Home | History | Annotate | Download | only in Mips
      1 //===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes Mips16 instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 //
     14 //
     15 // Mips Address
     16 //
     17 def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
     18 def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
     19 
     20 //
     21 // Address operand
     22 def mem16 : Operand<i32> {
     23   let PrintMethod = "printMemOperand";
     24   let MIOperandInfo = (ops CPU16Regs, simm16);
     25   let EncoderMethod = "getMemEncoding";
     26 }
     27 
     28 def mem16sp : Operand<i32> {
     29   let PrintMethod = "printMemOperand";
     30   // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
     31   // keeping the sp-relative load and the other varieties separate at the
     32   // moment. This lie fixes the problem sufficiently well to fix the errors
     33   // emitted by -verify-machineinstrs and the output ends up correct as long
     34   // as we use an external assembler (which is already a requirement for MIPS16
     35   // for several other reasons).
     36   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
     37   let EncoderMethod = "getMemEncoding";
     38 }
     39 
     40 def mem16_ea : Operand<i32> {
     41   let PrintMethod = "printMemOperandEA";
     42   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
     43   let EncoderMethod = "getMemEncoding";
     44 }
     45 
     46 def pcrel16 : Operand<i32>;
     47 
     48 //
     49 // I-type instruction format
     50 //
     51 // this is only used by bimm. the actual assembly value is a 12 bit signed
     52 // number
     53 //
     54 class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
     55   FI16<op, (outs), (ins brtarget:$imm16),
     56             !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
     57 
     58 //
     59 //
     60 // I8 instruction format
     61 //
     62 
     63 class FI816_ins_base<bits<3> _func, string asmstr,
     64                      string asmstr2, InstrItinClass itin>:
     65   FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
     66         [], itin>;
     67 
     68 class FI816_ins<bits<3> _func, string asmstr,
     69                 InstrItinClass itin>:
     70   FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
     71  
     72 class FI816_SP_ins<bits<3> _func, string asmstr,
     73                    InstrItinClass itin>:
     74   FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
     75 
     76 //
     77 // RI instruction format
     78 //
     79 
     80 
     81 class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
     82                      InstrItinClass itin>:
     83   FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
     84         !strconcat(asmstr, asmstr2), [], itin>;
     85 
     86 class FRI16_ins<bits<5> op, string asmstr,
     87                 InstrItinClass itin>:
     88   FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
     89 
     90 class FRI16_TCP_ins<bits<5> _op, string asmstr,
     91                     InstrItinClass itin>:
     92   FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
     93             !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
     94             
     95 class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
     96                      InstrItinClass itin>:
     97   FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
     98         !strconcat(asmstr, asmstr2), [], itin>;
     99 
    100 class FRI16R_ins<bits<5> op, string asmstr,
    101                 InstrItinClass itin>:
    102   FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
    103 
    104 class F2RI16_ins<bits<5> _op, string asmstr,
    105                      InstrItinClass itin>:
    106   FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
    107         !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
    108   let Constraints = "$rx_ = $rx";
    109 }
    110 
    111 class FRI16_B_ins<bits<5> _op, string asmstr,
    112                   InstrItinClass itin>:
    113   FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
    114         !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
    115 //
    116 // Compare a register and immediate and place result in CC
    117 // Implicit use of T8
    118 //
    119 // EXT-CCRR Instruction format
    120 //
    121 class FEXT_CCRXI16_ins<string asmstr>:
    122   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
    123                !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
    124   let isCodeGenOnly=1;
    125   let usesCustomInserter = 1;
    126 }
    127 
    128 // JAL and JALX instruction format
    129 //
    130 class FJAL16_ins<bits<1> _X, string asmstr,
    131                  InstrItinClass itin>:
    132   FJAL16<_X, (outs), (ins uimm26:$imm),
    133          !strconcat(asmstr, "\t$imm\n\tnop"),[],
    134          itin>  {
    135   let isCodeGenOnly=1;
    136   let Size=6;
    137 }
    138 
    139 class FJALB16_ins<bits<1> _X, string asmstr,
    140                  InstrItinClass itin>:
    141   FJAL16<_X, (outs), (ins uimm26:$imm),
    142          !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
    143          itin>  {
    144   let isCodeGenOnly=1;
    145   let Size=6;
    146 }
    147 
    148 //
    149 // EXT-I instruction format
    150 //
    151 class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
    152   FEXT_I16<eop, (outs), (ins brtarget:$imm16),
    153            !strconcat(asmstr, "\t$imm16"),[], itin>;
    154 
    155 //
    156 // EXT-I8 instruction format
    157 //
    158 
    159 class FEXT_I816_ins_base<bits<3> _func, string asmstr,
    160                          string asmstr2, InstrItinClass itin>:
    161   FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
    162             [], itin>;
    163 
    164 class FEXT_I816_ins<bits<3> _func, string asmstr,
    165                     InstrItinClass itin>:
    166   FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
    167 
    168 class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
    169                        InstrItinClass itin>:
    170       FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
    171 
    172 //
    173 // Assembler formats in alphabetical order.
    174 // Natural and pseudos are mixed together.
    175 //
    176 // Compare two registers and place result in CC
    177 // Implicit use of T8
    178 //
    179 // CC-RR Instruction format
    180 //
    181 class FCCRR16_ins<string asmstr> :
    182   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    183                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
    184   let isCodeGenOnly=1;
    185   let usesCustomInserter = 1;
    186 }
    187 
    188 //
    189 // EXT-RI instruction format
    190 //
    191 
    192 class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
    193                          InstrItinClass itin>:
    194   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
    195                   !strconcat(asmstr, asmstr2), [], itin>;
    196 
    197 class FEXT_RI16_ins<bits<5> _op, string asmstr,
    198                     InstrItinClass itin>:
    199   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
    200 
    201 class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
    202                          InstrItinClass itin>:
    203   FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
    204                   !strconcat(asmstr, asmstr2), [], itin>;
    205 
    206 class FEXT_RI16R_ins<bits<5> _op, string asmstr,
    207                     InstrItinClass itin>:
    208   FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
    209 
    210 class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
    211   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
    212 
    213 class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
    214                       InstrItinClass itin>:
    215   FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
    216             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
    217 
    218 class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
    219                         InstrItinClass itin>:
    220   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
    221             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
    222 
    223 class FEXT_2RI16_ins<bits<5> _op, string asmstr,
    224                      InstrItinClass itin>:
    225   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
    226             !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
    227   let Constraints = "$rx_ = $rx";
    228 }
    229 
    230 //
    231 // EXT-RRI instruction format
    232 //
    233 
    234 class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
    235                          InstrItinClass itin>:
    236   FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
    237              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    238 
    239 class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
    240                           InstrItinClass itin>:
    241   FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
    242              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    243 
    244 //
    245 //
    246 // EXT-RRI-A instruction format
    247 //
    248 
    249 class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
    250                            InstrItinClass itin>:
    251   FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
    252                !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    253 
    254 //
    255 // EXT-SHIFT instruction format
    256 //
    257 class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
    258   FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
    259                !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
    260 
    261 //
    262 // EXT-T8I8
    263 //
    264 class FEXT_T8I816_ins<string asmstr, string asmstr2>:
    265   MipsPseudo16<(outs),
    266                (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
    267                !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
    268                !strconcat(asmstr, "\t$imm"))),[]> {
    269   let isCodeGenOnly=1;
    270   let usesCustomInserter = 1;
    271 }
    272 
    273 //
    274 // EXT-T8I8I
    275 //
    276 class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
    277   MipsPseudo16<(outs),
    278                (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
    279                !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
    280                !strconcat(asmstr, "\t$targ"))), []> {
    281   let isCodeGenOnly=1;
    282   let usesCustomInserter = 1;
    283 }
    284 //
    285 
    286 
    287 //
    288 // I8_MOVR32 instruction format (used only by the MOVR32 instructio
    289 //
    290 class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
    291        FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
    292        !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
    293 
    294 //
    295 // I8_MOV32R instruction format (used only by MOV32R instruction)
    296 //
    297 
    298 class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
    299   FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
    300                !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
    301 
    302 //
    303 // This are pseudo formats for multiply
    304 // This first one can be changed to non-pseudo now.
