1 //===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 15 //===----------------------------------------------------------------------===// 16 // Mips profiles and nodes 17 //===----------------------------------------------------------------------===// 18 19 def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; 20 def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, 21 SDTCisSameAs<1, 2>, 22 SDTCisSameAs<3, 4>, 23 SDTCisInt<4>]>; 24 def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; 25 def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 26 def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>; 27 def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, 28 SDTCisInt<1>, SDTCisSameAs<1, 2>]>; 29 def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>, 30 SDTCisSameAs<1, 2>]>; 31 def SDT_MipsMAddMSub : SDTypeProfile<1, 3, 32 [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>, 33 SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; 34 def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 35 36 def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 37 38 def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 39 40 def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 41 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; 42 def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, 43 SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, 44 SDTCisSameAs<0, 4>]>; 45 46 def SDTMipsLoadLR : SDTypeProfile<1, 2, 47 [SDTCisInt<0>, SDTCisPtrTy<1>, 48 SDTCisSameAs<0, 2>]>; 49 50 // Call 51 def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, 52 [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, 53 SDNPVariadic]>; 54 55 // Tail call 56 def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink, 57 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 58 59 // Hi and Lo nodes are used to handle global addresses. Used on 60 // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol 61 // static model. (nothing to do with Mips Registers Hi and Lo) 62 def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; 63 def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; 64 def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; 65 66 // TlsGd node is used to handle General Dynamic TLS 67 def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; 68 69 // TprelHi and TprelLo nodes are used to handle Local Exec TLS 70 def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; 71 def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; 72 73 // Thread pointer 74 def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; 75 76 // Return 77 def MipsRet : SDNode<"MipsISD::Ret", SDTNone, 78 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 79 80 def MipsERet : SDNode<"MipsISD::ERet", SDTNone, 81 [SDNPHasChain, SDNPOptInGlue, SDNPSideEffect]>; 82 83 // These are target-independent nodes, but have target-specific formats. 84 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, 85 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; 86 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, 87 [SDNPHasChain, SDNPSideEffect, 88 SDNPOptInGlue, SDNPOutGlue]>; 89 90 // Nodes used to extract LO/HI registers. 91 def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>; 92 def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>; 93 94 // Node used to insert 32-bit integers to LOHI register pair. 95 def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>; 96 97 // Mult nodes. 98 def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>; 99 def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>; 100 101 // MAdd*/MSub* nodes 102 def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>; 103 def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>; 104 def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>; 105 def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>; 106 107 // DivRem(u) nodes 108 def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>; 109 def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>; 110 def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, 111 [SDNPOutGlue]>; 112 def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16, 113 [SDNPOutGlue]>; 114 115 // Target constant nodes that are not part of any isel patterns and remain 116 // unchanged can cause instructions with illegal operands to be emitted. 117 // Wrapper node patterns give the instruction selector a chance to replace 118 // target constant nodes that would otherwise remain unchanged with ADDiu 119 // nodes. Without these wrapper node patterns, the following conditional move 120 // instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is 121 // compiled: 122 // movn %got(d)($gp), %got(c)($gp), $4 123 // This instruction is illegal since movn can take only register operands. 124 125 def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>; 126 127 def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>; 128 129 def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; 130 def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; 131 132 def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR, 133 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 134 def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR, 135 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 136 def MipsSWL : SDNode<"MipsISD::SWL", SDTStore, 137 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 138 def MipsSWR : SDNode<"MipsISD::SWR", SDTStore, 139 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 140 def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR, 141 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 142 def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR, 143 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 144 def MipsSDL : SDNode<"MipsISD::SDL", SDTStore, 145 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 146 def MipsSDR : SDNode<"MipsISD::SDR", SDTStore, 147 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 148 149 //===----------------------------------------------------------------------===// 150 // Mips Instruction Predicate Definitions. 151 //===----------------------------------------------------------------------===// 152 def HasMips2 : Predicate<"Subtarget->hasMips2()">, 153 AssemblerPredicate<"FeatureMips2">; 154 def HasMips3_32 : Predicate<"Subtarget->hasMips3_32()">, 155 AssemblerPredicate<"FeatureMips3_32">; 156 def HasMips3_32r2 : Predicate<"Subtarget->hasMips3_32r2()">, 157 AssemblerPredicate<"FeatureMips3_32r2">; 158 def HasMips3 : Predicate<"Subtarget->hasMips3()">, 159 AssemblerPredicate<"FeatureMips3">; 160 def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">, 161 AssemblerPredicate<"FeatureMips4_32">; 162 def NotMips4_32 : Predicate<"!Subtarget->hasMips4_32()">, 163 AssemblerPredicate<"!FeatureMips4_32">; 164 def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">, 165 AssemblerPredicate<"FeatureMips4_32r2">; 166 def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">, 167 AssemblerPredicate<"FeatureMips5_32r2">; 168 def HasMips32 : Predicate<"Subtarget->hasMips32()">, 169 AssemblerPredicate<"FeatureMips32">; 170 def HasMips32r2 : Predicate<"Subtarget->hasMips32r2()">, 171 AssemblerPredicate<"FeatureMips32r2">; 172 def HasMips32r5 : Predicate<"Subtarget->hasMips32r5()">, 173 AssemblerPredicate<"FeatureMips32r5">; 174 def HasMips32r6 : Predicate<"Subtarget->hasMips32r6()">, 175 AssemblerPredicate<"FeatureMips32r6">; 176 def NotMips32r6 : Predicate<"!Subtarget->hasMips32r6()">, 177 AssemblerPredicate<"!FeatureMips32r6">; 178 def IsGP64bit : Predicate<"Subtarget->isGP64bit()">, 179 AssemblerPredicate<"FeatureGP64Bit">; 180 def IsGP32bit : Predicate<"!Subtarget->isGP64bit()">, 181 AssemblerPredicate<"!FeatureGP64Bit">; 182 def IsPTR64bit : Predicate<"Subtarget->isABI_N64()">, 183 AssemblerPredicate<"FeaturePTR64Bit">; 184 def IsPTR32bit : Predicate<"!Subtarget->isABI_N64()">, 185 AssemblerPredicate<"!FeaturePTR64Bit">; 186 def HasMips64 : Predicate<"Subtarget->hasMips64()">, 187 AssemblerPredicate<"FeatureMips64">; 188 def NotMips64 : Predicate<"!Subtarget->hasMips64()">, 189 AssemblerPredicate<"!FeatureMips64">; 190 def HasMips64r2 : Predicate<"Subtarget->hasMips64r2()">, 191 AssemblerPredicate<"FeatureMips64r2">; 192 def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">, 193 AssemblerPredicate<"FeatureMips64r6">; 194 def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">, 195 AssemblerPredicate<"!FeatureMips64r6">; 196 def HasMicroMips32r6 : Predicate<"Subtarget->inMicroMips32r6Mode()">, 197 AssemblerPredicate<"FeatureMicroMips,FeatureMips32r6">; 198 def HasMicroMips64r6 : Predicate<"Subtarget->inMicroMips64r6Mode()">, 199 AssemblerPredicate<"FeatureMicroMips,FeatureMips64r6">; 200 def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">, 201 AssemblerPredicate<"FeatureMips16">; 202 def HasCnMips : Predicate<"Subtarget->hasCnMips()">, 203 AssemblerPredicate<"FeatureCnMips">; 204 def RelocNotPIC : Predicate<"!TM.isPositionIndependent()">; 205 def RelocPIC : Predicate<"TM.isPositionIndependent()">; 206 def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">; 207 def HasStdEnc : Predicate<"Subtarget->hasStandardEncoding()">, 208 AssemblerPredicate<"!FeatureMips16">; 209 def NotDSP : Predicate<"!Subtarget->hasDSP()">; 210 def InMicroMips : Predicate<"Subtarget->inMicroMipsMode()">, 211 AssemblerPredicate<"FeatureMicroMips">; 212 def NotInMicroMips : Predicate<"!Subtarget->inMicroMipsMode()">, 213 AssemblerPredicate<"!FeatureMicroMips">; 214 def IsLE : Predicate<"Subtarget->isLittle()">; 215 def IsBE : Predicate<"!Subtarget->isLittle()">; 216 def IsNotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; 217 def UseTCCInDIV : AssemblerPredicate<"FeatureUseTCCInDIV">; 218 def HasEVA : Predicate<"Subtarget->hasEVA()">, 219 AssemblerPredicate<"FeatureEVA,FeatureMips32r2">; 220 def HasMSA : Predicate<"Subtarget->hasMSA()">, 221 AssemblerPredicate<"FeatureMSA">; 222 223 224 //===----------------------------------------------------------------------===// 225 // Mips GPR size adjectives. 226 // They are mutually exclusive. 227 //===----------------------------------------------------------------------===// 228 229 class GPR_32 { list<Predicate> GPRPredicates = [IsGP32bit]; } 230 class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; } 231 232 class PTR_32 { list<Predicate> PTRPredicates = [IsPTR32bit]; } 233 class PTR_64 { list<Predicate> PTRPredicates = [IsPTR64bit]; } 234 235 //===----------------------------------------------------------------------===// 236 // Mips ISA/ASE membership and instruction group membership adjectives. 237 // They are mutually exclusive. 