1 //=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the machine model for AArch64 Cyclone to support 11 // instruction scheduling and other instruction cost heuristics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 def CycloneModel : SchedMachineModel { 16 let IssueWidth = 6; // 6 micro-ops are dispatched per cycle. 17 let MicroOpBufferSize = 192; // Based on the reorder buffer. 18 let LoadLatency = 4; // Optimistic load latency. 19 let MispredictPenalty = 16; // 14-19 cycles are typical. 20 let CompleteModel = 1; 21 } 22 23 //===----------------------------------------------------------------------===// 24 // Define each kind of processor resource and number available on Cyclone. 25 26 // 4 integer pipes 27 def CyUnitI : ProcResource<4> { 28 let BufferSize = 48; 29 } 30 31 // 2 branch units: I[0..1] 32 def CyUnitB : ProcResource<2> { 33 let Super = CyUnitI; 34 let BufferSize = 24; 35 } 36 37 // 1 indirect-branch unit: I[0] 38 def CyUnitBR : ProcResource<1> { 39 let Super = CyUnitB; 40 } 41 42 // 2 shifter pipes: I[2..3] 43 // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI 44 def CyUnitIS : ProcResource<2> { 45 let Super = CyUnitI; 46 let BufferSize = 24; 47 } 48 49 // 1 mul pipe: I[0] 50 def CyUnitIM : ProcResource<1> { 51 let Super = CyUnitBR; 52 let BufferSize = 32; 53 } 54 55 // 1 div pipe: I[1] 56 def CyUnitID : ProcResource<1> { 57 let Super = CyUnitB; 58 let BufferSize = 16; 59 } 60 61 // 1 integer division unit. This is driven by the ID pipe, but only 62 // consumes the pipe for one cycle at issue and another cycle at writeback. 63 def CyUnitIntDiv : ProcResource<1>; 64 65 // 2 ld/st pipes. 66 def CyUnitLS : ProcResource<2> { 67 let BufferSize = 28; 68 } 69 70 // 3 fp/vector pipes. 71 def CyUnitV : ProcResource<3> { 72 let BufferSize = 48; 73 } 74 // 2 fp/vector arithmetic and multiply pipes: V[0-1] 75 def CyUnitVM : ProcResource<2> { 76 let Super = CyUnitV; 77 let BufferSize = 32; 78 } 79 // 1 fp/vector division/sqrt pipe: V[2] 80 def CyUnitVD : ProcResource<1> { 81 let Super = CyUnitV; 82 let BufferSize = 16; 83 } 84 // 1 fp compare pipe: V[0] 85 def CyUnitVC : ProcResource<1> { 86 let Super = CyUnitVM; 87 let BufferSize = 16; 88 } 89 90 // 2 fp division/square-root units. These are driven by the VD pipe, 91 // but only consume the pipe for one cycle at issue and a cycle at writeback. 92 def CyUnitFloatDiv : ProcResource<2>; 93 94 //===----------------------------------------------------------------------===// 95 // Define scheduler read/write resources and latency on Cyclone. 96 // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1. 97 98 let SchedModel = CycloneModel in { 99 100 //--- 101 // 7.8.1. Moves 102 //--- 103 104 // A single nop micro-op (uX). 105 def WriteX : SchedWriteRes<[]> { let Latency = 0; } 106 107 // Move zero is a register rename (to machine register zero). 108 // The move is replaced by a single nop micro-op. 109 // MOVZ Rd, #0 110 // AND Rd, Rzr, #imm 111 def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>; 112 def WriteImmZ : SchedWriteVariant<[ 113 SchedVar<WriteZPred, [WriteX]>, 114 SchedVar<NoSchedPred, [WriteImm]>]>; 115 def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>; 116 117 // Move GPR is a register rename and single nop micro-op. 118 // ORR Xd, XZR, Xm 119 // ADD Xd, Xn, #0 120 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>; 121 def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>; 122 def WriteMov : SchedWriteVariant<[ 123 SchedVar<WriteIMovPred, [WriteX]>, 124 SchedVar<WriteVMovPred, [WriteX]>, 125 SchedVar<NoSchedPred, [WriteI]>]>; 126 def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>; 127 128 // Move non-zero immediate is an integer ALU op. 129 // MOVN,MOVZ,MOVK 130 def : WriteRes<WriteImm, [CyUnitI]>; 131 132 //--- 133 // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional, 134 // Shifts and Bitfield Operations 135 //--- 136 137 // ADR,ADRP 138 // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri 139 // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr 140 // ADC(S),SBC(S) 141 // Aliases: CMN, CMP, TST 142 // 143 // Conditional operations. 144 // CCMNi,CCMPi,CCMNr,CCMPr, 145 // CSEL,CSINC,CSINV,CSNEG 146 // 147 // Bit counting and reversal operations. 