    305 //
    306 // MULT
    307 //
    308 class FMULT16_ins<string asmstr, InstrItinClass itin> :
    309   MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    310                !strconcat(asmstr, "\t$rx, $ry"), []>;
    311 
    312 //
    313 // MULT-LO
    314 //
    315 class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
    316   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    317                !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
    318   let isCodeGenOnly=1;
    319 }
    320 
    321 //
    322 // RR-type instruction format
    323 //
    324 
    325 class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    326   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
    327         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
    328 }
    329 
    330 class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
    331   FRRBreak16<(outs), (ins), asmstr, [], itin> {
    332   let Code=0;
    333 }
    334 
    335 class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    336   FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
    337         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
    338 }
    339 
    340 class FRRTR16_ins<string asmstr> :
    341   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    342                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
    343 
    344 //
    345 // maybe refactor but need a $zero as a dummy first parameter
    346 //
    347 class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    348   FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    349         !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
    350 
    351 class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    352   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
    353         !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
    354 
    355 
    356 class FRR16_M_ins<bits<5> f, string asmstr,
    357                   InstrItinClass itin> :
    358   FRR16<f, (outs CPU16Regs:$rx), (ins),
    359         !strconcat(asmstr, "\t$rx"), [], itin>;
    360 
    361 class FRxRxRy16_ins<bits<5> f, string asmstr,
    362                     InstrItinClass itin> :
    363   FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    364             !strconcat(asmstr, "\t$rz, $ry"),
    365             [], itin> {
    366   let Constraints = "$rx = $rz";
    367 }
    368 
    369 let rx=0 in
    370 class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
    371                               string asmstr, InstrItinClass itin>:
    372   FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
    373               [], itin> ;
    374 
    375 
    376 class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
    377                       string asmstr, InstrItinClass itin>:
    378   FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
    379               !strconcat(asmstr, "\t $rx"), [], itin> ;
    380 
    381 class FRR_SF16_ins
    382   <bits<5> _funct, bits<3> _subfunc,
    383     string asmstr, InstrItinClass itin>:
    384   FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
    385            !strconcat(asmstr, "\t $rx"),
    386            [], itin> {
    387   let Constraints = "$rx_ = $rx";
    388   }
    389 //
    390 // RRR-type instruction format
    391 //
    392 
    393 class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
    394   FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    395          !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
    396 
    397 //
    398 // These Sel patterns support the generation of conditional move
    399 // pseudo instructions.
    400 //
    401 // The nomenclature uses the components making up the pseudo and may
    402 // be a bit counter intuitive when compared with the end result we seek.
    403 // For example using a bqez in the example directly below results in the
    404 // conditional move being done if the tested register is not zero.
    405 // I considered in easier to check by keeping the pseudo consistent with
    406 // it's components but it could have been done differently.
    407 //
    408 // The simplest case is when can test and operand directly and do the
    409 // conditional move based on a simple mips16 conditional
    410 //  branch instruction.
    411 // for example:
    412 // if $op == beqz or bnez:
    413 //
    414 // $op1 $rt, .+4
    415 // move $rd, $rs
    416 //
    417 // if $op == beqz, then if $rt != 0, then the conditional assignment
    418 // $rd = $rs is done.
    419 
    420 // if $op == bnez, then if $rt == 0, then the conditional assignment
    421 // $rd = $rs is done.
    422 //
    423 // So this pseudo class only has one operand, i.e. op
    424 //
    425 class Sel<string op>:
    426   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
    427                CPU16Regs:$rt),
    428                !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
    429   //let isCodeGenOnly=1;
    430   let Constraints = "$rd = $rd_";
    431   let usesCustomInserter = 1;
    432 }
    433 
    434 //
    435 // The next two instruction classes allow for an operand which tests
    436 // two operands and returns a value in register T8 and
    437 //then does a conditional branch based on the value of T8
    438 //
    439 
    440 // op2 can be cmpi or slti/sltiu
    441 // op1 can bteqz or btnez
    442 // the operands for op2 are a register and a signed constant
    443 //
    444 // $op2 $t, $imm  ;test register t and branch conditionally
    445 // $op1 .+4       ;op1 is a conditional branch
    446 // move $rd, $rs
    447 //
    448 //
    449 class SeliT<string op1, string op2>:
    450   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
    451                                        CPU16Regs:$rl, simm16:$imm),
    452                !strconcat(op2,
    453                !strconcat("\t$rl, $imm\n\t",
    454                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
    455   let isCodeGenOnly=1;
    456   let Constraints = "$rd = $rd_";
    457   let usesCustomInserter = 1;
    458 }
    459 
    460 //
    461 // op2 can be cmp or slt/sltu
    462 // op1 can be bteqz or btnez
    463 // the operands for op2 are two registers
    464 // op1 is a conditional branch
    465 //
    466 //
    467 // $op2 $rl, $rr  ;test registers rl,rr
    468 // $op1 .+4       ;op2 is a conditional branch
    469 // move $rd, $rs
    470 //
    471 //
    472 class SelT<string op1, string op2>:
    473   MipsPseudo16<(outs CPU16Regs:$rd_),
    474                (ins CPU16Regs:$rd, CPU16Regs:$rs,
    475                 CPU16Regs:$rl, CPU16Regs:$rr),
    476                !strconcat(op2,
    477                !strconcat("\t$rl, $rr\n\t",
    478                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
    479   let isCodeGenOnly=1;
    480   let Constraints = "$rd = $rd_";
    481   let usesCustomInserter = 1;
    482 }
    483 
    484 //
    485 // 32 bit constant
    486 //
    487 def Constant32:
    488   MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
    489 
    490 def LwConstant32:
    491   MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
    492     "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
    493 
    494 
    495 //
    496 // Some general instruction class info
    497 //
    498 //
    499 
    500 class ArithLogic16Defs<bit isCom=0> {
    501   bits<5> shamt = 0;
    502   bit isCommutable = isCom;
    503   bit isReMaterializable = 1;
    504   bit hasSideEffects = 0;
    505 }
    506 
    507 class branch16 {
    508   bit isBranch = 1;
    509   bit isTerminator = 1;
    510   bit isBarrier = 1;
    511 }
    512 
    513 class cbranch16 {
    514   bit isBranch = 1;
    515   bit isTerminator = 1;
    516 }
    517 
    518 class MayLoad {
    519   bit mayLoad = 1;
    520 }
    521 
    522 class MayStore {
    523   bit mayStore = 1;
    524 }
    525 //
    526 
    527 
    528 // Format: ADDIU rx, immediate MIPS16e
    529 // Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
    530 // To add a constant to a 32-bit integer.