238 //===----------------------------------------------------------------------===// 239 240 // FIXME: I'd prefer to use additive predicates to build the instruction sets 241 // but we are short on assembler feature bits at the moment. Using a 242 // subtractive predicate will hopefully keep us under the 32 predicate 243 // limit long enough to develop an alternative way to handle P1||P2 244 // predicates. 245 class ISA_MIPS1_NOT_4_32 { 246 list<Predicate> InsnPredicates = [NotMips4_32]; 247 } 248 class ISA_MIPS1_NOT_32R6_64R6 { 249 list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6]; 250 } 251 class ISA_MIPS2 { list<Predicate> InsnPredicates = [HasMips2]; } 252 class ISA_MIPS2_NOT_32R6_64R6 { 253 list<Predicate> InsnPredicates = [HasMips2, NotMips32r6, NotMips64r6]; 254 } 255 class ISA_MIPS3 { list<Predicate> InsnPredicates = [HasMips3]; } 256 class ISA_MIPS3_NOT_32R6_64R6 { 257 list<Predicate> InsnPredicates = [HasMips3, NotMips32r6, NotMips64r6]; 258 } 259 class ISA_MIPS32 { list<Predicate> InsnPredicates = [HasMips32]; } 260 class ISA_MIPS32_NOT_32R6_64R6 { 261 list<Predicate> InsnPredicates = [HasMips32, NotMips32r6, NotMips64r6]; 262 } 263 class ISA_MIPS32R2 { list<Predicate> InsnPredicates = [HasMips32r2]; } 264 class ISA_MIPS32R2_NOT_32R6_64R6 { 265 list<Predicate> InsnPredicates = [HasMips32r2, NotMips32r6, NotMips64r6]; 266 } 267 class ISA_MIPS32R5 { list<Predicate> InsnPredicates = [HasMips32r5]; } 268 class ISA_MIPS64 { list<Predicate> InsnPredicates = [HasMips64]; } 269 class ISA_MIPS64_NOT_64R6 { 270 list<Predicate> InsnPredicates = [HasMips64, NotMips64r6]; 271 } 272 class ISA_MIPS64R2 { list<Predicate> InsnPredicates = [HasMips64r2]; } 273 class ISA_MIPS32R6 { list<Predicate> InsnPredicates = [HasMips32r6]; } 274 class ISA_MIPS64R6 { list<Predicate> InsnPredicates = [HasMips64r6]; } 275 class ISA_MICROMIPS { list<Predicate> InsnPredicates = [InMicroMips]; } 276 class ISA_MICROMIPS32R6 { 277 list<Predicate> InsnPredicates = [HasMicroMips32r6]; 278 } 279 class ISA_MICROMIPS64R6 { 280 list<Predicate> InsnPredicates = [HasMicroMips64r6]; 281 } 282 class ISA_MICROMIPS32_NOT_MIPS32R6 { 283 list<Predicate> InsnPredicates = [InMicroMips, NotMips32r6]; 284 } 285 286 class INSN_EVA { list<Predicate> InsnPredicates = [HasEVA]; } 287 class INSN_EVA_NOT_32R6_64R6 { 288 list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6, HasEVA]; 289 } 290 291 // The portions of MIPS-III that were also added to MIPS32 292 class INSN_MIPS3_32 { list<Predicate> InsnPredicates = [HasMips3_32]; } 293 294 // The portions of MIPS-III that were also added to MIPS32 but were removed in 295 // MIPS32r6 and MIPS64r6. 296 class INSN_MIPS3_32_NOT_32R6_64R6 { 297 list<Predicate> InsnPredicates = [HasMips3_32, NotMips32r6, NotMips64r6]; 298 } 299 300 // The portions of MIPS-III that were also added to MIPS32 301 class INSN_MIPS3_32R2 { list<Predicate> InsnPredicates = [HasMips3_32r2]; } 302 303 // The portions of MIPS-IV that were also added to MIPS32 but were removed in 304 // MIPS32r6 and MIPS64r6. 305 class INSN_MIPS4_32_NOT_32R6_64R6 { 306 list<Predicate> InsnPredicates = [HasMips4_32, NotMips32r6, NotMips64r6]; 307 } 308 309 // The portions of MIPS-IV that were also added to MIPS32r2 but were removed in 310 // MIPS32r6 and MIPS64r6. 311 class INSN_MIPS4_32R2_NOT_32R6_64R6 { 312 list<Predicate> InsnPredicates = [HasMips4_32r2, NotMips32r6, NotMips64r6]; 313 } 314 315 // The portions of MIPS-V that were also added to MIPS32r2 but were removed in 316 // MIPS32r6 and MIPS64r6. 317 class INSN_MIPS5_32R2_NOT_32R6_64R6 { 318 list<Predicate> InsnPredicates = [HasMips5_32r2, NotMips32r6, NotMips64r6]; 319 } 320 321 class ASE_CNMIPS { 322 list<Predicate> InsnPredicates = [HasCnMips]; 323 } 324 325 class ASE_MIPS64_CNMIPS { 326 list<Predicate> InsnPredicates = [HasMips64, HasCnMips]; 327 } 328 329 class ASE_MSA { 330 list<Predicate> InsnPredicates = [HasMSA]; 331 } 332 333 class ASE_MSA_NOT_MSA64 { 334 list<Predicate> InsnPredicates = [HasMSA, NotMips64]; 335 } 336 337 class ASE_MSA64 { 338 list<Predicate> InsnPredicates = [HasMSA, HasMips64]; 339 } 340 341 // Class used for separating microMIPSr6 and microMIPS (r3) instruction. 342 // It can be used only on instructions that doesn't inherit PredicateControl. 343 class ISA_MICROMIPS_NOT_32R6_64R6 : PredicateControl { 344 let InsnPredicates = [InMicroMips, NotMips32r6, NotMips64r6]; 345 } 346 347 class ASE_NOT_DSP { 348 list<Predicate> InsnPredicates = [NotDSP]; 349 } 350 351 //===----------------------------------------------------------------------===// 352 353 class MipsPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl { 354 let EncodingPredicates = [HasStdEnc]; 355 } 356 357 class MipsInstAlias<string Asm, dag Result, bit Emit = 0b1> : 358 InstAlias<Asm, Result, Emit>, PredicateControl; 359 360 class IsCommutable { 361 bit isCommutable = 1; 362 } 363 364 class IsBranch { 365 bit isBranch = 1; 366 bit isCTI = 1; 367 } 368 369 class IsReturn { 370 bit isReturn = 1; 371 bit isCTI = 1; 372 } 373 374 class IsCall { 375 bit isCall = 1; 376 bit isCTI = 1; 377 } 378 379 class IsTailCall { 380 bit isCall = 1; 381 bit isTerminator = 1; 382 bit isReturn = 1; 383 bit isBarrier = 1; 384 bit hasExtraSrcRegAllocReq = 1; 385 bit isCodeGenOnly = 1; 386 bit isCTI = 1; 387 } 388 389 class IsAsCheapAsAMove { 390 bit isAsCheapAsAMove = 1; 391 } 392 393 class NeverHasSideEffects { 394 bit hasSideEffects = 0; 395 } 396 397 //===----------------------------------------------------------------------===// 398 // Instruction format superclass 399 //===----------------------------------------------------------------------===// 400 401 include "MipsInstrFormats.td" 402 403 //===----------------------------------------------------------------------===// 404 // Mips Operand, Complex Patterns and Transformations Definitions. 405 //===----------------------------------------------------------------------===// 406 407 class ConstantSImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], 408 int Offset = 0> : AsmOperandClass { 409 let Name = "ConstantSImm" # Bits # "_" # Offset; 410 let RenderMethod = "addConstantSImmOperands<" # Bits # ", " # Offset # ">"; 411 let PredicateMethod = "isConstantSImm<" # Bits # ", " # Offset # ">"; 412 let SuperClasses = Supers; 413 let DiagnosticType = "SImm" # Bits # "_" # Offset; 414 } 415 416 class ConstantUImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = [], 417 int Offset = 0> : AsmOperandClass { 418 let Name = "ConstantUImm" # Bits # "_" # Offset; 419 let RenderMethod = "addConstantUImmOperands<" # Bits # ", " # Offset # ">"; 420 let PredicateMethod = "isConstantUImm<" # Bits # ", " # Offset # ">"; 421 let SuperClasses = Supers; 422 let DiagnosticType = "UImm" # Bits # "_" # Offset; 423 } 424 425 class ConstantUImmRangeAsmOperandClass<int Bottom, int Top, 426 list<AsmOperandClass> Supers = []> 427 : AsmOperandClass { 428 let Name = "ConstantUImmRange" # Bottom # "_" # Top; 429 let RenderMethod = "addImmOperands"; 430 let PredicateMethod = "isConstantUImmRange<" # Bottom # ", " # Top # ">"; 431 let SuperClasses = Supers; 432 let DiagnosticType = "UImmRange" # Bottom # "_" # Top; 433 } 434 435 class SImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> 436 : AsmOperandClass { 437 let Name = "SImm" # Bits; 438 let RenderMethod = "addSImmOperands<" # Bits # ">"; 439 let PredicateMethod = "isSImm<" # Bits # ">"; 440 let SuperClasses = Supers; 441 let DiagnosticType = "SImm" # Bits; 442 } 443 444 class UImmAsmOperandClass<int Bits, list<AsmOperandClass> Supers = []> 445 : AsmOperandClass { 446 let Name = "UImm" # Bits; 447 let RenderMethod = "addUImmOperands<" # Bits # ">"; 448 let PredicateMethod = "isUImm<" # Bits # ">"; 449 let SuperClasses = Supers; 450 let DiagnosticType = "UImm" # Bits; 451 } 452 453 // AsmOperandClasses require a strict ordering which is difficult to manage 454 // as a hierarchy. Instead, we use a linear ordering and impose an order that 455 // is in some places arbitrary. 456 // 457 // Here the rules that are in use: 458 // * Wider immediates are a superset of narrower immediates: 459 // uimm4 < uimm5 < uimm6 460 // * For the same bit-width, unsigned immediates are a superset of signed 461 // immediates:: 462 // simm4 < uimm4 < simm5 < uimm5 463 // * For the same upper-bound, signed immediates are a superset of unsigned 464 // immediates: 465 // uimm3 < simm4 < uimm4 < simm4 466 // * Modified immediates are a superset of ordinary immediates: 467 // uimm5 < uimm5_plus1 (1..32) < uimm5_plus32 (32..63) < uimm6 468 // The term 'superset' starts to break down here since the uimm5_plus* classes 469 // are not true supersets of uimm5 (but they are still subsets of uimm6). 470 // * 'Relaxed' immediates are supersets of the corresponding unsigned immediate. 471 // uimm16 < uimm16_relaxed 472 // * The codeGen pattern type is arbitrarily ordered. 473 // uimm5 < uimm5_64, and uimm5 < vsplat_uimm5 474 // This is entirely arbitrary. We need an ordering and what we pick is 475 // unimportant since only one is possible for a given mnemonic. 476 def SImm32RelaxedAsmOperandClass 477 : SImmAsmOperandClass<32, []> { 478 let Name = "SImm32_Relaxed"; 479 let PredicateMethod = "isAnyImm<32>"; 480 let DiagnosticType = "SImm32_Relaxed"; 481 } 482 def SImm32AsmOperandClass 483 : SImmAsmOperandClass<32, [SImm32RelaxedAsmOperandClass]>; 484 def ConstantUImm26AsmOperandClass 485 : ConstantUImmAsmOperandClass<26, [SImm32AsmOperandClass]>; 486 def ConstantUImm20AsmOperandClass 487 : ConstantUImmAsmOperandClass<20, [ConstantUImm26AsmOperandClass]>; 488 def UImm16RelaxedAsmOperandClass 489 : UImmAsmOperandClass<16, [ConstantUImm20AsmOperandClass]> { 490 let Name = "UImm16_Relaxed"; 491 let PredicateMethod = "isAnyImm<16>"; 492 let DiagnosticType = "UImm16_Relaxed"; 493 } 494 def UImm16AsmOperandClass 495 : UImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]>; 496 def SImm16RelaxedAsmOperandClass 497 : SImmAsmOperandClass<16, [UImm16RelaxedAsmOperandClass]> { 498 let Name = "SImm16_Relaxed"; 499 let PredicateMethod = "isAnyImm<16>"; 500 let DiagnosticType = "SImm16_Relaxed"; 501 } 502 def SImm16AsmOperandClass 503 : SImmAsmOperandClass<16, [SImm16RelaxedAsmOperandClass]>; 504 def ConstantSImm10Lsl3AsmOperandClass : AsmOperandClass { 505 let Name = "SImm10Lsl3"; 506 let RenderMethod = "addImmOperands"; 507 let PredicateMethod = "isScaledSImm<10, 3>"; 508 let SuperClasses = [SImm16AsmOperandClass]; 509 let DiagnosticType = "SImm10_Lsl3"; 510 } 511 def ConstantSImm10Lsl2AsmOperandClass : AsmOperandClass { 512 let Name = "SImm10Lsl2"; 513 let RenderMethod = "addImmOperands"; 514 let PredicateMethod = "isScaledSImm<10, 2>"; 515 let SuperClasses = [ConstantSImm10Lsl3AsmOperandClass]; 516 let DiagnosticType = "SImm10_Lsl2"; 517 } 518 def ConstantSImm11AsmOperandClass 519 : ConstantSImmAsmOperandClass<11, [ConstantSImm10Lsl2AsmOperandClass]>; 520 def ConstantSImm10Lsl1AsmOperandClass : AsmOperandClass { 521 let Name = "SImm10Lsl1"; 522 let RenderMethod = "addImmOperands"; 523 let PredicateMethod = "isScaledSImm<10, 1>"; 524 let SuperClasses = [ConstantSImm11AsmOperandClass]; 525 let DiagnosticType = "SImm10_Lsl1"; 526 } 527 def ConstantUImm10AsmOperandClass 528 : ConstantUImmAsmOperandClass<10, [ConstantSImm10Lsl1AsmOperandClass]>; 529 def ConstantSImm10AsmOperandClass 530 : ConstantSImmAsmOperandClass<10, [ConstantUImm10AsmOperandClass]>; 531 def ConstantSImm9AsmOperandClass 532 : ConstantSImmAsmOperandClass<9, [ConstantSImm10AsmOperandClass]>; 533 def ConstantSImm7Lsl2AsmOperandClass : AsmOperandClass { 534 let Name = "SImm7Lsl2"; 535 let RenderMethod = "addImmOperands"; 536 let PredicateMethod = "isScaledSImm<7, 2>"; 537 let SuperClasses = [ConstantSImm9AsmOperandClass]; 538 let DiagnosticType = "SImm7_Lsl2"; 539 } 540 def ConstantUImm8AsmOperandClass 541 : ConstantUImmAsmOperandClass<8, [ConstantSImm7Lsl2AsmOperandClass]>; 542 def ConstantUImm7Sub1AsmOperandClass 543 : ConstantUImmAsmOperandClass<7, [ConstantUImm8AsmOperandClass], -1> { 544 // Specify the names since the -1 offset causes invalid identifiers otherwise. 