148 // CLS,CLZ,RBIT,REV,REV16,REV32 149 def : WriteRes<WriteI, [CyUnitI]>; 150 151 // ADD with shifted register operand is a single micro-op that 152 // consumes a shift pipeline for two cycles. 153 // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs 154 // EXAMPLE: ADDrs Xn, Xm LSL #imm 155 def : WriteRes<WriteISReg, [CyUnitIS]> { 156 let Latency = 2; 157 let ResourceCycles = [2]; 158 } 159 160 // ADD with extended register operand is the same as shifted reg operand. 161 // ADD(S)re,SUB(S)re 162 // EXAMPLE: ADDXre Xn, Xm, UXTB #1 163 def : WriteRes<WriteIEReg, [CyUnitIS]> { 164 let Latency = 2; 165 let ResourceCycles = [2]; 166 } 167 168 // Variable shift and bitfield operations. 169 // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM 170 def : WriteRes<WriteIS, [CyUnitIS]>; 171 172 // EXTR Shifts a pair of registers and requires two micro-ops. 173 // The second micro-op is delayed, as modeled by ReadExtrHi. 174 // EXTR Xn, Xm, #imm 175 def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> { 176 let Latency = 2; 177 let NumMicroOps = 2; 178 } 179 180 // EXTR's first register read is delayed by one cycle, effectively 181 // shortening its writer's latency. 182 // EXTR Xn, Xm, #imm 183 def : ReadAdvance<ReadExtrHi, 1>; 184 185 //--- 186 // 7.8.6. Multiplies 187 //--- 188 189 // MUL/MNEG are aliases for MADD/MSUB. 190 // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL 191 def : WriteRes<WriteIM32, [CyUnitIM]> { 192 let Latency = 4; 193 } 194 // MADDX,MSUBX,SMULH,UMULH 195 def : WriteRes<WriteIM64, [CyUnitIM]> { 196 let Latency = 5; 197 } 198 199 //--- 200 // 7.8.7. Divide 201 //--- 202 203 // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient. 204 // The ID pipe is consumed for 2 cycles: issue and writeback. 205 // SDIVW,UDIVW 206 def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> { 207 let Latency = 10; 208 let ResourceCycles = [2, 10]; 209 } 210 // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient. 211 // The ID pipe is consumed for 2 cycles: issue and writeback. 212 // SDIVX,UDIVX 213 def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> { 214 let Latency = 13; 215 let ResourceCycles = [2, 13]; 216 } 217 218 //--- 219 // 7.8.8,7.8.10. Load/Store, single element 220 //--- 221 222 // Integer loads take 4 cycles and use one LS unit for one cycle. 223 def : WriteRes<WriteLD, [CyUnitLS]> { 224 let Latency = 4; 225 } 226 227 // Store-load forwarding is 4 cycles. 228 // 229 // Note: The store-exclusive sequence incorporates this 230 // latency. However, general heuristics should not model the 231 // dependence between a store and subsequent may-alias load because 232 // hardware speculation works. 233 def : WriteRes<WriteST, [CyUnitLS]> { 234 let Latency = 4; 235 } 236 237 // Load from base address plus an optionally scaled register offset. 238 // Rt latency is latency WriteIS + WriteLD. 239 // EXAMPLE: LDR Xn, Xm [, lsl 3] 240 def CyWriteLDIdx : SchedWriteVariant<[ 241 SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register. 242 SchedVar<NoSchedPred, [WriteLD]>]>; // Load from register offset. 243 def : SchedAlias<WriteLDIdx, CyWriteLDIdx>; // Map AArch64->Cyclone type. 244 245 // EXAMPLE: STR Xn, Xm [, lsl 3] 246 def CyWriteSTIdx : SchedWriteVariant<[ 247 SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register. 248 SchedVar<NoSchedPred, [WriteST]>]>; // Store to register offset. 249 def : SchedAlias<WriteSTIdx, CyWriteSTIdx>; // Map AArch64->Cyclone type. 250 251 // Read the (unshifted) base register Xn in the second micro-op one cycle later. 252 // EXAMPLE: LDR Xn, Xm [, lsl 3] 253 def ReadBaseRS : SchedReadAdvance<1>; 254 def CyReadAdrBase : SchedReadVariant<[ 255 SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset. 256 SchedVar<NoSchedPred, [ReadDefault]>]>; // Read base reg with no shift. 257 def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type. 258 259 //--- 260 // 7.8.9,7.8.11. Load/Store, paired 261 //--- 262 263 // Address pre/post increment is a simple ALU op with one cycle latency. 264 def : WriteRes<WriteAdr, [CyUnitI]>; 265 266 // LDP high register write is fused with the load, but a nop micro-op remains. 267 def : WriteRes<WriteLDHi, []> { 268 let Latency = 4; 269 } 270 271 // STP is a vector op and store, except for QQ, which is just two stores. 