    531 //
    532 def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
    533 
    534 def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
    535   ArithLogic16Defs<0> {
    536   let AddedComplexity = 5;
    537 }
    538 def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
    539   ArithLogic16Defs<0> {
    540   let isCodeGenOnly = 1;
    541 }
    542 
    543 def AddiuRxRyOffMemX16:
    544   FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
    545 
    546 //
    547 
    548 // Format: ADDIU rx, pc, immediate MIPS16e
    549 // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
    550 // To add a constant to the program counter.
    551 //
    552 def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
    553 
    554 //
    555 // Format: ADDIU sp, immediate MIPS16e
    556 // Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
    557 // To add a constant to the stack pointer.
    558 //
    559 def AddiuSpImm16
    560   : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
    561   let Defs = [SP];
    562   let Uses = [SP];
    563   let AddedComplexity = 5;
    564 }
    565 
    566 def AddiuSpImmX16
    567   : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
    568   let Defs = [SP];
    569   let Uses = [SP];
    570 }
    571 
    572 //
    573 // Format: ADDU rz, rx, ry MIPS16e
    574 // Purpose: Add Unsigned Word (3-Operand)
    575 // To add 32-bit integers.
    576 //
    577 
    578 def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
    579 
    580 //
    581 // Format: AND rx, ry MIPS16e
    582 // Purpose: AND
    583 // To do a bitwise logical AND.
    584 
    585 def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
    586 
    587 
    588 //
    589 // Format: BEQZ rx, offset MIPS16e
    590 // Purpose: Branch on Equal to Zero
    591 // To test a GPR then do a PC-relative conditional branch.
    592 //
    593 def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
    594 
    595 
    596 //
    597 // Format: BEQZ rx, offset MIPS16e
    598 // Purpose: Branch on Equal to Zero (Extended)
    599 // To test a GPR then do a PC-relative conditional branch.
    600 //
    601 def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
    602 
    603 //
    604 // Format: B offset MIPS16e
    605 // Purpose: Unconditional Branch (Extended)
    606 // To do an unconditional PC-relative branch.
    607 //
    608 
    609 def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
    610 
    611 // Format: B offset MIPS16e
    612 // Purpose: Unconditional Branch
    613 // To do an unconditional PC-relative branch.
    614 //
    615 def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
    616 
    617 //
    618 // Format: BNEZ rx, offset MIPS16e
    619 // Purpose: Branch on Not Equal to Zero
    620 // To test a GPR then do a PC-relative conditional branch.
    621 //
    622 def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
    623 
    624 //
    625 // Format: BNEZ rx, offset MIPS16e
    626 // Purpose: Branch on Not Equal to Zero (Extended)
    627 // To test a GPR then do a PC-relative conditional branch.
    628 //
    629 def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
    630 
    631 
    632 //
    633 //Format: BREAK immediate
    634 // Purpose: Breakpoint
    635 // To cause a Breakpoint exception.
    636 
    637 def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
    638 //
    639 // Format: BTEQZ offset MIPS16e
    640 // Purpose: Branch on T Equal to Zero (Extended)
    641 // To test special register T then do a PC-relative conditional branch.
    642 //
    643 def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
    644   let Uses = [T8];
    645 }
    646 
    647 def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
    648   let Uses = [T8];
    649 }
    650 
    651 def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
    652 
    653 def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
    654   cbranch16;
    655 
    656 def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
    657 
    658 def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
    659 
    660 def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
    661 
    662 def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
    663   cbranch16;
    664 
    665 //
    666 // Format: BTNEZ offset MIPS16e
    667 // Purpose: Branch on T Not Equal to Zero (Extended)
    668 // To test special register T then do a PC-relative conditional branch.
    669 //
    670 
    671 def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
    672   let Uses = [T8];
    673 }
    674 
    675 def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
    676   let Uses = [T8];
    677 }
    678 
    679 def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
    680 
    681 def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
    682 
    683 def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
    684 
    685 def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
    686 
    687 def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
    688 
    689 def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
    690   cbranch16;
    691 
    692 //
    693 // Format: CMP rx, ry MIPS16e
    694 // Purpose: Compare
    695 // To compare the contents of two GPRs.
    696 //
    697 def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
    698   let Defs = [T8];
    699 }
    700 
    701 //
    702 // Format: CMPI rx, immediate MIPS16e
    703 // Purpose: Compare Immediate
    704 // To compare a constant with the contents of a GPR.
    705 //
    706 def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
    707   let Defs = [T8];
    708 }
    709 
    710 //
    711 // Format: CMPI rx, immediate MIPS16e
    712 // Purpose: Compare Immediate (Extended)
    713 // To compare a constant with the contents of a GPR.
    714 //
    715 def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
    716   let Defs = [T8];
    717 }
    718 
    719 
    720 //
    721 // Format: DIV rx, ry MIPS16e
    722 // Purpose: Divide Word
    723 // To divide 32-bit signed integers.
    724 //
    725 def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
    726   let Defs = [HI0, LO0];
    727 }
    728 
    729 //
    730 // Format: DIVU rx, ry MIPS16e
    731 // Purpose: Divide Unsigned Word
    732 // To divide 32-bit unsigned integers.
    733 //
    734 def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
    735   let Defs = [HI0, LO0];
    736 }
    737 //
    738 // Format: JAL target MIPS16e
    739 // Purpose: Jump and Link
    740 // To execute a procedure call within the current 256 MB-aligned
    741 // region and preserve the current ISA.
    742 //
    743 
    744 def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
    745   let hasDelaySlot = 0;  // not true, but we add the nop for now
    746   let isCall=1;
    747   let Defs = [RA];
    748 }
    749 
    750 def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
    751   let hasDelaySlot = 0;  // not true, but we add the nop for now
    752   let isBranch=1;
    753   let Defs = [RA];
    754 }
    755 
    756 //
    757 // Format: JR ra MIPS16e
    758 // Purpose: Jump Register Through Register ra
    759 // To execute a branch to the instruction address in the return
    760 // address register.