545 let Name = "UImm7_N1"; 546 let DiagnosticType = "UImm7_N1"; 547 } 548 def ConstantUImm7AsmOperandClass 549 : ConstantUImmAsmOperandClass<7, [ConstantUImm7Sub1AsmOperandClass]>; 550 def ConstantUImm6Lsl2AsmOperandClass : AsmOperandClass { 551 let Name = "UImm6Lsl2"; 552 let RenderMethod = "addImmOperands"; 553 let PredicateMethod = "isScaledUImm<6, 2>"; 554 let SuperClasses = [ConstantUImm7AsmOperandClass]; 555 let DiagnosticType = "UImm6_Lsl2"; 556 } 557 def ConstantUImm6AsmOperandClass 558 : ConstantUImmAsmOperandClass<6, [ConstantUImm6Lsl2AsmOperandClass]>; 559 def ConstantSImm6AsmOperandClass 560 : ConstantSImmAsmOperandClass<6, [ConstantUImm6AsmOperandClass]>; 561 def ConstantUImm5Lsl2AsmOperandClass : AsmOperandClass { 562 let Name = "UImm5Lsl2"; 563 let RenderMethod = "addImmOperands"; 564 let PredicateMethod = "isScaledUImm<5, 2>"; 565 let SuperClasses = [ConstantSImm6AsmOperandClass]; 566 let DiagnosticType = "UImm5_Lsl2"; 567 } 568 def ConstantUImm5_Range2_64AsmOperandClass 569 : ConstantUImmRangeAsmOperandClass<2, 64, [ConstantUImm5Lsl2AsmOperandClass]>; 570 def ConstantUImm5Plus33AsmOperandClass 571 : ConstantUImmAsmOperandClass<5, [ConstantUImm5_Range2_64AsmOperandClass], 572 33>; 573 def ConstantUImm5ReportUImm6AsmOperandClass 574 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus33AsmOperandClass]> { 575 let Name = "ConstantUImm5_0_Report_UImm6"; 576 let DiagnosticType = "UImm5_0_Report_UImm6"; 577 } 578 def ConstantUImm5Plus32AsmOperandClass 579 : ConstantUImmAsmOperandClass< 580 5, [ConstantUImm5ReportUImm6AsmOperandClass], 32>; 581 def ConstantUImm5Plus32NormalizeAsmOperandClass 582 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus32AsmOperandClass], 32> { 583 let Name = "ConstantUImm5_32_Norm"; 584 // We must also subtract 32 when we render the operand. 585 let RenderMethod = "addConstantUImmOperands<5, 32, -32>"; 586 } 587 def ConstantUImm5Plus1AsmOperandClass 588 : ConstantUImmAsmOperandClass< 589 5, [ConstantUImm5Plus32NormalizeAsmOperandClass], 1>; 590 def ConstantUImm5AsmOperandClass 591 : ConstantUImmAsmOperandClass<5, [ConstantUImm5Plus1AsmOperandClass]>; 592 def ConstantSImm5AsmOperandClass 593 : ConstantSImmAsmOperandClass<5, [ConstantUImm5AsmOperandClass]>; 594 def ConstantUImm4AsmOperandClass 595 : ConstantUImmAsmOperandClass<4, [ConstantSImm5AsmOperandClass]>; 596 def ConstantSImm4AsmOperandClass 597 : ConstantSImmAsmOperandClass<4, [ConstantUImm4AsmOperandClass]>; 598 def ConstantUImm3AsmOperandClass 599 : ConstantUImmAsmOperandClass<3, [ConstantSImm4AsmOperandClass]>; 600 def ConstantUImm2Plus1AsmOperandClass 601 : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass], 1>; 602 def ConstantUImm2AsmOperandClass 603 : ConstantUImmAsmOperandClass<2, [ConstantUImm3AsmOperandClass]>; 604 def ConstantUImm1AsmOperandClass 605 : ConstantUImmAsmOperandClass<1, [ConstantUImm2AsmOperandClass]>; 606 def ConstantImmzAsmOperandClass : AsmOperandClass { 607 let Name = "ConstantImmz"; 608 let RenderMethod = "addConstantUImmOperands<1>"; 609 let PredicateMethod = "isConstantImmz"; 610 let SuperClasses = [ConstantUImm1AsmOperandClass]; 611 let DiagnosticType = "Immz"; 612 } 613 614 def MipsJumpTargetAsmOperand : AsmOperandClass { 615 let Name = "JumpTarget"; 616 let ParserMethod = "parseJumpTarget"; 617 let PredicateMethod = "isImm"; 618 let RenderMethod = "addImmOperands"; 619 } 620 621 // Instruction operand types 622 def jmptarget : Operand<OtherVT> { 623 let EncoderMethod = "getJumpTargetOpValue"; 624 let ParserMatchClass = MipsJumpTargetAsmOperand; 625 } 626 def brtarget : Operand<OtherVT> { 627 let EncoderMethod = "getBranchTargetOpValue"; 628 let OperandType = "OPERAND_PCREL"; 629 let DecoderMethod = "DecodeBranchTarget"; 630 let ParserMatchClass = MipsJumpTargetAsmOperand; 631 } 632 def brtarget1SImm16 : Operand<OtherVT> { 633 let EncoderMethod = "getBranchTargetOpValue1SImm16"; 634 let OperandType = "OPERAND_PCREL"; 635 let DecoderMethod = "DecodeBranchTarget1SImm16"; 636 let ParserMatchClass = MipsJumpTargetAsmOperand; 637 } 638 def calltarget : Operand<iPTR> { 639 let EncoderMethod = "getJumpTargetOpValue"; 640 let ParserMatchClass = MipsJumpTargetAsmOperand; 641 } 642 643 def imm64: Operand<i64>; 644 645 def simm19_lsl2 : Operand<i32> { 646 let EncoderMethod = "getSimm19Lsl2Encoding"; 647 let DecoderMethod = "DecodeSimm19Lsl2"; 648 let ParserMatchClass = MipsJumpTargetAsmOperand; 649 } 650 651 def simm18_lsl3 : Operand<i32> { 652 let EncoderMethod = "getSimm18Lsl3Encoding"; 653 let DecoderMethod = "DecodeSimm18Lsl3"; 654 let ParserMatchClass = MipsJumpTargetAsmOperand; 655 } 656 657 // Zero 658 def uimmz : Operand<i32> { 659 let PrintMethod = "printUImm<0>"; 660 let ParserMatchClass = ConstantImmzAsmOperandClass; 661 } 662 663 // size operand of ins instruction 664 def uimm_range_2_64 : Operand<i32> { 665 let PrintMethod = "printUImm<6, 2>"; 666 let EncoderMethod = "getSizeInsEncoding"; 667 let DecoderMethod = "DecodeInsSize"; 668 let ParserMatchClass = ConstantUImm5_Range2_64AsmOperandClass; 669 } 670 671 // Unsigned Operands 672 foreach I = {1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 26} in 673 def uimm # I : Operand<i32> { 674 let PrintMethod = "printUImm<" # I # ">"; 675 let ParserMatchClass = 676 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 677 } 678 679 def uimm2_plus1 : Operand<i32> { 680 let PrintMethod = "printUImm<2, 1>"; 681 let EncoderMethod = "getUImmWithOffsetEncoding<2, 1>"; 682 let DecoderMethod = "DecodeUImmWithOffset<2, 1>"; 683 let ParserMatchClass = ConstantUImm2Plus1AsmOperandClass; 684 } 685 686 def uimm5_plus1 : Operand<i32> { 687 let PrintMethod = "printUImm<5, 1>"; 688 let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; 689 let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; 690 let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; 691 } 692 693 def uimm5_plus32 : Operand<i32> { 694 let PrintMethod = "printUImm<5, 32>"; 695 let ParserMatchClass = ConstantUImm5Plus32AsmOperandClass; 696 } 697 698 def uimm5_plus33 : Operand<i32> { 699 let PrintMethod = "printUImm<5, 33>"; 700 let EncoderMethod = "getUImmWithOffsetEncoding<5, 1>"; 701 let DecoderMethod = "DecodeUImmWithOffset<5, 1>"; 702 let ParserMatchClass = ConstantUImm5Plus33AsmOperandClass; 703 } 704 705 def uimm5_inssize_plus1 : Operand<i32> { 706 let PrintMethod = "printUImm<6>"; 707 let ParserMatchClass = ConstantUImm5Plus1AsmOperandClass; 708 let EncoderMethod = "getSizeInsEncoding"; 709 let DecoderMethod = "DecodeInsSize"; 710 } 711 712 def uimm5_plus32_normalize : Operand<i32> { 713 let PrintMethod = "printUImm<5>"; 714 let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; 715 } 716 717 def uimm5_lsl2 : Operand<OtherVT> { 718 let EncoderMethod = "getUImm5Lsl2Encoding"; 719 let DecoderMethod = "DecodeUImmWithOffsetAndScale<5, 0, 4>"; 720 let ParserMatchClass = ConstantUImm5Lsl2AsmOperandClass; 721 } 722 723 def uimm5_plus32_normalize_64 : Operand<i64> { 724 let PrintMethod = "printUImm<5>"; 725 let ParserMatchClass = ConstantUImm5Plus32NormalizeAsmOperandClass; 726 } 727 728 def uimm6_lsl2 : Operand<OtherVT> { 729 let EncoderMethod = "getUImm6Lsl2Encoding"; 730 let DecoderMethod = "DecodeUImmWithOffsetAndScale<6, 0, 4>"; 731 let ParserMatchClass = ConstantUImm6Lsl2AsmOperandClass; 732 } 733 734 foreach I = {16} in 735 def uimm # I : Operand<i32> { 736 let PrintMethod = "printUImm<" # I # ">"; 737 let ParserMatchClass = 738 !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); 739 } 740 741 // Like uimm16_64 but coerces simm16 to uimm16. 742 def uimm16_relaxed : Operand<i32> { 743 let PrintMethod = "printUImm<16>"; 744 let ParserMatchClass = 745 !cast<AsmOperandClass>("UImm16RelaxedAsmOperandClass"); 746 } 747 748 foreach I = {5} in 749 def uimm # I # _64 : Operand<i64> { 750 let PrintMethod = "printUImm<" # I # ">"; 751 let ParserMatchClass = 752 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 753 } 754 755 foreach I = {16} in 756 def uimm # I # _64 : Operand<i64> { 757 let PrintMethod = "printUImm<" # I # ">"; 758 let ParserMatchClass = 759 !cast<AsmOperandClass>("UImm" # I # "AsmOperandClass"); 760 } 761 762 // Like uimm16_64 but coerces simm16 to uimm16. 