1 //===-- Module.cpp - Implement the Module class ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Module class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Module.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InstrTypes.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/TypeFinder.h" 27 #include "llvm/Support/Dwarf.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include <algorithm> 31 #include <cstdarg> 32 #include <cstdlib> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Methods to implement the globals and functions lists. 38 // 39 40 // Explicit instantiations of SymbolTableListTraits since some of the methods 41 // are not in the public header file. 42 template class llvm::SymbolTableListTraits<Function>; 43 template class llvm::SymbolTableListTraits<GlobalVariable>; 44 template class llvm::SymbolTableListTraits<GlobalAlias>; 45 template class llvm::SymbolTableListTraits<GlobalIFunc>; 46 47 //===----------------------------------------------------------------------===// 48 // Primitive Module methods. 49 // 50 51 Module::Module(StringRef MID, LLVMContext &C) 52 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 53 ValSymTab = new ValueSymbolTable(); 54 NamedMDSymTab = new StringMap<NamedMDNode *>(); 55 Context.addModule(this); 56 } 57 58 Module::~Module() { 59 Context.removeModule(this); 60 dropAllReferences(); 61 GlobalList.clear(); 62 FunctionList.clear(); 63 AliasList.clear(); 64 IFuncList.clear(); 65 NamedMDList.clear(); 66 delete ValSymTab; 67 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 68 } 69 70 RandomNumberGenerator *Module::createRNG(const Pass* P) const { 71 SmallString<32> Salt(P->getPassName()); 72 73 // This RNG is guaranteed to produce the same random stream only 74 // when the Module ID and thus the input filename is the same. This 75 // might be problematic if the input filename extension changes 76 // (e.g. from .c to .bc or .ll). 77 // 78 // We could store this salt in NamedMetadata, but this would make 79 // the parameter non-const. This would unfortunately make this 80 // interface unusable by any Machine passes, since they only have a 81 // const reference to their IR Module. Alternatively we can always 82 // store salt metadata from the Module constructor. 83 Salt += sys::path::filename(getModuleIdentifier()); 84 85 return new RandomNumberGenerator(Salt); 86 } 87 88 /// getNamedValue - Return the first global value in the module with 89 /// the specified name, of arbitrary type. This method returns null 90 /// if a global with the specified name is not found. 91 GlobalValue *Module::getNamedValue(StringRef Name) const { 92 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 93 } 94 95 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 96 /// This ID is uniqued across modules in the current LLVMContext. 97 unsigned Module::getMDKindID(StringRef Name) const { 98 return Context.getMDKindID(Name); 99 } 100 101 /// getMDKindNames - Populate client supplied SmallVector with the name for 102 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 103 /// so it is filled in as an empty string. 104 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 105 return Context.getMDKindNames(Result); 106 } 107 108 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 109 return Context.getOperandBundleTags(Result); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // Methods for easy access to the functions in the module. 114 // 115 116 // getOrInsertFunction - Look up the specified function in the module symbol 117 // table. If it does not exist, add a prototype for the function and return 118 // it. This is nice because it allows most passes to get away with not handling 119 // the symbol table directly for this common task. 120 // 121 Constant *Module::getOrInsertFunction(StringRef Name, 122 FunctionType *Ty, 123 AttributeSet AttributeList) { 124 // See if we have a definition for the specified function already. 125 GlobalValue *F = getNamedValue(Name); 126 if (!F) { 127 // Nope, add it 128 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); 129 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 130 New->setAttributes(AttributeList); 131 FunctionList.push_back(New); 132 return New; // Return the new prototype. 133 } 134 135 // If the function exists but has the wrong type, return a bitcast to the 136 // right type. 137 if (F->getType() != PointerType::getUnqual(Ty)) 138 return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); 139 140 // Otherwise, we just found the existing function or a prototype. 141 return F; 142 } 143 144 Constant *Module::getOrInsertFunction(StringRef Name, 145 FunctionType *Ty) { 146 return getOrInsertFunction(Name, Ty, AttributeSet()); 147 } 148 149 // getOrInsertFunction - Look up the specified function in the module symbol 150 // table. If it does not exist, add a prototype for the function and return it. 151 // This version of the method takes a null terminated list of function 152 // arguments, which makes it easier for clients to use. 153 // 154 Constant *Module::getOrInsertFunction(StringRef Name, 155 AttributeSet AttributeList, 156 Type *RetTy, ...) { 157 va_list Args; 158 va_start(Args, RetTy); 159 160 // Build the list of argument types... 161 std::vector<Type*> ArgTys; 162 while (Type *ArgTy = va_arg(Args, Type*)) 163 ArgTys.push_back(ArgTy); 164 165 va_end(Args); 166 167 // Build the function type and chain to the other getOrInsertFunction... 168 return getOrInsertFunction(Name, 169 FunctionType::get(RetTy, ArgTys, false), 170 AttributeList); 171 } 172 173 Constant *Module::getOrInsertFunction(StringRef Name, 174 Type *RetTy, ...) { 175 va_list Args; 176 va_start(Args, RetTy); 177 178 // Build the list of argument types... 179 std::vector<Type*> ArgTys; 180 while (Type *ArgTy = va_arg(Args, Type*)) 181 ArgTys.push_back(ArgTy); 182 183 va_end(Args); 184 185 // Build the function type and chain to the other getOrInsertFunction... 186 return getOrInsertFunction(Name, 187 FunctionType::get(RetTy, ArgTys, false), 188 AttributeSet()); 189 } 190 191 // getFunction - Look up the specified function in the module symbol table. 