272 def : SchedAlias<WriteSTP, WriteVSTShuffle>; 273 def : InstRW<[WriteST, WriteST], (instrs STPQi)>; 274 275 //--- 276 // 7.8.13. Branches 277 //--- 278 279 // Branches take a single micro-op. 280 // The misprediction penalty is defined as a SchedMachineModel property. 281 def : WriteRes<WriteBr, [CyUnitB]> {let Latency = 0;} 282 def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;} 283 284 //--- 285 // 7.8.14. Never-issued Instructions, Barrier and Hint Operations 286 //--- 287 288 // NOP,SEV,SEVL,WFE,WFI,YIELD 289 def : WriteRes<WriteHint, []> {let Latency = 0;} 290 // ISB 291 def : InstRW<[WriteI], (instrs ISB)>; 292 // SLREX,DMB,DSB 293 def : WriteRes<WriteBarrier, [CyUnitLS]>; 294 295 // System instructions get an invalid latency because the latency of 296 // other operations across them is meaningless. 297 def : WriteRes<WriteSys, []> {let Latency = -1;} 298 299 //===----------------------------------------------------------------------===// 300 // 7.9 Vector Unit Instructions 301 302 // Simple vector operations take 2 cycles. 303 def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;} 304 305 // Define some longer latency vector op types for Cyclone. 306 def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 307 def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;} 308 def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;} 309 def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;} 310 311 // Simple floating-point operations take 2 cycles. 312 def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;} 313 314 //--- 315 // 7.9.1 Vector Moves 316 //--- 317 318 // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently 319 // generates expensive int-float conversion instead: 320 // FMOVDi Dd, #0.0 321 // FMOVv2f64ns Vd.2d, #0.0 322 323 // FMOVSi,FMOVDi 324 def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;} 325 326 // MOVI,MVNI are WriteV 327 // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV 328 329 // Move FPR is a register rename and single nop micro-op. 330 // ORR.16b Vd,Vn,Vn 331 // COPY is handled above in the WriteMov Variant. 332 def WriteVMov : SchedWriteVariant<[ 333 SchedVar<WriteVMovPred, [WriteX]>, 334 SchedVar<NoSchedPred, [WriteV]>]>; 335 def : InstRW<[WriteVMov], (instrs ORRv16i8)>; 336 337 // FMOVSr,FMOVDr are WriteF. 338 339 // MOV V,V is a WriteV. 340 341 // CPY D,V[x] is a WriteV 342 343 // INS V[x],V[y] is a WriteV. 344 345 // FMOVWSr,FMOVXDr,FMOVXDHighr 346 def : WriteRes<WriteFCopy, [CyUnitLS]> { 347 let Latency = 5; 348 } 349 350 // FMOVSWr,FMOVDXr 351 def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>; 352 353 // INS V[x],R 354 def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>; 355 def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>; 356 357 // SMOV,UMOV R,V[x] 358 def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>; 359 def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>; 360 361 // DUP V,R 362 def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>; 363 364 // DUP V,V[x] is a WriteV. 365 366 //--- 367 // 7.9.2 Integer Arithmetic, Logical, and Comparisons 368 //--- 369 370 // BIC,ORR V,#imm are WriteV 371 372 def : InstRW<[CyWriteV3], (instregex "ABSv")>; 373 374 // MVN,NEG,NOT are WriteV 375 376 def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>; 377 378 // ADDP is a WriteV. 379 def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;} 380 def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>; 381 382 def : InstRW<[CyWriteV3], 383 (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>; 384 385 def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>; 386 387 // ADD,SUB are WriteV 388 389 // Forward declare. 390 def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 391 392 // Add/Diff and accumulate uses the vector multiply unit. 393 def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} 394 def CyReadVAccum : SchedReadAdvance<1, 395 [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>; 396 397 def : InstRW<[CyWriteVAccum, CyReadVAccum], 398 (instregex "SADALP","UADALP")>; 399 400 def : InstRW<[CyWriteVAccum, CyReadVAccum], 401 (instregex "SABAv","UABAv","SABALv","UABALv")>; 402 403 def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>; 404 405 def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>; 406 407 def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>; 408 409 // WriteV includes: 410 // AND,BIC,CMTST,EOR,ORN,ORR 411 // ADDP 412 // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD 413 // SADDL,SSUBL,UADDL,USUBL 414 // SADDW,SSUBW,UADDW,USUBW 415 416 def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv", 417 "CMLEv","CMLTv", 418 "CMHIv","CMHSv")>; 419 420 def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv", 421 "SMAXPv","SMINPv","UMAXPv","UMINPv")>; 422 423 def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv", 424 "SABDLv","UABDLv")>; 425 426 //--- 427 // 7.9.3 Floating Point Arithmetic and Comparisons 428 //--- 429 430 // FABS,FNEG are WriteF 431 432 def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>; 433 def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>; 434 435 def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i", 436 "FMINPv2i","FMINNMPv2i")>; 437 438 def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>; 439 440 def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32, 441 FSUBSrr,FSUBv2f32,FSUBv4f32, 442 FADDPv2f32,FADDPv4f32, 443 FABD32,FABDv2f32,FABDv4f32)>; 444 def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64, 445 FSUBDrr,FSUBv2f64, 446 FADDPv2f64, 447 FABD64,FABDv2f64)>; 448 449 def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>; 450 451 def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT", 452 "FMAXS","FMAXD","FMAXv", 453 "FMINS","FMIND","FMINv", 454 "FMAXNMS","FMAXNMD","FMAXNMv", 455 "FMINNMS","FMINNMD","FMINNMv", 456 "FMAXPv2f","FMAXPv4f", 457 "FMINPv2f","FMINPv4f", 458 "FMAXNMPv2f","FMAXNMPv4f", 459 "FMINNMPv2f","FMINNMPv4f")>; 460 461 // FCMP,FCMPE,FCCMP,FCCMPE 462 def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;} 463 464 // FCSEL is a WriteF. 465 466 //--- 467 // 7.9.4 Shifts and Bitfield Operations 468 //--- 469 470 // SHL is a WriteV 471 472 def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;} 473 def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>; 474 475 def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 476 def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>; 477 478 // Shift and accumulate uses the vector multiply unit. 479 def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} 480 def CyReadVShiftAcc : SchedReadAdvance<1, 481 [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>; 482 def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc], 483 (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>; 484 485 // SSHL,USHL are WriteV. 486 487 def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>; 488 489 // SQSHL,SQSHLU,UQSHL are WriteV. 490 491 def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>; 492 493 // WriteV includes: 494 // SHLL,SSHLL,USHLL 495 // SLI,SRI 496 // BIF,BIT,BSL 497 // EXT 498 // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN 499 // XTN2 500 501 def : InstRW<[CyWriteV4], 502 (instregex "RSHRNv","SHRNv", 503 "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv", 504 "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>; 505 506 //--- 507 // 7.9.5 Multiplication 508 //--- 509 510 def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;} 511 def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv", 512 "SQDMULLv","SQDMULHv","SQRDMULHv")>; 513 514 // FMUL,FMULX,FNMUL default to WriteFMul. 515 def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;} 516 517 def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;} 518 def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed, 519 FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>; 520 521 def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>; 522 def : InstRW<[CyWriteVMul, CyReadVMulAcc], 523 (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL", 524 "SQDMLAL","SQDMLSL")>; 525 526 def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;} 527 def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;} 528 def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>; 529 def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>; 530 531 def : InstRW<[CyWriteSMul, CyReadSMul], 532 (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr, 533 FMLAv2f32,FMLAv4f32, 534 FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>; 535 def : InstRW<[CyWriteDMul, CyReadDMul], 536 (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr, 537 FMLAv2f64,FMLAv2i64_indexed, 538 FMLSv2f64,FMLSv2i64_indexed)>; 539 540 def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; } 541 def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>; 542 543 //--- 544 // 7.9.6 Divide and Square Root 545 //--- 546 547 // FDIV,FSQRT 548 // TODO: Add 64-bit variant with 19 cycle latency. 