   for (unsigned i = N; i >= 2; --i) {
    191     typename GraphT::NodeType* W = DT.Vertex[i];
    192     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
    193                                                                      DT.Info[W];
    194 
    195     // Step #2: Implicitly define the immediate dominator of vertices
    196     for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
    197       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
    198       typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
    199       DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
    200     }
    201 
    202     // Step #3: Calculate the semidominators of all vertices
    203 
    204     // initialize the semi dominator to point to the parent node
    205     WInfo.Semi = WInfo.Parent;
    206     typedef GraphTraits<Inverse<NodeT> > InvTraits;
    207     for (typename InvTraits::ChildIteratorType CI =
    208          InvTraits::child_begin(W),
    209          E = InvTraits::child_end(W); CI != E; ++CI) {
    210       typename InvTraits::NodeType *N = *CI;
    211       if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
    212         unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
    213         if (SemiU < WInfo.Semi)
    214           WInfo.Semi = SemiU;
    215       }
    216     }
    217 
    218     // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
    219     // necessarily parent(V). In this case, set idom(V) here and avoid placing
    220     // V into a bucket.
    221     if (WInfo.Semi == WInfo.Parent) {
    222       DT.IDoms[W] = DT.Vertex[WInfo.Parent];
    223     } else {
    224       Buckets[i] = Buckets[WInfo.Semi];
    225       Buckets[WInfo.Semi] = i;
    226     }
    227   }
    228 
    229   if (N >= 1) {
    230     typename GraphT::NodeType* Root = DT.Vertex[1];
    231     for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
    232       typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
    233       DT.IDoms[V] = Root;
    234     }
    235   }
    236 
    237   // Step #4: Explicitly define the immediate dominator of each vertex
    238   for (unsigned i = 2; i <= N; ++i) {
    239     typename GraphT::NodeType* W = DT.Vertex[i];
    240     typename GraphT::NodeType*& WIDom = DT.IDoms[W];
    241     if (WIDom != DT.Vertex[DT.Info[W].Semi])
    242       WIDom = DT.IDoms[WIDom];
    243   }
    244 
    245   if (DT.Roots.empty()) return;
    246 
    247   // Add a node for the root.  This node might be the actual root, if there is
    248   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
    249   // which postdominates all real exits if there are multiple exit blocks, or
    250   // an infinite loop.
    251   typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;
    252 
    253   DT.RootNode =
    254       (DT.DomTreeNodes[Root] =
    255            llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
    256                Root, nullptr)).get();
    257 
    258   // Loop over all of the reachable blocks in the function...
    259   for (unsigned i = 2; i <= N; ++i) {
    260     typename GraphT::NodeType* W = DT.Vertex[i];
    261 
    262     // Don't replace this with 'count', the insertion side effect is important
    263     if (DT.DomTreeNodes[W])
    264       continue; // Haven't calculated this node yet?
    265 
    266     typename GraphT::NodeType* ImmDom = DT.getIDom(W);
    267 
    268     assert(ImmDom || DT.DomTreeNodes[nullptr]);
    269 
    270     // Get or calculate the node for the immediate dominator
    271     DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
    272                                                      DT.getNodeForBlock(ImmDom);
    273 
    274     // Add a new tree node for this BasicBlock, and link it as a child of
    275     // IDomNode
    276     DT.DomTreeNodes[W] = IDomNode->addChild(
    277         llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
    278             W, IDomNode));
    279   }
    280 
    281   // Free temporary memory used to construct idom's
    282   DT.IDoms.clear();
    283   DT.Info.clear();
    284   DT.Vertex.clear();
    285   DT.Vertex.shrink_to_fit();
    286 
    287   DT.updateDFSNumbers();
    288 }
    289 }
    290 
    291 #endif
    292