    761 //
    762 
    763 def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
    764   let isBranch = 1;
    765   let isIndirectBranch = 1;
    766   let hasDelaySlot = 1;
    767   let isTerminator=1;
    768   let isBarrier=1;
    769 }
    770 
    771 def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
    772   let isBranch = 1;
    773   let isIndirectBranch = 1;
    774   let isTerminator=1;
    775   let isBarrier=1;
    776 }
    777 
    778 def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
    779   let isBranch = 1;
    780   let isIndirectBranch = 1;
    781   let isTerminator=1;
    782   let isBarrier=1;
    783 }
    784 //
    785 // Format: LB ry, offset(rx) MIPS16e
    786 // Purpose: Load Byte (Extended)
    787 // To load a byte from memory as a signed value.
    788 //
    789 def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
    790   let isCodeGenOnly = 1;
    791 }
    792 
    793 //
    794 // Format: LBU ry, offset(rx) MIPS16e
    795 // Purpose: Load Byte Unsigned (Extended)
    796 // To load a byte from memory as a unsigned value.
    797 //
    798 def LbuRxRyOffMemX16:
    799   FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
    800   let isCodeGenOnly = 1;
    801 }
    802 
    803 //
    804 // Format: LH ry, offset(rx) MIPS16e
    805 // Purpose: Load Halfword signed (Extended)
    806 // To load a halfword from memory as a signed value.
    807 //
    808 def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
    809   let isCodeGenOnly = 1;
    810 }
    811 
    812 //
    813 // Format: LHU ry, offset(rx) MIPS16e
    814 // Purpose: Load Halfword unsigned (Extended)
    815 // To load a halfword from memory as an unsigned value.
    816 //
    817 def LhuRxRyOffMemX16:
    818   FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
    819   let isCodeGenOnly = 1;
    820 }
    821 
    822 //
    823 // Format: LI rx, immediate MIPS16e
    824 // Purpose: Load Immediate
    825 // To load a constant into a GPR.
    826 //
    827 def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
    828 
    829 //
    830 // Format: LI rx, immediate MIPS16e
    831 // Purpose: Load Immediate (Extended)
    832 // To load a constant into a GPR.
    833 //
    834 def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
    835 
    836 def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
    837   let isCodeGenOnly = 1;
    838 }
    839 
    840 //
    841 // Format: LW ry, offset(rx) MIPS16e
    842 // Purpose: Load Word (Extended)
    843 // To load a word from memory as a signed value.
    844 //
    845 def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
    846   let isCodeGenOnly = 1;
    847 }
    848 
    849 // Format: LW rx, offset(sp) MIPS16e
    850 // Purpose: Load Word (SP-Relative, Extended)
    851 // To load an SP-relative word from memory as a signed value.
    852 //
    853 def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
    854 
    855 def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
    856 
    857 def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
    858 //
    859 // Format: MOVE r32, rz MIPS16e
    860 // Purpose: Move
    861 // To move the contents of a GPR to a GPR.
    862 //
    863 def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
    864 
    865 //
    866 // Format: MOVE ry, r32 MIPS16e
    867 //Purpose: Move
    868 // To move the contents of a GPR to a GPR.
    869 //
    870 def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu>;
    871 
    872 //
    873 // Format: MFHI rx MIPS16e
    874 // Purpose: Move From HI Register
    875 // To copy the special purpose HI register to a GPR.
    876 //
    877 def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
    878   let Uses = [HI0];
    879   let hasSideEffects = 0;
    880 }
    881 
    882 //
    883 // Format: MFLO rx MIPS16e
    884 // Purpose: Move From LO Register
    885 // To copy the special purpose LO register to a GPR.
    886 //
    887 def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
    888   let Uses = [LO0];
    889   let hasSideEffects = 0;
    890 }
    891 
    892 //
    893 // Pseudo Instruction for mult
    894 //
    895 def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
    896   let isCommutable = 1;
    897   let hasSideEffects = 0;
    898   let Defs = [HI0, LO0];
    899 }
    900 
    901 def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
    902   let isCommutable = 1;
    903   let hasSideEffects = 0;
    904   let Defs = [HI0, LO0];
    905 }
    906 
    907 //
    908 // Format: MULT rx, ry MIPS16e
    909 // Purpose: Multiply Word
    910 // To multiply 32-bit signed integers.
    911 //
    912 def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
    913   let isCommutable = 1;
    914   let hasSideEffects = 0;
    915   let Defs = [HI0, LO0];
    916 }
    917 
    918 //
    919 // Format: MULTU rx, ry MIPS16e
    920 // Purpose: Multiply Unsigned Word
    921 // To multiply 32-bit unsigned integers.
    922 //
    923 def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
    924   let isCommutable = 1;
    925   let hasSideEffects = 0;
    926   let Defs = [HI0, LO0];
    927 }
    928 
    929 //
    930 // Format: NEG rx, ry MIPS16e
    931 // Purpose: Negate
    932 // To negate an integer value.
    933 //
    934 def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
    935 
    936 //
    937 // Format: NOT rx, ry MIPS16e
    938 // Purpose: Not
    939 // To complement an integer value
    940 //
    941 def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
    942 
    943 //
    944 // Format: OR rx, ry MIPS16e
    945 // Purpose: Or
    946 // To do a bitwise logical OR.
    947 //
    948 def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
    949 
    950 //
    951 // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
    952 // (All args are optional) MIPS16e
    953 // Purpose: Restore Registers and Deallocate Stack Frame
    954 // To deallocate a stack frame before exit from a subroutine,
    955 // restoring return address and static registers, and adjusting
    956 // stack
    957 //
    958 
    959 def Restore16:
    960   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    961              "", [], II_RESTORE >, MayLoad {
    962   let isCodeGenOnly = 1;
    963   let Defs = [SP];
    964   let Uses = [SP];
    965 }
    966 
    967 
    968 def RestoreX16:
    969   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    970              "", [], II_RESTORE >, MayLoad {
    971   let isCodeGenOnly = 1;
    972   let Defs = [SP];
    973   let Uses = [SP];
    974 }
    975 
    976 //
    977 // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
    978 // MIPS16e
    979 // Purpose: Save Registers and Set Up Stack Frame
    980 // To set up a stack frame on entry to a subroutine,
    981 // saving return address and static registers, and adjusting stack
    982 //
    983 def Save16: 
    984   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    985              "", [], II_SAVE >, MayStore {
    986   let isCodeGenOnly = 1;
    987   let Uses = [SP];
    988   let Defs = [SP];
    989 }
    990 
    991 def SaveX16:
    992   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    993              "", [], II_SAVE >, MayStore {
    994   let isCodeGenOnly = 1;
    995   let Uses = [SP];
    996   let Defs = [SP];
    997 }
    998 //
    999 // Format: SB ry, offset(rx) MIPS16e
   1000 // Purpose: Store Byte (Extended)
   1001 // To store a byte to memory.
   1002 //
   1003 def SbRxRyOffMemX16:
   1004   FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
   1005 
   1006 //
   1007 // Format: SEB rx MIPS16e
   1008 // Purpose: Sign-Extend Byte
   1009 // Sign-extend least significant byte in register rx.