763 def uimm16_64_relaxed : Operand<i64> { 764 let PrintMethod = "printUImm<16>"; 765 let ParserMatchClass = 766 !cast<AsmOperandClass>("UImm16RelaxedAsmOperandClass"); 767 } 768 769 // Like uimm5 but reports a less confusing error for 32-63 when 770 // an instruction alias permits that. 771 def uimm5_report_uimm6 : Operand<i32> { 772 let PrintMethod = "printUImm<5>"; 773 let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; 774 } 775 776 // Like uimm5_64 but reports a less confusing error for 32-63 when 777 // an instruction alias permits that. 778 def uimm5_64_report_uimm6 : Operand<i64> { 779 let PrintMethod = "printUImm<5>"; 780 let ParserMatchClass = ConstantUImm5ReportUImm6AsmOperandClass; 781 } 782 783 foreach I = {1, 2, 3, 4} in 784 def uimm # I # _ptr : Operand<iPTR> { 785 let PrintMethod = "printUImm<" # I # ">"; 786 let ParserMatchClass = 787 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 788 } 789 790 foreach I = {1, 2, 3, 4, 5, 6, 8} in 791 def vsplat_uimm # I : Operand<vAny> { 792 let PrintMethod = "printUImm<" # I # ">"; 793 let ParserMatchClass = 794 !cast<AsmOperandClass>("ConstantUImm" # I # "AsmOperandClass"); 795 } 796 797 // Signed operands 798 foreach I = {4, 5, 6, 9, 10, 11} in 799 def simm # I : Operand<i32> { 800 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 801 let ParserMatchClass = 802 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 803 } 804 805 foreach I = {1, 2, 3} in 806 def simm10_lsl # I : Operand<i32> { 807 let DecoderMethod = "DecodeSImmWithOffsetAndScale<10, " # I # ">"; 808 let ParserMatchClass = 809 !cast<AsmOperandClass>("ConstantSImm10Lsl" # I # "AsmOperandClass"); 810 } 811 812 foreach I = {10} in 813 def simm # I # _64 : Operand<i64> { 814 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 815 let ParserMatchClass = 816 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 817 } 818 819 foreach I = {5, 10} in 820 def vsplat_simm # I : Operand<vAny> { 821 let ParserMatchClass = 822 !cast<AsmOperandClass>("ConstantSImm" # I # "AsmOperandClass"); 823 } 824 825 def simm7_lsl2 : Operand<OtherVT> { 826 let EncoderMethod = "getSImm7Lsl2Encoding"; 827 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ", 0, 4>"; 828 let ParserMatchClass = ConstantSImm7Lsl2AsmOperandClass; 829 } 830 831 foreach I = {16, 32} in 832 def simm # I : Operand<i32> { 833 let DecoderMethod = "DecodeSImmWithOffsetAndScale<" # I # ">"; 834 let ParserMatchClass = !cast<AsmOperandClass>("SImm" # I # "AsmOperandClass"); 835 } 836 837 // Like simm16 but coerces uimm16 to simm16. 838 def simm16_relaxed : Operand<i32> { 839 let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; 840 let ParserMatchClass = !cast<AsmOperandClass>("SImm16RelaxedAsmOperandClass"); 841 } 842 843 def simm16_64 : Operand<i64> { 844 let DecoderMethod = "DecodeSImmWithOffsetAndScale<16>"; 845 let ParserMatchClass = !cast<AsmOperandClass>("SImm16AsmOperandClass"); 846 } 847 848 // Like simm32 but coerces uimm32 to simm32. 849 def simm32_relaxed : Operand<i32> { 850 let DecoderMethod = "DecodeSImmWithOffsetAndScale<32>"; 851 let ParserMatchClass = !cast<AsmOperandClass>("SImm32RelaxedAsmOperandClass"); 852 } 853 854 // This is almost the same as a uimm7 but 0x7f is interpreted as -1. 855 def li16_imm : Operand<i32> { 856 let DecoderMethod = "DecodeLi16Imm"; 857 let ParserMatchClass = ConstantUImm7Sub1AsmOperandClass; 858 } 859 860 def MipsMemAsmOperand : AsmOperandClass { 861 let Name = "Mem"; 862 let ParserMethod = "parseMemOperand"; 863 } 864 865 def MipsMemSimm9AsmOperand : AsmOperandClass { 866 let Name = "MemOffsetSimm9"; 867 let SuperClasses = [MipsMemAsmOperand]; 868 let RenderMethod = "addMemOperands"; 869 let ParserMethod = "parseMemOperand"; 870 let PredicateMethod = "isMemWithSimmOffset<9>"; 871 let DiagnosticType = "MemSImm9"; 872 } 873 874 def MipsMemSimm10AsmOperand : AsmOperandClass { 875 let Name = "MemOffsetSimm10"; 876 let SuperClasses = [MipsMemAsmOperand]; 877 let RenderMethod = "addMemOperands"; 878 let ParserMethod = "parseMemOperand"; 879 let PredicateMethod = "isMemWithSimmOffset<10>"; 880 let DiagnosticType = "MemSImm10"; 881 } 882 883 def MipsMemSimm12AsmOperand : AsmOperandClass { 884 let Name = "MemOffsetSimm12"; 885 let SuperClasses = [MipsMemAsmOperand]; 886 let RenderMethod = "addMemOperands"; 887 let ParserMethod = "parseMemOperand"; 888 let PredicateMethod = "isMemWithSimmOffset<12>"; 889 let DiagnosticType = "MemSImm12"; 890 } 891 892 foreach I = {1, 2, 3} in 893 def MipsMemSimm10Lsl # I # AsmOperand : AsmOperandClass { 894 let Name = "MemOffsetSimm10_" # I; 895 let SuperClasses = [MipsMemAsmOperand]; 896 let RenderMethod = "addMemOperands"; 897 let ParserMethod = "parseMemOperand"; 898 let PredicateMethod = "isMemWithSimmOffset<10, " # I # ">"; 899 let DiagnosticType = "MemSImm10Lsl" # I; 900 } 901 902 def MipsMemSimm11AsmOperand : AsmOperandClass { 903 let Name = "MemOffsetSimm11"; 904 let SuperClasses = [MipsMemAsmOperand]; 905 let RenderMethod = "addMemOperands"; 906 let ParserMethod = "parseMemOperand"; 907 let PredicateMethod = "isMemWithSimmOffset<11>"; 908 let DiagnosticType = "MemSImm11"; 909 } 910 911 def MipsMemSimm16AsmOperand : AsmOperandClass { 912 let Name = "MemOffsetSimm16"; 913 let SuperClasses = [MipsMemAsmOperand]; 914 let RenderMethod = "addMemOperands"; 915 let ParserMethod = "parseMemOperand"; 916 let PredicateMethod = "isMemWithSimmOffset<16>"; 917 let DiagnosticType = "MemSImm16"; 918 } 919 920 def MipsInvertedImmoperand : AsmOperandClass { 921 let Name = "InvNum"; 922 let RenderMethod = "addImmOperands"; 923 let ParserMethod = "parseInvNum"; 924 } 925 926 def InvertedImOperand : Operand<i32> { 927 let ParserMatchClass = MipsInvertedImmoperand; 928 } 929 930 def InvertedImOperand64 : Operand<i64> { 931 let ParserMatchClass = MipsInvertedImmoperand; 932 } 933 934 class mem_generic : Operand<iPTR> { 935 let PrintMethod = "printMemOperand"; 936 let MIOperandInfo = (ops ptr_rc, simm16); 937 let EncoderMethod = "getMemEncoding"; 938 let ParserMatchClass = MipsMemAsmOperand; 939 let OperandType = "OPERAND_MEMORY"; 940 } 941 942 // Address operand 943 def mem : mem_generic; 944 945 // MSA specific address operand 946 def mem_msa : mem_generic { 947 let MIOperandInfo = (ops ptr_rc, simm10); 948 let EncoderMethod = "getMSAMemEncoding"; 949 } 950 951 def simm12 : Operand<i32> { 952 let DecoderMethod = "DecodeSimm12"; 953 } 954 955 def mem_simm9 : mem_generic { 956 let MIOperandInfo = (ops ptr_rc, simm9); 957 let EncoderMethod = "getMemEncoding"; 958 let ParserMatchClass = MipsMemSimm9AsmOperand; 959 } 960 961 def mem_simm10 : mem_generic { 962 let MIOperandInfo = (ops ptr_rc, simm10); 963 let EncoderMethod = "getMemEncoding"; 964 let ParserMatchClass = MipsMemSimm10AsmOperand; 965 } 966 967 foreach I = {1, 2, 3} in 968 def mem_simm10_lsl # I : mem_generic { 969 let MIOperandInfo = (ops ptr_rc, !cast<Operand>("simm10_lsl" # I)); 970 let EncoderMethod = "getMemEncoding<" # I # ">"; 971 let ParserMatchClass = 972 !cast<AsmOperandClass>("MipsMemSimm10Lsl" # I # "AsmOperand"); 973 } 974 975 def mem_simm11 : mem_generic { 976 let MIOperandInfo = (ops ptr_rc, simm11); 977 let EncoderMethod = "getMemEncoding"; 978 let ParserMatchClass = MipsMemSimm11AsmOperand; 979 } 980 981 def mem_simm12 : mem_generic { 982 let MIOperandInfo = (ops ptr_rc, simm12); 983 let EncoderMethod = "getMemEncoding"; 984 let ParserMatchClass = MipsMemSimm12AsmOperand; 985 } 986 987 def mem_simm16 : mem_generic { 988 let MIOperandInfo = (ops ptr_rc, simm16); 989 let EncoderMethod = "getMemEncoding"; 990 let ParserMatchClass = MipsMemSimm16AsmOperand; 991 } 992 993 def mem_ea : Operand<iPTR> { 994 let PrintMethod = "printMemOperandEA"; 995 let MIOperandInfo = (ops ptr_rc, simm16); 996 let EncoderMethod = "getMemEncoding"; 997 let OperandType = "OPERAND_MEMORY"; 998 } 999 1000 def PtrRC : Operand<iPTR> { 1001 let MIOperandInfo = (ops ptr_rc); 1002 let DecoderMethod = "DecodePtrRegisterClass"; 1003 let ParserMatchClass = GPR32AsmOperand; 1004 } 1005 1006 // size operand of ins instruction 1007 def size_ins : Operand<i32> { 1008 let EncoderMethod = "getSizeInsEncoding"; 1009 let DecoderMethod = "DecodeInsSize"; 1010 } 1011 1012 // Transformation Function - get the lower 16 bits. 1013 def LO16 : SDNodeXForm<imm, [{ 1014 return getImm(N, N->getZExtValue() & 0xFFFF); 1015 }]>; 1016 1017 // Transformation Function - get the higher 16 bits. 1018 def HI16 : SDNodeXForm<imm, [{ 1019 return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF); 1020 }]>; 1021 1022 // Plus 1. 1023 def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>; 1024 1025 // Node immediate is zero (e.g. insve.d) 1026 def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>; 1027 1028 // Node immediate fits as 16-bit sign extended on target immediate. 1029 // e.g. addi, andi 1030 def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>; 1031 1032 // Node immediate fits as 16-bit sign extended on target immediate. 1033 // e.g. addi, andi 1034 def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; 1035 1036 // Node immediate fits as 15-bit sign extended on target immediate. 1037 // e.g. addi, andi 1038 def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>; 1039 1040 // Node immediate fits as 7-bit zero extended on target immediate. 1041 def immZExt7 : PatLeaf<(imm), [{ return isUInt<7>(N->getZExtValue()); }]>; 1042 1043 // Node immediate fits as 16-bit zero extended on target immediate. 1044 // The LO16 param means that only the lower 16 bits of the node 1045 // immediate are caught. 1046 // e.g. addiu, sltiu 1047 def immZExt16 : PatLeaf<(imm), [{ 1048 if (N->getValueType(0) == MVT::i32) 1049 return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 1050 else 1051 return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); 1052 }], LO16>; 1053 1054 // Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared). 1055 def immLow16Zero : PatLeaf<(imm), [{ 1056 int64_t Val = N->getSExtValue(); 1057 return isInt<32>(Val) && !(Val & 0xffff); 1058 }]>; 1059 1060 // shamt field must fit in 5 bits. 1061 def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>; 1062 1063 def immZExt5Plus1 : PatLeaf<(imm), [{ 1064 return isUInt<5>(N->getZExtValue() - 1); 1065 }]>; 1066 def immZExt5Plus32 : PatLeaf<(imm), [{ 1067 return isUInt<5>(N->getZExtValue() - 32); 1068 }]>; 1069 def immZExt5Plus33 : PatLeaf<(imm), [{ 1070 return isUInt<5>(N->getZExtValue() - 33); 1071 }]>; 1072 1073 // True if (N + 1) fits in 16-bit field. 1074 def immSExt16Plus1 : PatLeaf<(imm), [{ 1075 return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1); 1076 }]>; 1077 1078 // Mips Address Mode! SDNode frameindex could possibily be a match 1079 // since load and store instructions from stack used it. 1080 def addr : 1081 ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>; 1082 1083 def addrRegImm : 1084 ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>; 1085 1086 def addrDefault : 1087 ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>; 1088 1089 def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrMSA", [frameindex]>; 1090 1091 //===----------------------------------------------------------------------===// 1092 // Instructions specific format 1093 //===----------------------------------------------------------------------===// 1094 1095 // Arithmetic and logical instructions with 3 register operands. 1096 class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0, 1097 InstrItinClass Itin = NoItinerary, 1098 SDPatternOperator OpNode = null_frag>: 1099 InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), 1100 !strconcat(opstr, "\t$rd, $rs, $rt"), 1101 [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> { 1102 let isCommutable = isComm; 1103 let isReMaterializable = 1; 1104 let TwoOperandAliasConstraint = "$rd = $rs"; 1105 } 1106 1107 // Arithmetic and logical instructions with 2 register operands. 