549 // TODO: Specialize FSQRT for longer latency. 550 def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> { 551 let Latency = 17; 552 let ResourceCycles = [2, 17]; 553 } 554 555 def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>; 556 557 def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; } 558 def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>; 559 560 def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; } 561 def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; } 562 def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>; 563 def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>; 564 565 //--- 566 // 7.9.7 Integer-FP Conversions 567 //--- 568 569 // FCVT lengthen f16/s32 570 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>; 571 572 // FCVT,FCVTN,FCVTXN 573 // SCVTF,UCVTF V,V 574 // FRINT(AIMNPXZ) V,V 575 def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;} 576 577 // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles. 578 def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>; 579 def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>; 580 581 // FCVT Rd, S/D = V6+LD4: 10 cycles 582 def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>; 583 def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>; 584 585 // FCVTL is a WriteV 586 587 //--- 588 // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup 589 //--- 590 591 def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;} 592 def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr, 593 AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr, 594 SHA1SU0rrr)>; 595 596 def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;} 597 def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>; 598 599 def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;} 600 def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr, 601 SHA256Hrrr,SHA256H2rrr)>; 602 603 // TRN,UZP,ZUP are WriteV. 604 605 // TBL,TBX are WriteV. 606 607 //--- 608 // 7.9.11-7.9.14 Load/Store, single element and paired 609 //--- 610 611 // Loading into the vector unit takes 5 cycles vs 4 for integer loads. 612 def : WriteRes<WriteVLD, [CyUnitLS]> { 613 let Latency = 5; 614 } 615 616 // Store-load forwarding is 4 cycles. 617 def : WriteRes<WriteVST, [CyUnitLS]> { 618 let Latency = 4; 619 } 620 621 // WriteVLDPair/VSTPair sequences are expanded by the target description. 622 623 //--- 624 // 7.9.15 Load, element operations 625 //--- 626 627 // Only the first WriteVLD and WriteAdr for writeback matches def operands. 628 // Subsequent WriteVLDs consume resources. Since all loaded values have the 629 // same latency, this is acceptable. 630 631 // Vd is read 5 cycles after issuing the vector load. 632 def : ReadAdvance<ReadVLD, 5>; 633 634 def : InstRW<[WriteVLD], 635 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 636 def : InstRW<[WriteVLD, WriteAdr], 637 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 638 639 // Register writes from the load's high half are fused micro-ops. 640 def : InstRW<[WriteVLD], 641 (instregex "LD1Twov(8b|4h|2s|1d)$")>; 642 def : InstRW<[WriteVLD, WriteAdr], 643 (instregex "LD1Twov(8b|4h|2s|1d)_POST")>; 644 def : InstRW<[WriteVLD, WriteVLD], 645 (instregex "LD1Twov(16b|8h|4s|2d)$")>; 646 def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 647 (instregex "LD1Twov(16b|8h|4s|2d)_POST")>; 648 649 def : InstRW<[WriteVLD, WriteVLD], 650 (instregex "LD1Threev(8b|4h|2s|1d)$")>; 651 def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 652 (instregex "LD1Threev(8b|4h|2s|1d)_POST")>; 653 def : InstRW<[WriteVLD, WriteVLD, WriteVLD], 654 (instregex "LD1Threev(16b|8h|4s|2d)$")>; 655 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD], 656 (instregex "LD1Threev(16b|8h|4s|2d)_POST")>; 657 658 def : InstRW<[WriteVLD, WriteVLD], 659 (instregex "LD1Fourv(8b|4h|2s|1d)$")>; 660 def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 661 (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>; 662 def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD], 663 (instregex "LD1Fourv(16b|8h|4s|2d)$")>; 664 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD], 665 (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>; 666 667 def : InstRW<[WriteVLDShuffle, ReadVLD], 668 (instregex "LD1i(8|16|32)$")>; 669 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr], 670 (instregex "LD1i(8|16|32)_POST")>; 671 672 def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>; 673 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>; 674 675 def : InstRW<[WriteVLDShuffle], 676 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 677 def : InstRW<[WriteVLDShuffle, WriteAdr], 678 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 679 680 def : InstRW<[WriteVLDShuffle, WriteV], 681 (instregex "LD2Twov(8b|4h|2s)$")>; 682 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV], 683 (instregex "LD2Twov(8b|4h|2s)_POST$")>; 684 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle], 685 (instregex "LD2Twov(16b|8h|4s|2d)$")>; 686 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle], 687 (instregex "LD2Twov(16b|8h|4s|2d)_POST")>; 688 689 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV], 690 (instregex "LD2i(8|16|32)$")>; 691 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV], 692 (instregex "LD2i(8|16|32)_POST")>; 693 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV], 694 (instregex "LD2i64$")>; 695 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV], 696 (instregex "LD2i64_POST")>; 697 698 def : InstRW<[WriteVLDShuffle, WriteV], 699 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 700 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV], 701 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 702 703 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV], 704 (instregex "LD3Threev(8b|4h|2s)$")>; 705 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV], 706 (instregex "LD3Threev(8b|4h|2s)_POST")>; 707 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle], 708 (instregex "LD3Threev(16b|8h|4s|2d)$")>; 709 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle], 710 (instregex "LD3Threev(16b|8h|4s|2d)_POST")>; 711 712 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV], 713 (instregex "LD3i(8|16|32)$")>; 714 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV], 715 (instregex "LD3i(8|16|32)_POST")>; 716 717 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV], 718 (instregex "LD3i64$")>; 719 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV], 720 (instregex "LD3i64_POST")>; 721 722 def : InstRW<[WriteVLDShuffle, WriteV, WriteV], 723 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>; 724 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV], 725 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>; 726 727 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV], 728 (instrs LD3Rv1d,LD3Rv2d)>; 729 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV], 730 (instrs LD3Rv1d_POST,LD3Rv2d_POST)>; 731 732 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV], 733 (instregex "LD4Fourv(8b|4h|2s)$")>; 734 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV], 735 (instregex "LD4Fourv(8b|4h|2s)_POST")>; 736 def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle, 737 WriteVLDPairShuffle, WriteVLDPairShuffle], 738 (instregex "LD4Fourv(16b|8h|4s|2d)$")>; 739 def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle, 740 WriteVLDPairShuffle, WriteVLDPairShuffle], 741 (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>; 742 743 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV], 744 (instregex "LD4i(8|16|32)$")>; 745 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV], 746 (instregex "LD4i(8|16|32)_POST")>; 747 748 749 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV], 750 (instrs LD4i64)>; 751 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV], 752 (instrs LD4i64_POST)>; 753 754 def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV], 755 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>; 756 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV], 757 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>; 758 759 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV], 760 (instrs LD4Rv1d,LD4Rv2d)>; 761 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV], 762 (instrs LD4Rv1d_POST,LD4Rv2d_POST)>; 763 764 //--- 765 // 7.9.16 Store, element operations 766 //--- 767 768 // Only the WriteAdr for writeback matches a def operands. 