   1010 //
   1011 def SebRx16
   1012   : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
   1013 
   1014 //
   1015 // Format: SEH rx MIPS16e
   1016 // Purpose: Sign-Extend Halfword
   1017 // Sign-extend least significant word in register rx.
   1018 //
   1019 def SehRx16
   1020   : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
   1021 
   1022 //
   1023 // The Sel(T) instructions are pseudos
   1024 // T means that they use T8 implicitly.
   1025 //
   1026 //
   1027 // Format: SelBeqZ rd, rs, rt
   1028 // Purpose: if rt==0, do nothing
   1029 //          else rs = rt
   1030 //
   1031 def SelBeqZ: Sel<"beqz">;
   1032 
   1033 //
   1034 // Format:  SelTBteqZCmp rd, rs, rl, rr
   1035 // Purpose: b = Cmp rl, rr.
   1036 //          If b==0 then do nothing.
   1037 //          if b!=0 then rd = rs
   1038 //
   1039 def SelTBteqZCmp: SelT<"bteqz", "cmp">;
   1040 
   1041 //
   1042 // Format:  SelTBteqZCmpi rd, rs, rl, rr
   1043 // Purpose: b = Cmpi rl, imm.
   1044 //          If b==0 then do nothing.
   1045 //          if b!=0 then rd = rs
   1046 //
   1047 def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
   1048 
   1049 //
   1050 // Format:  SelTBteqZSlt rd, rs, rl, rr
   1051 // Purpose: b = Slt rl, rr.
   1052 //          If b==0 then do nothing.
   1053 //          if b!=0 then rd = rs
   1054 //
   1055 def SelTBteqZSlt: SelT<"bteqz", "slt">;
   1056 
   1057 //
   1058 // Format:  SelTBteqZSlti rd, rs, rl, rr
   1059 // Purpose: b = Slti rl, imm.
   1060 //          If b==0 then do nothing.
   1061 //          if b!=0 then rd = rs
   1062 //
   1063 def SelTBteqZSlti: SeliT<"bteqz", "slti">;
   1064 
   1065 //
   1066 // Format:  SelTBteqZSltu rd, rs, rl, rr
   1067 // Purpose: b = Sltu rl, rr.
   1068 //          If b==0 then do nothing.
   1069 //          if b!=0 then rd = rs
   1070 //
   1071 def SelTBteqZSltu: SelT<"bteqz", "sltu">;
   1072 
   1073 //
   1074 // Format:  SelTBteqZSltiu rd, rs, rl, rr
   1075 // Purpose: b = Sltiu rl, imm.
   1076 //          If b==0 then do nothing.
   1077 //          if b!=0 then rd = rs
   1078 //
   1079 def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
   1080 
   1081 //
   1082 // Format: SelBnez rd, rs, rt
   1083 // Purpose: if rt!=0, do nothing
   1084 //          else rs = rt
   1085 //
   1086 def SelBneZ: Sel<"bnez">;
   1087 
   1088 //
   1089 // Format:  SelTBtneZCmp rd, rs, rl, rr
   1090 // Purpose: b = Cmp rl, rr.
   1091 //          If b!=0 then do nothing.
   1092 //          if b0=0 then rd = rs
   1093 //
   1094 def SelTBtneZCmp: SelT<"btnez", "cmp">;
   1095 
   1096 //
   1097 // Format:  SelTBtnezCmpi rd, rs, rl, rr
   1098 // Purpose: b = Cmpi rl, imm.
   1099 //          If b!=0 then do nothing.
   1100 //          if b==0 then rd = rs
   1101 //
   1102 def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
   1103 
   1104 //
   1105 // Format:  SelTBtneZSlt rd, rs, rl, rr
   1106 // Purpose: b = Slt rl, rr.
   1107 //          If b!=0 then do nothing.
   1108 //          if b==0 then rd = rs
   1109 //
   1110 def SelTBtneZSlt: SelT<"btnez", "slt">;
   1111 
   1112 //
   1113 // Format:  SelTBtneZSlti rd, rs, rl, rr
   1114 // Purpose: b = Slti rl, imm.
   1115 //          If b!=0 then do nothing.
   1116 //          if b==0 then rd = rs
   1117 //
   1118 def SelTBtneZSlti: SeliT<"btnez", "slti">;
   1119 
   1120 //
   1121 // Format:  SelTBtneZSltu rd, rs, rl, rr
   1122 // Purpose: b = Sltu rl, rr.
   1123 //          If b!=0 then do nothing.
   1124 //          if b==0 then rd = rs
   1125 //
   1126 def SelTBtneZSltu: SelT<"btnez", "sltu">;
   1127 
   1128 //
   1129 // Format:  SelTBtneZSltiu rd, rs, rl, rr
   1130 // Purpose: b = Slti rl, imm.
   1131 //          If b!=0 then do nothing.
   1132 //          if b==0 then rd = rs
   1133 //
   1134 def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
   1135 //
   1136 //
   1137 // Format: SH ry, offset(rx) MIPS16e
   1138 // Purpose: Store Halfword (Extended)
   1139 // To store a halfword to memory.
   1140 //
   1141 def ShRxRyOffMemX16:
   1142   FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
   1143 
   1144 //
   1145 // Format: SLL rx, ry, sa MIPS16e
   1146 // Purpose: Shift Word Left Logical (Extended)
   1147 // To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
   1148 //
   1149 def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
   1150 
   1151 //
   1152 // Format: SLLV ry, rx MIPS16e
   1153 // Purpose: Shift Word Left Logical Variable
   1154 // To execute a left-shift of a word by a variable number of bits.
   1155 //
   1156 def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
   1157 
   1158 // Format: SLTI rx, immediate MIPS16e
   1159 // Purpose: Set on Less Than Immediate
   1160 // To record the result of a less-than comparison with a constant.
   1161 //
   1162 //
   1163 def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
   1164   let Defs = [T8];
   1165 }
   1166 
   1167 //
   1168 // Format: SLTI rx, immediate MIPS16e
   1169 // Purpose: Set on Less Than Immediate (Extended)
   1170 // To record the result of a less-than comparison with a constant.
   1171 //
   1172 //
   1173 def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
   1174   let Defs = [T8];
   1175 }
   1176 
   1177 def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
   1178 
   1179 // Format: SLTIU rx, immediate MIPS16e
   1180 // Purpose: Set on Less Than Immediate Unsigned
   1181 // To record the result of a less-than comparison with a constant.
   1182 //
   1183 //
   1184 def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
   1185   let Defs = [T8];
   1186 }
   1187 
   1188 //
   1189 // Format: SLTI rx, immediate MIPS16e
   1190 // Purpose: Set on Less Than Immediate Unsigned (Extended)
   1191 // To record the result of a less-than comparison with a constant.
   1192 //
   1193 //
   1194 def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
   1195   let Defs = [T8];
   1196 }
   1197 //
   1198 // Format: SLTIU rx, immediate MIPS16e
   1199 // Purpose: Set on Less Than Immediate Unsigned (Extended)
   1200 // To record the result of a less-than comparison with a constant.