1108 class ArithLogicI<string opstr, Operand Od, RegisterOperand RO, 1109 InstrItinClass Itin = NoItinerary, 1110 SDPatternOperator imm_type = null_frag, 1111 SDPatternOperator OpNode = null_frag> : 1112 InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16), 1113 !strconcat(opstr, "\t$rt, $rs, $imm16"), 1114 [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], 1115 Itin, FrmI, opstr> { 1116 let isReMaterializable = 1; 1117 let TwoOperandAliasConstraint = "$rs = $rt"; 1118 } 1119 1120 // Arithmetic Multiply ADD/SUB 1121 class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> : 1122 InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 1123 !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> { 1124 let Defs = [HI0, LO0]; 1125 let Uses = [HI0, LO0]; 1126 let isCommutable = isComm; 1127 } 1128 1129 // Logical 1130 class LogicNOR<string opstr, RegisterOperand RO>: 1131 InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), 1132 !strconcat(opstr, "\t$rd, $rs, $rt"), 1133 [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> { 1134 let isCommutable = 1; 1135 } 1136 1137 // Shifts 1138 class shift_rotate_imm<string opstr, Operand ImmOpnd, 1139 RegisterOperand RO, InstrItinClass itin, 1140 SDPatternOperator OpNode = null_frag, 1141 SDPatternOperator PF = null_frag> : 1142 InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt), 1143 !strconcat(opstr, "\t$rd, $rt, $shamt"), 1144 [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr> { 1145 let TwoOperandAliasConstraint = "$rt = $rd"; 1146 } 1147 1148 class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin, 1149 SDPatternOperator OpNode = null_frag>: 1150 InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs), 1151 !strconcat(opstr, "\t$rd, $rt, $rs"), 1152 [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR, 1153 opstr>; 1154 1155 // Load Upper Immediate 1156 class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>: 1157 InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"), 1158 [], II_LUI, FrmI, opstr>, IsAsCheapAsAMove { 1159 let hasSideEffects = 0; 1160 let isReMaterializable = 1; 1161 } 1162 1163 // Memory Load/Store 1164 class LoadMemory<string opstr, DAGOperand RO, DAGOperand MO, 1165 SDPatternOperator OpNode = null_frag, 1166 InstrItinClass Itin = NoItinerary, 1167 ComplexPattern Addr = addr> : 1168 InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1169 [(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> { 1170 let DecoderMethod = "DecodeMem"; 1171 let canFoldAsLoad = 1; 1172 let mayLoad = 1; 1173 } 1174 1175 class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, 1176 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : 1177 LoadMemory<opstr, RO, mem, OpNode, Itin, Addr>; 1178 1179 class StoreMemory<string opstr, DAGOperand RO, DAGOperand MO, 1180 SDPatternOperator OpNode = null_frag, 1181 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> : 1182 InstSE<(outs), (ins RO:$rt, MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1183 [(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> { 1184 let DecoderMethod = "DecodeMem"; 1185 let mayStore = 1; 1186 } 1187 1188 class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag, 1189 InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr, 1190 DAGOperand MO = mem> : 1191 StoreMemory<opstr, RO, MO, OpNode, Itin, Addr>; 1192 1193 // Load/Store Left/Right 1194 let canFoldAsLoad = 1 in 1195 class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, 1196 InstrItinClass Itin> : 1197 InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src), 1198 !strconcat(opstr, "\t$rt, $addr"), 1199 [(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> { 1200 let DecoderMethod = "DecodeMem"; 1201 string Constraints = "$src = $rt"; 1202 } 1203 1204 class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO, 1205 InstrItinClass Itin> : 1206 InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1207 [(OpNode RO:$rt, addr:$addr)], Itin, FrmI> { 1208 let DecoderMethod = "DecodeMem"; 1209 } 1210 1211 // COP2 Load/Store 1212 class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, 1213 SDPatternOperator OpNode= null_frag> : 1214 InstSE<(outs RC:$rt), (ins mem_simm16:$addr), 1215 !strconcat(opstr, "\t$rt, $addr"), 1216 [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { 1217 let DecoderMethod = "DecodeFMem2"; 1218 let mayLoad = 1; 1219 } 1220 1221 class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin, 1222 SDPatternOperator OpNode= null_frag> : 1223 InstSE<(outs), (ins RC:$rt, mem_simm16:$addr), 1224 !strconcat(opstr, "\t$rt, $addr"), 1225 [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { 1226 let DecoderMethod = "DecodeFMem2"; 1227 let mayStore = 1; 1228 } 1229 1230 // COP3 Load/Store 1231 class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, 1232 SDPatternOperator OpNode= null_frag> : 1233 InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1234 [(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> { 1235 let DecoderMethod = "DecodeFMem3"; 1236 let mayLoad = 1; 1237 } 1238 1239 class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin, 1240 SDPatternOperator OpNode= null_frag> : 1241 InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"), 1242 [(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> { 1243 let DecoderMethod = "DecodeFMem3"; 1244 let mayStore = 1; 1245 } 1246 1247 // Conditional Branch 1248 class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op, 1249 RegisterOperand RO, bit DelaySlot = 1> : 1250 InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset), 1251 !strconcat(opstr, "\t$rs, $rt, $offset"), 1252 [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], II_BCC, 1253 FrmI, opstr> { 1254 let isBranch = 1; 1255 let isTerminator = 1; 1256 let hasDelaySlot = DelaySlot; 1257 let Defs = [AT]; 1258 bit isCTI = 1; 1259 } 1260 1261 class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op, 1262 RegisterOperand RO, bit DelaySlot = 1> : 1263 InstSE<(outs), (ins RO:$rs, opnd:$offset), 1264 !strconcat(opstr, "\t$rs, $offset"), 1265 [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], II_BCCZ, 1266 FrmI, opstr> { 1267 let isBranch = 1; 1268 let isTerminator = 1; 1269 let hasDelaySlot = DelaySlot; 1270 let Defs = [AT]; 1271 bit isCTI = 1; 1272 } 1273 1274 // SetCC 1275 class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> : 1276 InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt), 1277 !strconcat(opstr, "\t$rd, $rs, $rt"), 1278 [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))], 1279 II_SLT_SLTU, FrmR, opstr>; 1280 1281 class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type, 1282 RegisterOperand RO>: 1283 InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16), 1284 !strconcat(opstr, "\t$rt, $rs, $imm16"), 1285 [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))], 1286 II_SLTI_SLTIU, FrmI, opstr>; 1287 1288 // Jump 1289 class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator, 1290 SDPatternOperator targetoperator, string bopstr> : 1291 InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), 1292 [(operator targetoperator:$target)], II_J, FrmJ, bopstr> { 1293 let isTerminator=1; 1294 let isBarrier=1; 1295 let hasDelaySlot = 1; 1296 let DecoderMethod = "DecodeJumpTarget"; 1297 let Defs = [AT]; 1298 bit isCTI = 1; 1299 } 1300 1301 // Unconditional branch 1302 class UncondBranch<Instruction BEQInst> : 1303 PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], II_B>, 1304 PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> { 1305 let isBranch = 1; 1306 let isTerminator = 1; 1307 let isBarrier = 1; 1308 let hasDelaySlot = 1; 1309 let AdditionalPredicates = [RelocPIC]; 1310 let Defs = [AT]; 1311 bit isCTI = 1; 1312 } 1313 1314 // Base class for indirect branch and return instruction classes. 1315 let isTerminator=1, isBarrier=1, hasDelaySlot = 1, isCTI = 1 in 1316 class JumpFR<string opstr, RegisterOperand RO, 1317 SDPatternOperator operator = null_frag>: 1318 InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], II_JR, 1319 FrmR, opstr>; 1320 1321 // Indirect branch 1322 class IndirectBranch<string opstr, RegisterOperand RO> : JumpFR<opstr, RO> { 1323 let isBranch = 1; 1324 let isIndirectBranch = 1; 1325 } 1326 1327 // Jump and Link (Call) 1328 let isCall=1, hasDelaySlot=1, isCTI=1, Defs = [RA] in { 1329 class JumpLink<string opstr, DAGOperand opnd> : 1330 InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), 1331 [(MipsJmpLink tglobaladdr:$target)], II_JAL, FrmJ, opstr> { 1332 let DecoderMethod = "DecodeJumpTarget"; 1333 } 1334 1335 class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst, 1336 Register RetReg, RegisterOperand ResRO = RO>: 1337 PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], II_JALR>, 1338 PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>; 1339 1340 class JumpLinkReg<string opstr, RegisterOperand RO>: 1341 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1342 [], II_JALR, FrmR, opstr>; 1343 1344 class BGEZAL_FT<string opstr, DAGOperand opnd, 1345 RegisterOperand RO, bit DelaySlot = 1> : 1346 InstSE<(outs), (ins RO:$rs, opnd:$offset), 1347 !strconcat(opstr, "\t$rs, $offset"), [], II_BCCZAL, FrmI, opstr> { 1348 let hasDelaySlot = DelaySlot; 1349 } 1350 1351 } 1352 1353 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1, 1354 hasExtraSrcRegAllocReq = 1, isCTI = 1, Defs = [AT] in { 1355 class TailCall<Instruction JumpInst> : 1356 PseudoSE<(outs), (ins calltarget:$target), [], II_J>, 1357 PseudoInstExpansion<(JumpInst jmptarget:$target)>; 1358 1359 class TailCallReg<RegisterOperand RO, Instruction JRInst, 1360 RegisterOperand ResRO = RO> : 1361 PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], II_JR>, 1362 PseudoInstExpansion<(JRInst ResRO:$rs)>; 1363 } 1364 1365 class BAL_BR_Pseudo<Instruction RealInst> : 1366 PseudoSE<(outs), (ins brtarget:$offset), [], II_BCCZAL>, 1367 PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> { 1368 let isBranch = 1; 1369 let isTerminator = 1; 1370 let isBarrier = 1; 1371 let hasDelaySlot = 1; 1372 let Defs = [RA]; 1373 bit isCTI = 1; 1374 } 1375 1376 let isCTI = 1 in { 1377 // Syscall 1378 class SYS_FT<string opstr, Operand ImmOp, InstrItinClass itin = NoItinerary> : 1379 InstSE<(outs), (ins ImmOp:$code_), 1380 !strconcat(opstr, "\t$code_"), [], itin, FrmI, opstr>; 1381 // Break 1382 class BRK_FT<string opstr> : 1383 InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2), 1384 !strconcat(opstr, "\t$code_1, $code_2"), [], II_BREAK, 1385 FrmOther, opstr>; 1386 1387 // (D)Eret 1388 class ER_FT<string opstr, InstrItinClass itin = NoItinerary> : 1389 InstSE<(outs), (ins), 1390 opstr, [], itin, FrmOther, opstr>; 