192 // If it does not exist, return null. 193 // 194 Function *Module::getFunction(StringRef Name) const { 195 return dyn_cast_or_null<Function>(getNamedValue(Name)); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // Methods for easy access to the global variables in the module. 200 // 201 202 /// getGlobalVariable - Look up the specified global variable in the module 203 /// symbol table. If it does not exist, return null. The type argument 204 /// should be the underlying type of the global, i.e., it should not have 205 /// the top-level PointerType, which represents the address of the global. 206 /// If AllowLocal is set to true, this function will return types that 207 /// have an local. By default, these types are not returned. 208 /// 209 GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) { 210 if (GlobalVariable *Result = 211 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 212 if (AllowLocal || !Result->hasLocalLinkage()) 213 return Result; 214 return nullptr; 215 } 216 217 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 218 /// 1. If it does not exist, add a declaration of the global and return it. 219 /// 2. Else, the global exists but has the wrong type: return the function 220 /// with a constantexpr cast to the right type. 221 /// 3. Finally, if the existing global is the correct declaration, return the 222 /// existing global. 223 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 224 // See if we have a definition for the specified global already. 225 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 226 if (!GV) { 227 // Nope, add it 228 GlobalVariable *New = 229 new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 230 nullptr, Name); 231 return New; // Return the new declaration. 232 } 233 234 // If the variable exists but has the wrong type, return a bitcast to the 235 // right type. 236 Type *GVTy = GV->getType(); 237 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 238 if (GVTy != PTy) 239 return ConstantExpr::getBitCast(GV, PTy); 240 241 // Otherwise, we just found the existing function or a prototype. 242 return GV; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Methods for easy access to the global variables in the module. 247 // 248 249 // getNamedAlias - Look up the specified global in the module symbol table. 250 // If it does not exist, return null. 251 // 252 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 253 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 254 } 255 256 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 257 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 258 } 259 260 /// getNamedMetadata - Return the first NamedMDNode in the module with the 261 /// specified name. This method returns null if a NamedMDNode with the 262 /// specified name is not found. 263 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 264 SmallString<256> NameData; 265 StringRef NameRef = Name.toStringRef(NameData); 266 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 267 } 268 269 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 270 /// with the specified name. This method returns a new NamedMDNode if a 271 /// NamedMDNode with the specified name is not found. 272 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 273 NamedMDNode *&NMD = 274 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 275 if (!NMD) { 276 NMD = new NamedMDNode(Name); 277 NMD->setParent(this); 278 NamedMDList.push_back(NMD); 279 } 280 return NMD; 281 } 282 283 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 284 /// delete it. 285 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 286 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 287 NamedMDList.erase(NMD->getIterator()); 288 } 289 290 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 291 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 292 uint64_t Val = Behavior->getLimitedValue(); 293 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 294 MFB = static_cast<ModFlagBehavior>(Val); 295 return true; 296 } 297 } 298 return false; 299 } 300 301 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 302 void Module:: 303 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 304 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 305 if (!ModFlags) return; 306 307 for (const MDNode *Flag : ModFlags->operands()) { 308 ModFlagBehavior MFB; 309 if (Flag->getNumOperands() >= 3 && 310 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 311 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 312 // Check the operands of the MDNode before accessing the operands. 313 // The verifier will actually catch these failures. 314 MDString *Key = cast<MDString>(Flag->getOperand(1)); 315 Metadata *Val = Flag->getOperand(2); 316 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 317 } 318 } 319 } 320 321 /// Return the corresponding value if Key appears in module flags, otherwise 322 /// return null. 323 Metadata *Module::getModuleFlag(StringRef Key) const { 324 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 325 getModuleFlagsMetadata(ModuleFlags); 326 for (const ModuleFlagEntry &MFE : ModuleFlags) { 327 if (Key == MFE.Key->getString()) 328 return MFE.Val; 329 } 330 return nullptr; 331 } 332 333 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 334 /// represents module-level flags. This method returns null if there are no 335 /// module-level flags. 336 NamedMDNode *Module::getModuleFlagsMetadata() const { 337 return getNamedMetadata("llvm.module.flags"); 338 } 339 340 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 341 /// represents module-level flags. If module-level flags aren't found, it 342 /// creates the named metadata that contains them. 343 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 344 return getOrInsertNamedMetadata("llvm.module.flags"); 345 } 346 347 /// addModuleFlag - Add a module-level flag to the module-level flags 348 /// metadata. It will create the module-level flags named metadata if it doesn't 349 /// already exist. 