   1201 //
   1202 def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
   1203 
   1204 //
   1205 // Format: SLT rx, ry MIPS16e
   1206 // Purpose: Set on Less Than
   1207 // To record the result of a less-than comparison.
   1208 //
   1209 def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
   1210   let Defs = [T8];
   1211 }
   1212 
   1213 def SltCCRxRy16: FCCRR16_ins<"slt">;
   1214 
   1215 // Format: SLTU rx, ry MIPS16e
   1216 // Purpose: Set on Less Than Unsigned
   1217 // To record the result of an unsigned less-than comparison.
   1218 //
   1219 def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
   1220   let Defs = [T8];
   1221 }
   1222 
   1223 def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
   1224   let isCodeGenOnly=1;
   1225   let Defs = [T8];
   1226 }
   1227 
   1228 
   1229 def SltuCCRxRy16: FCCRR16_ins<"sltu">;
   1230 //
   1231 // Format: SRAV ry, rx MIPS16e
   1232 // Purpose: Shift Word Right Arithmetic Variable
   1233 // To execute an arithmetic right-shift of a word by a variable
   1234 // number of bits.
   1235 //
   1236 def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
   1237 
   1238 
   1239 //
   1240 // Format: SRA rx, ry, sa MIPS16e
   1241 // Purpose: Shift Word Right Arithmetic (Extended)
   1242 // To execute an arithmetic right-shift of a word by a fixed
   1243 // number of bits-1 to 8 bits.
   1244 //
   1245 def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
   1246 
   1247 
   1248 //
   1249 // Format: SRLV ry, rx MIPS16e
   1250 // Purpose: Shift Word Right Logical Variable
   1251 // To execute a logical right-shift of a word by a variable
   1252 // number of bits.
   1253 //
   1254 def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
   1255 
   1256 
   1257 //
   1258 // Format: SRL rx, ry, sa MIPS16e
   1259 // Purpose: Shift Word Right Logical (Extended)
   1260 // To execute a logical right-shift of a word by a fixed
   1261 // number of bits-1 to 31 bits.
   1262 //
   1263 def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
   1264 
   1265 //
   1266 // Format: SUBU rz, rx, ry MIPS16e
   1267 // Purpose: Subtract Unsigned Word
   1268 // To subtract 32-bit integers
   1269 //
   1270 def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
   1271 
   1272 //
   1273 // Format: SW ry, offset(rx) MIPS16e
   1274 // Purpose: Store Word (Extended)
   1275 // To store a word to memory.
   1276 //
   1277 def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
   1278 
   1279 //
   1280 // Format: SW rx, offset(sp) MIPS16e
   1281 // Purpose: Store Word rx (SP-Relative)
   1282 // To store an SP-relative word to memory.
   1283 //
   1284 def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
   1285 
   1286 //
   1287 //
   1288 // Format: XOR rx, ry MIPS16e
   1289 // Purpose: Xor
   1290 // To do a bitwise logical XOR.
   1291 //
   1292 def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
   1293 
   1294 class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
   1295   let Predicates = [InMips16Mode];
   1296 }
   1297 
   1298 // Unary Arith/Logic
   1299 //
   1300 class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
   1301   Mips16Pat<(OpNode CPU16Regs:$r),
   1302             (I CPU16Regs:$r)>;
   1303 
   1304 def: ArithLogicU_pat<not, NotRxRy16>;
   1305 def: ArithLogicU_pat<ineg, NegRxRy16>;
   1306 
   1307 class ArithLogic16_pat<SDNode OpNode, Instruction I> :
   1308   Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
   1309             (I CPU16Regs:$l, CPU16Regs:$r)>;
   1310 
   1311 def: ArithLogic16_pat<add, AdduRxRyRz16>;
   1312 def: ArithLogic16_pat<and, AndRxRxRy16>;
   1313 def: ArithLogic16_pat<mul, MultRxRyRz16>;
   1314 def: ArithLogic16_pat<or, OrRxRxRy16>;
   1315 def: ArithLogic16_pat<sub, SubuRxRyRz16>;
   1316 def: ArithLogic16_pat<xor, XorRxRxRy16>;
   1317 
   1318 // Arithmetic and logical instructions with 2 register operands.
   1319 
   1320 class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
   1321   Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
   1322             (I CPU16Regs:$in, imm_type:$imm)>;
   1323 
   1324 def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
   1325 def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
   1326 def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
   1327 def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
   1328 def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
   1329 
   1330 class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
   1331   Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
   1332             (I CPU16Regs:$r, CPU16Regs:$ra)>;
   1333 
   1334 def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
   1335 def: shift_rotate_reg16_pat<sra, SravRxRy16>;
   1336 def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
   1337 
   1338 class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
   1339   Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
   1340 
   1341 def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
   1342 def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
   1343 def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
   1344 def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
   1345 def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
   1346 
   1347 class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
   1348   Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
   1349 
   1350 def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
   1351 def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
   1352 def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
   1353 
   1354 // Unconditional branch
   1355 class UncondBranch16_pat<SDNode OpNode, Instruction I>:
   1356   Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
   1357     let Predicates = [InMips16Mode];
   1358   }
   1359 
   1360 def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
   1361                 (Jal16 tglobaladdr:$dst)>;
   1362 
   1363 def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
   1364                 (Jal16 texternalsym:$dst)>;
   1365 
   1366 // Indirect branch
   1367 def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
   1368   // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
   1369   // MIPS16's behaviour.
   1370   let AddedComplexity = 1;
   1371 }
   1372 
   1373 // Jump and Link (Call)
   1374 let isCall=1, hasDelaySlot=0 in
   1375 def JumpLinkReg16:
   1376   FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
   1377               "jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
   1378   let Defs = [RA];
   1379 }
   1380 
   1381 // Mips16 pseudos
   1382 let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
   1383   hasExtraSrcRegAllocReq = 1 in
   1384 def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
   1385 
   1386 
   1387 // setcc patterns
   1388 
   1389 class SetCC_R16<PatFrag cond_op, Instruction I>:
   1390   Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
   1391             (I CPU16Regs:$rx, CPU16Regs:$ry)>;
   1392 
   1393 class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
   1394   Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
   1395             (I CPU16Regs:$rx, imm_type:$imm16)>;
   1396 
   1397 
   1398 def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
   1399 
   1400 
   1401 // Large (>16 bit) immediate loads
   1402 def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
   1403 
   1404 // Carry MipsPatterns
   1405 def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
   1406                 (SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
   1407 def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
   1408                 (AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
   1409 def : Mips16Pat<(addc  CPU16Regs:$src, immSExt16:$imm),
   1410                 (AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
   1411 
   1412 //
   1413 // Some branch conditional patterns are not generated by llvm at this time.
   1414 // Some are for seemingly arbitrary reasons not used: i.e. with signed number
   1415 // comparison they are used and for unsigned a different pattern is used.