1391 1392 // Wait 1393 class WAIT_FT<string opstr> : 1394 InstSE<(outs), (ins), opstr, [], II_WAIT, FrmOther, opstr>; 1395 } 1396 1397 // Interrupts 1398 class DEI_FT<string opstr, RegisterOperand RO, 1399 InstrItinClass itin = NoItinerary> : 1400 InstSE<(outs RO:$rt), (ins), 1401 !strconcat(opstr, "\t$rt"), [], itin, FrmOther, opstr>; 1402 1403 // Sync 1404 let hasSideEffects = 1 in 1405 class SYNC_FT<string opstr> : 1406 InstSE<(outs), (ins uimm5:$stype), "sync $stype", 1407 [(MipsSync immZExt5:$stype)], II_SYNC, FrmOther, opstr>; 1408 1409 class SYNCI_FT<string opstr> : 1410 InstSE<(outs), (ins mem_simm16:$addr), !strconcat(opstr, "\t$addr"), [], 1411 II_SYNCI, FrmOther, opstr> { 1412 let hasSideEffects = 1; 1413 let DecoderMethod = "DecodeSyncI"; 1414 } 1415 1416 let hasSideEffects = 1, isCTI = 1 in { 1417 class TEQ_FT<string opstr, RegisterOperand RO, Operand ImmOp, 1418 InstrItinClass itin = NoItinerary> : 1419 InstSE<(outs), (ins RO:$rs, RO:$rt, ImmOp:$code_), 1420 !strconcat(opstr, "\t$rs, $rt, $code_"), [], itin, FrmI, opstr>; 1421 1422 class TEQI_FT<string opstr, RegisterOperand RO, 1423 InstrItinClass itin = NoItinerary> : 1424 InstSE<(outs), (ins RO:$rs, simm16:$imm16), 1425 !strconcat(opstr, "\t$rs, $imm16"), [], itin, FrmOther, opstr>; 1426 } 1427 1428 // Mul, Div 1429 class Mult<string opstr, InstrItinClass itin, RegisterOperand RO, 1430 list<Register> DefRegs> : 1431 InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [], 1432 itin, FrmR, opstr> { 1433 let isCommutable = 1; 1434 let Defs = DefRegs; 1435 let hasSideEffects = 0; 1436 } 1437 1438 // Pseudo multiply/divide instruction with explicit accumulator register 1439 // operands. 1440 class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1, 1441 SDPatternOperator OpNode, InstrItinClass Itin, 1442 bit IsComm = 1, bit HasSideEffects = 0, 1443 bit UsesCustomInserter = 0> : 1444 PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt), 1445 [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>, 1446 PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> { 1447 let isCommutable = IsComm; 1448 let hasSideEffects = HasSideEffects; 1449 let usesCustomInserter = UsesCustomInserter; 1450 } 1451 1452 // Pseudo multiply add/sub instruction with explicit accumulator register 1453 // operands. 1454 class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode, 1455 InstrItinClass itin> 1456 : PseudoSE<(outs ACC64:$ac), 1457 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin), 1458 [(set ACC64:$ac, 1459 (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))], 1460 itin>, 1461 PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> { 1462 string Constraints = "$acin = $ac"; 1463 } 1464 1465 class Div<string opstr, InstrItinClass itin, RegisterOperand RO, 1466 list<Register> DefRegs> : 1467 InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"), 1468 [], itin, FrmR, opstr> { 1469 let Defs = DefRegs; 1470 } 1471 1472 // Move from Hi/Lo 1473 class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode> 1474 : PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo), 1475 [(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>; 1476 1477 class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>: 1478 InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO, 1479 FrmR, opstr> { 1480 let Uses = [UseReg]; 1481 let hasSideEffects = 0; 1482 } 1483 1484 class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC> 1485 : PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi), 1486 [(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))], 1487 II_MTHI_MTLO>; 1488 1489 class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>: 1490 InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO, 1491 FrmR, opstr> { 1492 let Defs = DefRegs; 1493 let hasSideEffects = 0; 1494 } 1495 1496 class EffectiveAddress<string opstr, RegisterOperand RO> : 1497 InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"), 1498 [(set RO:$rt, addr:$addr)], II_ADDIU, FrmI, 1499 !strconcat(opstr, "_lea")> { 1500 let isCodeGenOnly = 1; 1501 let hasNoSchedulingInfo = 1; 1502 let DecoderMethod = "DecodeMem"; 1503 } 1504 1505 // Count Leading Ones/Zeros in Word 1506 class CountLeading0<string opstr, RegisterOperand RO, 1507 InstrItinClass itin = NoItinerary>: 1508 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1509 [(set RO:$rd, (ctlz RO:$rs))], itin, FrmR, opstr>; 1510 1511 class CountLeading1<string opstr, RegisterOperand RO, 1512 InstrItinClass itin = NoItinerary>: 1513 InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), 1514 [(set RO:$rd, (ctlz (not RO:$rs)))], itin, FrmR, opstr>; 1515 1516 // Sign Extend in Register. 1517 class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO, 1518 InstrItinClass itin> : 1519 InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), 1520 [(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr>; 1521 1522 // Subword Swap 1523 class SubwordSwap<string opstr, RegisterOperand RO, 1524 InstrItinClass itin = NoItinerary>: 1525 InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [], itin, 1526 FrmR, opstr> { 1527 let hasSideEffects = 0; 1528 } 1529 1530 // Read Hardware 1531 class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> : 1532 InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [], 1533 II_RDHWR, FrmR, "rdhwr">; 1534 1535 // Ext and Ins 1536 class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd, 1537 Operand SizeOpnd, PatFrag PosImm, PatFrag SizeImm, 1538 SDPatternOperator Op = null_frag> : 1539 InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size), 1540 !strconcat(opstr, " $rt, $rs, $pos, $size"), 1541 [(set RO:$rt, (Op RO:$rs, PosImm:$pos, SizeImm:$size))], II_EXT, 1542 FrmR, opstr>, ISA_MIPS32R2; 1543 1544 class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd, 1545 Operand SizeOpnd, SDPatternOperator Op = null_frag>: 1546 InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, SizeOpnd:$size, RO:$src), 1547 !strconcat(opstr, " $rt, $rs, $pos, $size"), 1548 [(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))], 1549 II_INS, FrmR, opstr>, ISA_MIPS32R2 { 1550 let Constraints = "$src = $rt"; 1551 } 1552 1553 // Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). 1554 class Atomic2Ops<PatFrag Op, RegisterClass DRC> : 1555 PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr), 1556 [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>; 1557 1558 // Atomic Compare & Swap. 1559 class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> : 1560 PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap), 1561 [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>; 1562 1563 class LLBase<string opstr, RegisterOperand RO, DAGOperand MO = mem> : 1564 InstSE<(outs RO:$rt), (ins MO:$addr), !strconcat(opstr, "\t$rt, $addr"), 1565 [], II_LL, FrmI, opstr> { 1566 let DecoderMethod = "DecodeMem"; 1567 let mayLoad = 1; 1568 } 1569 1570 class SCBase<string opstr, RegisterOperand RO> : 1571 InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr), 1572 !strconcat(opstr, "\t$rt, $addr"), [], II_SC, FrmI> { 1573 let DecoderMethod = "DecodeMem"; 1574 let mayStore = 1; 1575 let Constraints = "$rt = $dst"; 1576 } 1577 1578 class MFC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, 1579 InstrItinClass itin> : 1580 InstSE<(outs RO:$rt), (ins RD:$rd, uimm3:$sel), 1581 !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR>; 1582 1583 class MTC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD, 1584 InstrItinClass itin> : 1585 InstSE<(outs RO:$rd), (ins RD:$rt, uimm3:$sel), 1586 !strconcat(asmstr, "\t$rt, $rd, $sel"), [], itin, FrmFR>; 1587 1588 class TrapBase<Instruction RealInst> 1589 : PseudoSE<(outs), (ins), [(trap)], II_TRAP>, 1590 PseudoInstExpansion<(RealInst 0, 0)> { 1591 let isBarrier = 1; 1592 let isTerminator = 1; 1593 let isCodeGenOnly = 1; 1594 let isCTI = 1; 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // Pseudo instructions 1599 //===----------------------------------------------------------------------===// 1600 1601 // Return RA. 1602 let isReturn=1, isTerminator=1, isBarrier=1, hasCtrlDep=1, isCTI=1 in { 1603 let hasDelaySlot=1 in 1604 def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>; 1605 1606 let hasSideEffects=1 in 1607 def ERet : PseudoSE<(outs), (ins), [(MipsERet)]>; 1608 } 1609 1610 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 1611 def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt), 1612 [(callseq_start timm:$amt)]>; 1613 def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1614 [(callseq_end timm:$amt1, timm:$amt2)]>; 1615 } 1616 1617 let usesCustomInserter = 1 in { 1618 def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>; 1619 def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>; 1620 def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>; 1621 def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>; 1622 def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>; 1623 def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>; 1624 def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>; 1625 def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>; 1626 def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>; 1627 def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>; 1628 def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>; 1629 def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>; 1630 def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>; 1631 def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>; 1632 def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>; 1633 def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>; 1634 def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>; 1635 def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>; 1636 1637 def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>; 1638 def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>; 1639 def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>; 1640 1641 def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>; 1642 def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>; 1643 def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>; 1644 } 1645 1646 /// Pseudo instructions for loading and storing accumulator registers. 1647 let isPseudo = 1, isCodeGenOnly = 1, hasNoSchedulingInfo = 1 in { 1648 def LOAD_ACC64 : Load<"", ACC64>; 1649 def STORE_ACC64 : Store<"", ACC64>; 1650 } 1651 1652 // We need these two pseudo instructions to avoid offset calculation for long 1653 // branches. See the comment in file MipsLongBranch.cpp for detailed 1654 // explanation. 