350 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 351 Metadata *Val) { 352 Type *Int32Ty = Type::getInt32Ty(Context); 353 Metadata *Ops[3] = { 354 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 355 MDString::get(Context, Key), Val}; 356 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 357 } 358 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 359 Constant *Val) { 360 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 361 } 362 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 363 uint32_t Val) { 364 Type *Int32Ty = Type::getInt32Ty(Context); 365 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 366 } 367 void Module::addModuleFlag(MDNode *Node) { 368 assert(Node->getNumOperands() == 3 && 369 "Invalid number of operands for module flag!"); 370 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 371 isa<MDString>(Node->getOperand(1)) && 372 "Invalid operand types for module flag!"); 373 getOrInsertModuleFlagsMetadata()->addOperand(Node); 374 } 375 376 void Module::setDataLayout(StringRef Desc) { 377 DL.reset(Desc); 378 } 379 380 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 381 382 const DataLayout &Module::getDataLayout() const { return DL; } 383 384 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 385 return cast<DICompileUnit>(CUs->getOperand(Idx)); 386 } 387 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 388 return cast<DICompileUnit>(CUs->getOperand(Idx)); 389 } 390 391 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 392 while (CUs && (Idx < CUs->getNumOperands()) && 393 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 394 ++Idx; 395 } 396 397 //===----------------------------------------------------------------------===// 398 // Methods to control the materialization of GlobalValues in the Module. 399 // 400 void Module::setMaterializer(GVMaterializer *GVM) { 401 assert(!Materializer && 402 "Module already has a GVMaterializer. Call materializeAll" 403 " to clear it out before setting another one."); 404 Materializer.reset(GVM); 405 } 406 407 std::error_code Module::materialize(GlobalValue *GV) { 408 if (!Materializer) 409 return std::error_code(); 410 411 return Materializer->materialize(GV); 412 } 413 414 std::error_code Module::materializeAll() { 415 if (!Materializer) 416 return std::error_code(); 417 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 418 return M->materializeModule(); 419 } 420 421 std::error_code Module::materializeMetadata() { 422 if (!Materializer) 423 return std::error_code(); 424 return Materializer->materializeMetadata(); 425 } 426 427 //===----------------------------------------------------------------------===// 428 // Other module related stuff. 429 // 430 431 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 432 // If we have a materializer, it is possible that some unread function 433 // uses a type that is currently not visible to a TypeFinder, so ask 434 // the materializer which types it created. 435 if (Materializer) 436 return Materializer->getIdentifiedStructTypes(); 437 438 std::vector<StructType *> Ret; 439 TypeFinder SrcStructTypes; 440 SrcStructTypes.run(*this, true); 441 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 442 return Ret; 443 } 444 445 // dropAllReferences() - This function causes all the subelements to "let go" 446 // of all references that they are maintaining. This allows one to 'delete' a 447 // whole module at a time, even though there may be circular references... first 448 // all references are dropped, and all use counts go to zero. Then everything 449 // is deleted for real. Note that no operations are valid on an object that 450 // has "dropped all references", except operator delete. 451 // 452 void Module::dropAllReferences() { 453 for (Function &F : *this) 454 F.dropAllReferences(); 455 456 for (GlobalVariable &GV : globals()) 457 GV.dropAllReferences(); 458 459 for (GlobalAlias &GA : aliases()) 460 GA.dropAllReferences(); 461 462 for (GlobalIFunc &GIF : ifuncs()) 463 GIF.dropAllReferences(); 464 } 465 466 unsigned Module::getDwarfVersion() const { 467 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 468 if (!Val) 469 return 0; 470 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 471 } 472 473 unsigned Module::getCodeViewFlag() const { 474 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 475 if (!Val) 476 return 0; 477 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 478 } 479 480 Comdat *Module::getOrInsertComdat(StringRef Name) { 481 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 482 Entry.second.Name = &Entry; 483 return &Entry.second; 484 } 485 486 PICLevel::Level Module::getPICLevel() const { 487 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 488 489 if (!Val) 490 return PICLevel::NotPIC; 491 492 return static_cast<PICLevel::Level>( 493 cast<ConstantInt>(Val->getValue())->getZExtValue()); 494 } 495 496 void Module::setPICLevel(PICLevel::Level PL) { 497 addModuleFlag(ModFlagBehavior::Error, "PIC Level", PL); 498 } 499 500 PIELevel::Level Module::getPIELevel() const { 501 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 502 503 if (!Val) 504 return PIELevel::Default; 505 506 return static_cast<PIELevel::Level>( 507 cast<ConstantInt>(Val->getValue())->getZExtValue()); 508 } 509 510 void Module::setPIELevel(PIELevel::Level PL) { 511 addModuleFlag(ModFlagBehavior::Error, "PIE Level", PL); 512 } 513 514 void Module::setProfileSummary(Metadata *M) { 515 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 516 } 517 518 Metadata *Module::getProfileSummary() { 519 return getModuleFlag("ProfileSummary"); 520 } 521 522 GlobalVariable *llvm::collectUsedGlobalVariables( 523 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 524 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 525 GlobalVariable *GV = M.getGlobalVariable(Name); 526 if (!GV || !GV->hasInitializer()) 527 return GV; 528 529 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 530 for (Value *Op : Init->operands()) { 531 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 532 Set.insert(G); 533 } 534 return GV; 535 } 536