   1416 // I am pushing upstream from the full mips16 port and it seemed that I needed
   1417 // these earlier and the mips32 port has these but now I cannot create test
   1418 // cases that use these patterns. While I sort this all out I will leave these
   1419 // extra patterns commented out and if I can be sure they are really not used,
   1420 // I will delete the code. I don't want to check the code in uncommented without
   1421 // a valid test case. In some cases, the compiler is generating patterns with
   1422 // setcc instead and earlier I had implemented setcc first so may have masked
   1423 // the problem. The setcc variants are suboptimal for mips16 so I may wantto
   1424 // figure out how to enable the brcond patterns or else possibly new
   1425 // combinations of of brcond and setcc.
   1426 //
   1427 //
   1428 // bcond-seteq
   1429 //
   1430 def: Mips16Pat
   1431   <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1432    (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1433   >;
   1434 
   1435 
   1436 def: Mips16Pat
   1437   <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   1438    (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
   1439   >;
   1440 
   1441 def: Mips16Pat
   1442   <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
   1443    (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
   1444   >;
   1445 
   1446 //
   1447 // bcond-setgt (do we need to have this pair of setlt, setgt??)
   1448 //
   1449 def: Mips16Pat
   1450   <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1451    (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1452   >;
   1453 
   1454 //
   1455 // bcond-setge
   1456 //
   1457 def: Mips16Pat
   1458   <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1459    (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1460   >;
   1461 
   1462 //
   1463 // never called because compiler transforms a >= k to a > (k-1)
   1464 def: Mips16Pat
   1465   <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   1466    (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
   1467   >;
   1468 
   1469 //
   1470 // bcond-setlt
   1471 //
   1472 def: Mips16Pat
   1473   <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1474    (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1475   >;
   1476 
   1477 def: Mips16Pat
   1478   <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   1479    (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
   1480   >;
   1481 
   1482 //
   1483 // bcond-setle
   1484 //
   1485 def: Mips16Pat
   1486   <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1487    (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1488   >;
   1489 
   1490 //
   1491 // bcond-setne
   1492 //
   1493 def: Mips16Pat
   1494   <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1495    (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1496   >;
   1497 
   1498 def: Mips16Pat
   1499   <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   1500    (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
   1501   >;
   1502 
   1503 def: Mips16Pat
   1504   <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
   1505    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
   1506   >;
   1507 
   1508 //
   1509 // This needs to be there but I forget which code will generate it
   1510 //
   1511 def: Mips16Pat
   1512   <(brcond CPU16Regs:$rx, bb:$targ16),
   1513    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
   1514   >;
   1515 
   1516 //
   1517 
   1518 //
   1519 // bcond-setugt
   1520 //
   1521 //def: Mips16Pat
   1522 //  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1523 //   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1524 //  >;
   1525 
   1526 //
   1527 // bcond-setuge
   1528 //
   1529 //def: Mips16Pat
   1530 //  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1531 //   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1532 //  >;
   1533 
   1534 
   1535 //
   1536 // bcond-setult
   1537 //
   1538 //def: Mips16Pat
   1539 //  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1540 //   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1541 //  >;
   1542 
   1543 def: UncondBranch16_pat<br, Bimm16>;
   1544 
   1545 // Small immediates
   1546 def: Mips16Pat<(i32 immSExt16:$in),
   1547                (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
   1548 
   1549 def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
   1550 
   1551 //
   1552 // MipsDivRem
   1553 //
   1554 def: Mips16Pat
   1555   <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
   1556    (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
   1557 
   1558 //
   1559 // MipsDivRemU
   1560 //
   1561 def: Mips16Pat
   1562   <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
   1563    (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
   1564 
   1565 //  signed a,b
   1566 //  x = (a>=b)?x:y
   1567 //
   1568 //  if !(a < b) x = y
   1569 //
   1570 def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
   1571                  CPU16Regs:$x, CPU16Regs:$y),
   1572                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
   1573                  CPU16Regs:$a, CPU16Regs:$b)>;
   1574 
   1575 //  signed a,b
   1576 //  x = (a>b)?x:y
   1577 //
   1578 //  if  (b < a) x = y
   1579 //
   1580 def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
   1581                  CPU16Regs:$x, CPU16Regs:$y),
   1582                 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
   1583                  CPU16Regs:$b, CPU16Regs:$a)>;
   1584 
   1585 // unsigned a,b
   1586 // x = (a>=b)?x:y
   1587 //
   1588 // if !(a < b) x = y;
   1589 //
   1590 def : Mips16Pat<
   1591   (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
   1592    CPU16Regs:$x, CPU16Regs:$y),
   1593   (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
   1594    CPU16Regs:$a, CPU16Regs:$b)>;
   1595 
   1596 //  unsigned a,b
   1597 //  x = (a>b)?x:y
   1598 //
   1599 //  if (b < a) x = y
   1600 //
   1601 def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
   1602                  CPU16Regs:$x, CPU16Regs:$y),
   1603                 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
   1604                  CPU16Regs:$b, CPU16Regs:$a)>;
   1605 
   1606 // signed
   1607 // x = (a >= k)?x:y
   1608 // due to an llvm optimization, i don't think that this will ever
   1609 // be used. This is transformed into x = (a > k-1)?x:y
   1610 //
   1611 //
   1612 
   1613 //def : Mips16Pat<
   1614 //  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
   1615 //   CPU16Regs:$T, CPU16Regs:$F),
   1616 //  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
   1617 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
   1618 
   1619 //def : Mips16Pat<
   1620 //  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
   1621 //   CPU16Regs:$T, CPU16Regs:$F),
   1622 //  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
   1623 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
   1624 
   1625 // signed
   1626 // x = (a < k)?x:y
   1627 //
   1628 // if !(a < k) x = y;
   1629 //
   1630 def : Mips16Pat<
   1631   (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
   1632    CPU16Regs:$x, CPU16Regs:$y),
   1633   (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
   1634    CPU16Regs:$a, immSExt16:$b)>;
   1635 
   1636 
   1637 //
   1638 //
   1639 // signed
   1640 // x = (a <= b)? x : y
   1641 //
   1642 // if  (b < a) x = y
   1643 //
   1644 def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
   1645                  CPU16Regs:$x, CPU16Regs:$y),
   1646                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
   1647                  CPU16Regs:$b, CPU16Regs:$a)>;
   1648 
   1649 //
   1650 // unnsigned
   1651 // x = (a <= b)? x : y
   1652 //
   1653 // if  (b < a) x = y
   1654 //
   1655 def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
   1656                  CPU16Regs:$x, CPU16Regs:$y),
   1657                 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
   1658                  CPU16Regs:$b, CPU16Regs:$a)>;
   1659 
   1660 //
   1661 // signed/unsigned
   1662 // x = (a == b)? x : y
   1663 //
   1664 // if (a != b) x = y
   1665 //
   1666 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
   1667                  CPU16Regs:$x, CPU16Regs:$y),