1655 1656 // Expands to: lui $dst, %hi($tgt - $baltgt) 1657 def LONG_BRANCH_LUi : PseudoSE<(outs GPR32Opnd:$dst), 1658 (ins brtarget:$tgt, brtarget:$baltgt), []>; 1659 1660 // Expands to: addiu $dst, $src, %lo($tgt - $baltgt) 1661 def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst), 1662 (ins GPR32Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>; 1663 1664 //===----------------------------------------------------------------------===// 1665 // Instruction definition 1666 //===----------------------------------------------------------------------===// 1667 //===----------------------------------------------------------------------===// 1668 // MipsI Instructions 1669 //===----------------------------------------------------------------------===// 1670 1671 /// Arithmetic Instructions (ALU Immediate) 1672 let AdditionalPredicates = [NotInMicroMips] in { 1673 def ADDiu : MMRel, StdMMR6Rel, ArithLogicI<"addiu", simm16_relaxed, GPR32Opnd, 1674 II_ADDIU, immSExt16, add>, 1675 ADDI_FM<0x9>, IsAsCheapAsAMove; 1676 1677 def ANDi : MMRel, StdMMR6Rel, 1678 ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16, and>, 1679 ADDI_FM<0xc>; 1680 def ORi : MMRel, StdMMR6Rel, 1681 ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16, or>, 1682 ADDI_FM<0xd>; 1683 def XORi : MMRel, StdMMR6Rel, 1684 ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, immZExt16, xor>, 1685 ADDI_FM<0xe>; 1686 } 1687 def ADDi : MMRel, ArithLogicI<"addi", simm16_relaxed, GPR32Opnd, II_ADDI>, ADDI_FM<0x8>, 1688 ISA_MIPS1_NOT_32R6_64R6; 1689 def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>, 1690 SLTI_FM<0xa>; 1691 def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>, 1692 SLTI_FM<0xb>; 1693 def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16_relaxed>, LUI_FM; 1694 let AdditionalPredicates = [NotInMicroMips] in { 1695 /// Arithmetic Instructions (3-Operand, R-Type) 1696 def ADDu : MMRel, StdMMR6Rel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>, 1697 ADD_FM<0, 0x21>; 1698 def SUBu : MMRel, StdMMR6Rel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>, 1699 ADD_FM<0, 0x23>; 1700 } 1701 let Defs = [HI0, LO0] in 1702 def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>, 1703 ADD_FM<0x1c, 2>, ISA_MIPS32_NOT_32R6_64R6; 1704 def ADD : MMRel, StdMMR6Rel, ArithLogicR<"add", GPR32Opnd, 1, II_ADD>, ADD_FM<0, 0x20>; 1705 def SUB : MMRel, StdMMR6Rel, ArithLogicR<"sub", GPR32Opnd, 0, II_SUB>, ADD_FM<0, 0x22>; 1706 def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>; 1707 def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>; 1708 let AdditionalPredicates = [NotInMicroMips] in { 1709 def AND : MMRel, StdMMR6Rel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>, 1710 ADD_FM<0, 0x24>; 1711 def OR : MMRel, StdMMR6Rel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>, 1712 ADD_FM<0, 0x25>; 1713 def XOR : MMRel, StdMMR6Rel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>, 1714 ADD_FM<0, 0x26>; 1715 def NOR : MMRel, StdMMR6Rel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>; 1716 } 1717 1718 /// Shift Instructions 1719 let AdditionalPredicates = [NotInMicroMips] in { 1720 def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl, 1721 immZExt5>, SRA_FM<0, 0>; 1722 def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl, 1723 immZExt5>, SRA_FM<2, 0>; 1724 def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra, 1725 immZExt5>, SRA_FM<3, 0>; 1726 def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>, 1727 SRLV_FM<4, 0>; 1728 def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>, 1729 SRLV_FM<6, 0>; 1730 def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>, 1731 SRLV_FM<7, 0>; 1732 } 1733 1734 // Rotate Instructions 1735 let AdditionalPredicates = [NotInMicroMips] in { 1736 def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr, 1737 immZExt5>, 1738 SRA_FM<2, 1>, ISA_MIPS32R2; 1739 def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>, 1740 SRLV_FM<6, 1>, ISA_MIPS32R2; 1741 } 1742 1743 /// Load and Store Instructions 1744 /// aligned 1745 def LB : LoadMemory<"lb", GPR32Opnd, mem_simm16, sextloadi8, II_LB>, MMRel, 1746 LW_FM<0x20>; 1747 def LBu : LoadMemory<"lbu", GPR32Opnd, mem_simm16, zextloadi8, II_LBU, 1748 addrDefault>, MMRel, LW_FM<0x24>; 1749 let AdditionalPredicates = [NotInMicroMips] in { 1750 def LH : LoadMemory<"lh", GPR32Opnd, mem_simm16, sextloadi16, II_LH, 1751 addrDefault>, MMRel, LW_FM<0x21>; 1752 def LHu : LoadMemory<"lhu", GPR32Opnd, mem_simm16, zextloadi16, II_LHU>, 1753 MMRel, LW_FM<0x25>; 1754 def LW : StdMMR6Rel, Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel, 1755 LW_FM<0x23>; 1756 } 1757 def SB : StdMMR6Rel, Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, 1758 LW_FM<0x28>; 1759 def SH : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>; 1760 let AdditionalPredicates = [NotInMicroMips] in { 1761 def SW : Store<"sw", GPR32Opnd, store, II_SW>, MMRel, LW_FM<0x2b>; 1762 } 1763 1764 /// load/store left/right 1765 let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug 1766 AdditionalPredicates = [NotInMicroMips] in { 1767 def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>, 1768 ISA_MIPS1_NOT_32R6_64R6; 1769 def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>, 1770 ISA_MIPS1_NOT_32R6_64R6; 1771 def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>, 1772 ISA_MIPS1_NOT_32R6_64R6; 1773 def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>, 1774 ISA_MIPS1_NOT_32R6_64R6; 1775 } 1776 1777 let AdditionalPredicates = [NotInMicroMips] in { 1778 // COP2 Memory Instructions 1779 def LWC2 : StdMMR6Rel, LW_FT2<"lwc2", COP2Opnd, II_LWC2, load>, LW_FM<0x32>, 1780 ISA_MIPS1_NOT_32R6_64R6; 1781 def SWC2 : StdMMR6Rel, SW_FT2<"swc2", COP2Opnd, II_SWC2, store>, 1782 LW_FM<0x3a>, ISA_MIPS1_NOT_32R6_64R6; 1783 def LDC2 : StdMMR6Rel, LW_FT2<"ldc2", COP2Opnd, II_LDC2, load>, LW_FM<0x36>, 1784 ISA_MIPS2_NOT_32R6_64R6; 1785 def SDC2 : StdMMR6Rel, SW_FT2<"sdc2", COP2Opnd, II_SDC2, store>, 1786 LW_FM<0x3e>, ISA_MIPS2_NOT_32R6_64R6; 1787 1788 // COP3 Memory Instructions 1789 let DecoderNamespace = "COP3_" in { 1790 def LWC3 : LW_FT3<"lwc3", COP3Opnd, II_LWC3, load>, LW_FM<0x33>; 1791 def SWC3 : SW_FT3<"swc3", COP3Opnd, II_SWC3, store>, LW_FM<0x3b>; 1792 def LDC3 : LW_FT3<"ldc3", COP3Opnd, II_LDC3, load>, LW_FM<0x37>, 1793 ISA_MIPS2; 1794 def SDC3 : SW_FT3<"sdc3", COP3Opnd, II_SDC3, store>, LW_FM<0x3f>, 1795 ISA_MIPS2; 1796 } 1797 } 1798 1799 def SYNC : MMRel, StdMMR6Rel, SYNC_FT<"sync">, SYNC_FM, 1800 ISA_MIPS32; 1801 def SYNCI : MMRel, StdMMR6Rel, SYNCI_FT<"synci">, SYNCI_FM, ISA_MIPS32R2; 1802 1803 let AdditionalPredicates = [NotInMicroMips] in { 1804 def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd, uimm10, II_TEQ>, TEQ_FM<0x34>, ISA_MIPS2; 1805 def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd, uimm10, II_TGE>, TEQ_FM<0x30>, ISA_MIPS2; 1806 def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd, uimm10, II_TGEU>, TEQ_FM<0x31>, ISA_MIPS2; 1807 def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd, uimm10, II_TLT>, TEQ_FM<0x32>, ISA_MIPS2; 1808 def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd, uimm10, II_TLTU>, TEQ_FM<0x33>, ISA_MIPS2; 1809 def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd, uimm10, II_TNE>, TEQ_FM<0x36>, ISA_MIPS2; 1810 } 1811 1812 def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd, II_TEQI>, TEQI_FM<0xc>, 1813 ISA_MIPS2_NOT_32R6_64R6; 1814 def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd, II_TGEI>, TEQI_FM<0x8>, 1815 ISA_MIPS2_NOT_32R6_64R6; 1816 def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd, II_TGEIU>, TEQI_FM<0x9>, 1817 ISA_MIPS2_NOT_32R6_64R6; 1818 def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd, II_TLTI>, TEQI_FM<0xa>, 1819 ISA_MIPS2_NOT_32R6_64R6; 1820 def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd, II_TTLTIU>, TEQI_FM<0xb>, 1821 ISA_MIPS2_NOT_32R6_64R6; 1822 def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd, II_TNEI>, TEQI_FM<0xe>, 1823 ISA_MIPS2_NOT_32R6_64R6; 1824 1825 let AdditionalPredicates = [NotInMicroMips] in { 1826 def BREAK : MMRel, StdMMR6Rel, BRK_FT<"break">, BRK_FM<0xd>; 1827 def SYSCALL : MMRel, SYS_FT<"syscall", uimm20, II_SYSCALL>, SYS_FM<0xc>; 1828 } 1829 def TRAP : TrapBase<BREAK>; 1830 let AdditionalPredicates = [NotInMicroMips] in { 1831 def SDBBP : MMRel, SYS_FT<"sdbbp", uimm20, II_SDBBP>, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6; 1832 } 1833 1834 let AdditionalPredicates = [NotInMicroMips] in { 1835 def ERET : MMRel, ER_FT<"eret", II_ERET>, ER_FM<0x18, 0x0>, INSN_MIPS3_32; 1836 def ERETNC : MMRel, ER_FT<"eretnc", II_ERETNC>, ER_FM<0x18, 0x1>, ISA_MIPS32R5; 1837 def DERET : MMRel, ER_FT<"deret", II_DERET>, ER_FM<0x1f, 0x0>, ISA_MIPS32; 1838 } 1839 1840 let AdditionalPredicates = [NotInMicroMips] in { 1841 def EI : MMRel, StdMMR6Rel, DEI_FT<"ei", GPR32Opnd, II_EI>, EI_FM<1>, ISA_MIPS32R2; 1842 def DI : MMRel, StdMMR6Rel, DEI_FT<"di", GPR32Opnd, II_DI>, EI_FM<0>, ISA_MIPS32R2; 1843 } 1844 1845 let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug 1846 AdditionalPredicates = [NotInMicroMips] in { 1847 def WAIT : WAIT_FT<"wait">, WAIT_FM; 1848 } 1849 1850 let AdditionalPredicates = [NotInMicroMips] in { 1851 /// Load-linked, Store-conditional 1852 def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; 1853 def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, PTR_32, ISA_MIPS2_NOT_32R6_64R6; 1854 } 1855 1856 /// Jump and Branch Instructions 1857 def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>, 1858 AdditionalRequires<[RelocNotPIC]>, IsBranch; 1859 def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>, ISA_MIPS1_NOT_32R6_64R6; 1860 def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>; 1861 def BEQL : MMRel, CBranch<"beql", brtarget, seteq, GPR32Opnd, 0>, 1862 BEQ_FM<20>, ISA_MIPS2_NOT_32R6_64R6; 1863 def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>; 1864 def BNEL : MMRel, CBranch<"bnel", brtarget, setne, GPR32Opnd, 0>, 1865 BEQ_FM<21>, ISA_MIPS2_NOT_32R6_64R6; 1866 def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>, 1867 BGEZ_FM<1, 1>; 1868 def BGEZL : MMRel, CBranchZero<"bgezl", brtarget, setge, GPR32Opnd, 0>, 1869 BGEZ_FM<1, 3>, ISA_MIPS2_NOT_32R6_64R6; 1870 def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>, 1871 BGEZ_FM<7, 0>; 1872 def BGTZL : MMRel, CBranchZero<"bgtzl", brtarget, setgt, GPR32Opnd, 0>, 1873 BGEZ_FM<23, 0>, ISA_MIPS2_NOT_32R6_64R6; 1874 def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>, 1875 BGEZ_FM<6, 0>; 1876 def BLEZL : MMRel, CBranchZero<"blezl", brtarget, setle, GPR32Opnd, 0>, 1877 BGEZ_FM<22, 0>, ISA_MIPS2_NOT_32R6_64R6; 1878 def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>, 1879 BGEZ_FM<1, 0>; 1880 def BLTZL : MMRel, CBranchZero<"bltzl", brtarget, setlt, GPR32Opnd, 0>, 1881 BGEZ_FM<1, 