769 // Subsequent WriteVLDs only consume resources. 770 771 def : InstRW<[WriteVST], 772 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 773 def : InstRW<[WriteAdr, WriteVST], 774 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 775 776 def : InstRW<[WriteVSTShuffle], 777 (instregex "ST1Twov(8b|4h|2s|1d)$")>; 778 def : InstRW<[WriteAdr, WriteVSTShuffle], 779 (instregex "ST1Twov(8b|4h|2s|1d)_POST")>; 780 def : InstRW<[WriteVST, WriteVST], 781 (instregex "ST1Twov(16b|8h|4s|2d)$")>; 782 def : InstRW<[WriteAdr, WriteVST, WriteVST], 783 (instregex "ST1Twov(16b|8h|4s|2d)_POST")>; 784 785 def : InstRW<[WriteVSTShuffle, WriteVST], 786 (instregex "ST1Threev(8b|4h|2s|1d)$")>; 787 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST], 788 (instregex "ST1Threev(8b|4h|2s|1d)_POST")>; 789 def : InstRW<[WriteVST, WriteVST, WriteVST], 790 (instregex "ST1Threev(16b|8h|4s|2d)$")>; 791 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST], 792 (instregex "ST1Threev(16b|8h|4s|2d)_POST")>; 793 794 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 795 (instregex "ST1Fourv(8b|4h|2s|1d)$")>; 796 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 797 (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>; 798 def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST], 799 (instregex "ST1Fourv(16b|8h|4s|2d)$")>; 800 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST], 801 (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>; 802 803 def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>; 804 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>; 805 806 def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>; 807 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>; 808 809 def : InstRW<[WriteVSTShuffle], 810 (instregex "ST2Twov(8b|4h|2s)$")>; 811 def : InstRW<[WriteAdr, WriteVSTShuffle], 812 (instregex "ST2Twov(8b|4h|2s)_POST")>; 813 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 814 (instregex "ST2Twov(16b|8h|4s|2d)$")>; 815 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 816 (instregex "ST2Twov(16b|8h|4s|2d)_POST")>; 817 818 def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>; 819 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>; 820 def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>; 821 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>; 822 823 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 824 (instregex "ST3Threev(8b|4h|2s)$")>; 825 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 826 (instregex "ST3Threev(8b|4h|2s)_POST")>; 827 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], 828 (instregex "ST3Threev(16b|8h|4s|2d)$")>; 829 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], 830 (instregex "ST3Threev(16b|8h|4s|2d)_POST")>; 831 832 def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>; 833 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>; 834 835 def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>; 836 def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>; 837 838 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle], 839 (instregex "ST4Fourv(8b|4h|2s|1d)$")>; 840 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle], 841 (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>; 842 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle, 843 WriteVSTPairShuffle, WriteVSTPairShuffle], 844 (instregex "ST4Fourv(16b|8h|4s|2d)$")>; 845 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle, 846 WriteVSTPairShuffle, WriteVSTPairShuffle], 847 (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>; 848 849 def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>; 850 def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>; 851 852 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>; 853 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>; 854 855 // Atomic operations are not supported. 856 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 857 858 //--- 859 // Unused SchedRead types 860 //--- 861 862 def : ReadAdvance<ReadI, 0>; 863 def : ReadAdvance<ReadISReg, 0>; 864 def : ReadAdvance<ReadIEReg, 0>; 865 def : ReadAdvance<ReadIM, 0>; 866 def : ReadAdvance<ReadIMA, 0>; 867 def : ReadAdvance<ReadID, 0>; 868 869 } // SchedModel = CycloneModel 870