   1668                 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
   1669                  CPU16Regs:$b, CPU16Regs:$a)>;
   1670 
   1671 //
   1672 // signed/unsigned
   1673 // x = (a == 0)? x : y
   1674 //
   1675 // if (a != 0) x = y
   1676 //
   1677 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
   1678                  CPU16Regs:$x, CPU16Regs:$y),
   1679                 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
   1680                  CPU16Regs:$a)>;
   1681 
   1682 
   1683 //
   1684 // signed/unsigned
   1685 // x = (a == k)? x : y
   1686 //
   1687 // if (a != k) x = y
   1688 //
   1689 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
   1690                  CPU16Regs:$x, CPU16Regs:$y),
   1691                 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
   1692                  CPU16Regs:$a, immZExt16:$k)>;
   1693 
   1694 
   1695 //
   1696 // signed/unsigned
   1697 // x = (a != b)? x : y
   1698 //
   1699 // if (a == b) x = y
   1700 //
   1701 //
   1702 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
   1703                  CPU16Regs:$x, CPU16Regs:$y),
   1704                 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
   1705                  CPU16Regs:$b, CPU16Regs:$a)>;
   1706 
   1707 //
   1708 // signed/unsigned
   1709 // x = (a != 0)? x : y
   1710 //
   1711 // if (a == 0) x = y
   1712 //
   1713 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
   1714                  CPU16Regs:$x, CPU16Regs:$y),
   1715                 (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
   1716                  CPU16Regs:$a)>;
   1717 
   1718 // signed/unsigned
   1719 // x = (a)? x : y
   1720 //
   1721 // if (!a) x = y
   1722 //
   1723 def : Mips16Pat<(select  CPU16Regs:$a,
   1724                  CPU16Regs:$x, CPU16Regs:$y),
   1725       (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
   1726        CPU16Regs:$a)>;
   1727 
   1728 
   1729 //
   1730 // signed/unsigned
   1731 // x = (a != k)? x : y
   1732 //
   1733 // if (a == k) x = y
   1734 //
   1735 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
   1736                  CPU16Regs:$x, CPU16Regs:$y),
   1737                 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
   1738                  CPU16Regs:$a, immZExt16:$k)>;
   1739 
   1740 //
   1741 // When writing C code to test setxx these patterns,
   1742 // some will be transformed into
   1743 // other things. So we test using C code but using -O3 and -O0
   1744 //
   1745 // seteq
   1746 //
   1747 def : Mips16Pat
   1748   <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
   1749    (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
   1750 
   1751 def : Mips16Pat
   1752   <(seteq CPU16Regs:$lhs, 0),
   1753    (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
   1754 
   1755 
   1756 //
   1757 // setge
   1758 //
   1759 
   1760 def: Mips16Pat
   1761   <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
   1762    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   1763    (LiRxImmX16 1))>;
   1764 
   1765 //
   1766 // For constants, llvm transforms this to:
   1767 // x > (k - 1) and then reverses the operands to use setlt. So this pattern
   1768 // is not used now by the compiler. (Presumably checking that k-1 does not
   1769 // overflow). The compiler never uses this at the current time, due to
   1770 // other optimizations.
   1771 //
   1772 //def: Mips16Pat
   1773 //  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
   1774 //   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
   1775 //   (LiRxImmX16 1))>;
   1776 
   1777 // This catches the x >= -32768 case by transforming it to  x > -32769
   1778 //
   1779 def: Mips16Pat
   1780   <(setgt CPU16Regs:$lhs, -32769),
   1781    (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
   1782    (LiRxImmX16 1))>;
   1783 
   1784 //
   1785 // setgt
   1786 //
   1787 //
   1788 
   1789 def: Mips16Pat
   1790   <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
   1791    (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
   1792 
   1793 //
   1794 // setle
   1795 //
   1796 def: Mips16Pat
   1797   <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
   1798    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
   1799 
   1800 //
   1801 // setlt
   1802 //
   1803 def: SetCC_R16<setlt, SltCCRxRy16>;
   1804 
   1805 def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
   1806 
   1807 //
   1808 // setne
   1809 //
   1810 def : Mips16Pat
   1811   <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
   1812    (SltuCCRxRy16 (LiRxImmX16 0),
   1813    (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
   1814 
   1815 
   1816 //
   1817 // setuge
   1818 //
   1819 def: Mips16Pat
   1820   <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
   1821    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   1822    (LiRxImmX16 1))>;
   1823 
   1824 // this pattern will never be used because the compiler will transform
   1825 // x >= k to x > (k - 1) and then use SLT
   1826 //
   1827 //def: Mips16Pat
   1828 //  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
   1829 //   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
   1830 //   (LiRxImmX16 1))>;
   1831 
   1832 //
   1833 // setugt
   1834 //
   1835 def: Mips16Pat
   1836   <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
   1837    (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
   1838 
   1839 //
   1840 // setule
   1841 //
   1842 def: Mips16Pat
   1843   <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
   1844    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
   1845 
   1846 //
   1847 // setult
   1848 //
   1849 def: SetCC_R16<setult, SltuCCRxRy16>;
   1850 
   1851 def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
   1852 
   1853 def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
   1854                (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
   1855 
   1856 // hi/lo relocs
   1857 def : Mips16Pat<(MipsHi tblockaddress:$in),
   1858                 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
   1859 def : Mips16Pat<(MipsHi tglobaladdr:$in),
   1860                 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
   1861 def : Mips16Pat<(MipsHi tjumptable:$in),
   1862                 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
   1863 def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
   1864                 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
   1865 
   1866 def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
   1867 
   1868 // wrapper_pic
   1869 class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
   1870   Mips16Pat<(MipsWrapper RC:$gp, node:$in),
   1871             (ADDiuOp RC:$gp, node:$in)>;
   1872 
   1873 
   1874 def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
   1875 def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
   1876 
   1877 def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
   1878                 (LbuRxRyOffMemX16  addr16:$src)>;
   1879 def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
   1880                 (LhuRxRyOffMemX16  addr16:$src)>;
   1881 
   1882 def: Mips16Pat<(trap), (Break16)>;
   1883 
   1884 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
   1885                 (SebRx16 CPU16Regs:$val)>;
   1886 
   1887 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
   1888                 (SehRx16 CPU16Regs:$val)>;
   1889 
   1890 def GotPrologue16:   
   1891   MipsPseudo16<
   1892     (outs CPU16Regs:$rh, CPU16Regs:$rl),
   1893     (ins simm16:$immHi, simm16:$immLo),
   1894     "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
   1895 
   1896 // An operand for the CONSTPOOL_ENTRY pseudo-instruction.
   1897 def cpinst_operand : Operand<i32> {
   1898   // let PrintMethod = "printCPInstOperand";
   1899 }
   1900 
   1901 // CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
   1902 // the function.  The first operand is the ID# for this instruction, the second
   1903 // is the index into the MachineConstantPool that this is, the third is the
   1904 // size in bytes of this constant pool entry.
   1905 //
   1906 let hasSideEffects = 0, isNotDuplicable = 1 in
   1907 def CONSTPOOL_ENTRY :
   1908 MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
   1909                       i32imm:$size), "foo", []>;
   1910 
   1911