2>, ISA_MIPS2_NOT_32R6_64R6; 1882 def B : UncondBranch<BEQ>; 1883 1884 def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>; 1885 let AdditionalPredicates = [NotInMicroMips] in { 1886 def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM; 1887 def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>; 1888 } 1889 1890 def JALX : MMRel, JumpLink<"jalx", calltarget>, FJ<0x1D>, 1891 ISA_MIPS32_NOT_32R6_64R6; 1892 def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>, 1893 ISA_MIPS1_NOT_32R6_64R6; 1894 def BGEZALL : MMRel, BGEZAL_FT<"bgezall", brtarget, GPR32Opnd, 0>, 1895 BGEZAL_FM<0x13>, ISA_MIPS2_NOT_32R6_64R6; 1896 def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>, 1897 ISA_MIPS1_NOT_32R6_64R6; 1898 def BLTZALL : MMRel, BGEZAL_FT<"bltzall", brtarget, GPR32Opnd, 0>, 1899 BGEZAL_FM<0x12>, ISA_MIPS2_NOT_32R6_64R6; 1900 def BAL_BR : BAL_BR_Pseudo<BGEZAL>; 1901 def TAILCALL : TailCall<J>; 1902 def TAILCALL_R : TailCallReg<GPR32Opnd, JR>; 1903 1904 // Indirect branches are matched as PseudoIndirectBranch/PseudoIndirectBranch64 1905 // then are expanded to JR, JR64, JALR, or JALR64 depending on the ISA. 1906 class PseudoIndirectBranchBase<RegisterOperand RO> : 1907 MipsPseudo<(outs), (ins RO:$rs), [(brind RO:$rs)], 1908 II_IndirectBranchPseudo> { 1909 let isTerminator=1; 1910 let isBarrier=1; 1911 let hasDelaySlot = 1; 1912 let isBranch = 1; 1913 let isIndirectBranch = 1; 1914 bit isCTI = 1; 1915 } 1916 1917 def PseudoIndirectBranch : PseudoIndirectBranchBase<GPR32Opnd>; 1918 1919 // Return instructions are matched as a RetRA instruction, then are expanded 1920 // into PseudoReturn/PseudoReturn64 after register allocation. Finally, 1921 // MipsAsmPrinter expands this into JR, JR64, JALR, or JALR64 depending on the 1922 // ISA. 1923 class PseudoReturnBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs), 1924 [], II_ReturnPseudo> { 1925 let isTerminator = 1; 1926 let isBarrier = 1; 1927 let hasDelaySlot = 1; 1928 let isReturn = 1; 1929 let isCodeGenOnly = 1; 1930 let hasCtrlDep = 1; 1931 let hasExtraSrcRegAllocReq = 1; 1932 bit isCTI = 1; 1933 } 1934 1935 def PseudoReturn : PseudoReturnBase<GPR32Opnd>; 1936 1937 // Exception handling related node and instructions. 1938 // The conversion sequence is: 1939 // ISD::EH_RETURN -> MipsISD::EH_RETURN -> 1940 // MIPSeh_return -> (stack change + indirect branch) 1941 // 1942 // MIPSeh_return takes the place of regular return instruction 1943 // but takes two arguments (V1, V0) which are used for storing 1944 // the offset and return address respectively. 1945 def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>; 1946 1947 def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET, 1948 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 1949 1950 let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1, isCTI = 1 in { 1951 def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst), 1952 [(MIPSehret GPR32:$spoff, GPR32:$dst)]>; 1953 def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff, 1954 GPR64:$dst), 1955 [(MIPSehret GPR64:$spoff, GPR64:$dst)]>; 1956 } 1957 1958 /// Multiply and Divide Instructions. 1959 def MULT : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>, 1960 MULT_FM<0, 0x18>, ISA_MIPS1_NOT_32R6_64R6; 1961 def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>, 1962 MULT_FM<0, 0x19>, ISA_MIPS1_NOT_32R6_64R6; 1963 let AdditionalPredicates = [NotInMicroMips] in { 1964 def SDIV : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>, 1965 MULT_FM<0, 0x1a>, ISA_MIPS1_NOT_32R6_64R6; 1966 def UDIV : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>, 1967 MULT_FM<0, 0x1b>, ISA_MIPS1_NOT_32R6_64R6; 1968 } 1969 def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>, 1970 ISA_MIPS1_NOT_32R6_64R6; 1971 def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>, 1972 ISA_MIPS1_NOT_32R6_64R6; 1973 let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug 1974 AdditionalPredicates = [NotInMicroMips] in { 1975 def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>, 1976 ISA_MIPS1_NOT_32R6_64R6; 1977 def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>, 1978 ISA_MIPS1_NOT_32R6_64R6; 1979 } 1980 1981 /// Sign Ext In Register Instructions. 1982 def SEB : MMRel, StdMMR6Rel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>, 1983 SEB_FM<0x10, 0x20>, ISA_MIPS32R2; 1984 def SEH : MMRel, StdMMR6Rel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>, 1985 SEB_FM<0x18, 0x20>, ISA_MIPS32R2; 1986 1987 /// Count Leading 1988 def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd, II_CLZ>, CLO_FM<0x20>, 1989 ISA_MIPS32_NOT_32R6_64R6; 1990 def CLO : MMRel, CountLeading1<"clo", GPR32Opnd, II_CLO>, CLO_FM<0x21>, 1991 ISA_MIPS32_NOT_32R6_64R6; 1992 1993 let AdditionalPredicates = [NotInMicroMips] in { 1994 /// Word Swap Bytes Within Halfwords 1995 def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd, II_WSBH>, SEB_FM<2, 0x20>, 1996 ISA_MIPS32R2; 1997 } 1998 1999 /// No operation. 2000 def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>; 2001 2002 // FrameIndexes are legalized when they are operands from load/store 2003 // instructions. The same not happens for stack address copies, so an 2004 // add op with mem ComplexPattern is used and the stack address copy 2005 // can be matched. It's similar to Sparc LEA_ADDRi 2006 def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>; 2007 2008 // MADD*/MSUB* 2009 def MADD : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>, 2010 ISA_MIPS32_NOT_32R6_64R6; 2011 def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>, 2012 ISA_MIPS32_NOT_32R6_64R6; 2013 def MSUB : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>, 2014 ISA_MIPS32_NOT_32R6_64R6; 2015 def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>, 2016 ISA_MIPS32_NOT_32R6_64R6; 2017 2018 let AdditionalPredicates = [NotDSP] in { 2019 def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>, 2020 ISA_MIPS1_NOT_32R6_64R6; 2021 def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>, 2022 ISA_MIPS1_NOT_32R6_64R6; 2023 def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>, ISA_MIPS1_NOT_32R6_64R6; 2024 def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>, ISA_MIPS1_NOT_32R6_64R6; 2025 def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>, ISA_MIPS1_NOT_32R6_64R6; 2026 def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd, II_MADD>, 2027 ISA_MIPS32_NOT_32R6_64R6; 2028 def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>, 2029 ISA_MIPS32_NOT_32R6_64R6; 2030 def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>, 2031 ISA_MIPS32_NOT_32R6_64R6; 2032 def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>, 2033 ISA_MIPS32_NOT_32R6_64R6; 2034 } 2035 2036 let AdditionalPredicates = [NotInMicroMips] in { 2037 def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV, 2038 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; 2039 def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU, 2040 0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6; 2041 def RDHWR : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM; 2042 // TODO: Add '0 < pos+size <= 32' constraint check to ext instruction 2043 def EXT : MMRel, StdMMR6Rel, ExtBase<"ext", GPR32Opnd, uimm5, uimm5_plus1, 2044 immZExt5, immZExt5Plus1, MipsExt>, 2045 EXT_FM<0>; 2046 def INS : MMRel, StdMMR6Rel, InsBase<"ins", GPR32Opnd, uimm5, 2047 uimm5_inssize_plus1, MipsIns>, 2048 EXT_FM<4>; 2049 } 2050 /// Move Control Registers From/To CPU Registers 2051 let AdditionalPredicates = [NotInMicroMips] in { 2052 def MTC0 : MTC3OP<"mtc0", COP0Opnd, GPR32Opnd, II_MTC0>, MFC3OP_FM<0x10, 4>, 2053 ISA_MIPS32; 2054 def MFC0 : MFC3OP<"mfc0", GPR32Opnd, COP0Opnd, II_MFC0>, MFC3OP_FM<0x10, 0>, 2055 ISA_MIPS32; 2056 } 2057 def MFC2 : MFC3OP<"mfc2", GPR32Opnd, COP2Opnd, II_MFC2>, MFC3OP_FM<0x12, 0>; 2058 def MTC2 : MTC3OP<"mtc2", COP2Opnd, GPR32Opnd, II_MTC2>, MFC3OP_FM<0x12, 4>; 2059 2060 class Barrier<string asmstr, InstrItinClass itin = NoItinerary> : 2061 InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; 2062 2063 def SSNOP : MMRel, StdMMR6Rel, Barrier<"ssnop", II_SSNOP>, BARRIER_FM<1>; 2064 def EHB : MMRel, Barrier<"ehb", II_EHB>, BARRIER_FM<3>; 2065 2066 let isCTI = 1 in 2067 def PAUSE : MMRel, StdMMR6Rel, Barrier<"pause", II_PAUSE>, BARRIER_FM<5>, 2068 ISA_MIPS32R2; 2069 2070 // JR_HB and JALR_HB are defined here using the new style naming 2071 // scheme because some of this code is shared with Mips32r6InstrInfo.td 2072 // and because of that it doesn't follow the naming convention of the 2073 // rest of the file. To avoid a mixture of old vs new style, the new 2074 // style was chosen. 2075 class JR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { 2076 dag OutOperandList = (outs); 2077 dag InOperandList = (ins GPROpnd:$rs); 2078 string AsmString = !strconcat(instr_asm, "\t$rs"); 2079 list<dag> Pattern = []; 2080 } 2081 2082 class JALR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> { 2083 dag OutOperandList = (outs GPROpnd:$rd); 2084 dag InOperandList = (ins GPROpnd:$rs); 2085 string AsmString = !strconcat(instr_asm, "\t$rd, $rs"); 2086 list<dag> Pattern = []; 2087 } 2088 2089 class JR_HB_DESC : InstSE<(outs), (ins), "", [], II_JR_HB, FrmJ>, 2090 JR_HB_DESC_BASE<"jr.hb", GPR32Opnd> { 2091 let isBranch=1; 2092 let isIndirectBranch=1; 2093 let hasDelaySlot=1; 2094 let isTerminator=1; 2095 let isBarrier=1; 2096 bit isCTI = 1; 2097 } 2098 2099 class JALR_HB_DESC : InstSE<(outs), (ins), "", [], II_JALR_HB, FrmJ>, 2100 JALR_HB_DESC_BASE<"jalr.hb", GPR32Opnd> { 2101 let isIndirectBranch=1; 2102 let hasDelaySlot=1; 2103 bit isCTI = 1; 2104 } 2105 2106 class JR_HB_ENC : JR_HB_FM<8>; 2107 class JALR_HB_ENC : JALR_HB_FM<9>; 2108 2109 def JR_HB : JR_HB_DESC, JR_HB_ENC, ISA_MIPS32_NOT_32R6_64R6; 2110 def JALR_HB : JALR_HB_DESC, JALR_HB_ENC, ISA_MIPS32; 2111 2112 class TLB<string asmstr, InstrItinClass itin = NoItinerary> : 2113 InstSE<(outs), (ins), asmstr, [], itin, FrmOther, asmstr>; 2114 let AdditionalPredicates = [NotInMicroMips] in { 2115 def TLBP : MMRel, TLB<"tlbp", II_TLBP>, COP0_TLB_FM<0x08>; 2116 def TLBR : MMRel, TLB<"tlbr", II_TLBR>, COP0_TLB_FM<0x01>; 2117 def TLBWI : MMRel, TLB<"tlbwi", II_TLBWI>, COP0_TLB_FM<0x02>; 2118 def TLBWR : MMRel, TLB<"tlbwr", II_TLBWR>, COP0_TLB_FM<0x06>; 2119 } 2120 class CacheOp<string instr_asm, Operand MemOpnd, 2121 InstrItinClass itin = NoItinerary> : 2122 InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint), 2123 !strconcat(instr_asm, "\t$hint, $addr"), [], itin, FrmOther, 2124 instr_asm> { 2125 let DecoderMethod = "DecodeCacheOp"; 2126 } 2127 2128 def CACHE : MMRel, CacheOp<"cache", mem, II_CACHE>, CACHEOP_FM<0b101111>, 2129 INSN_MIPS3_32_NOT_32R6_64R6; 2130 def PREF : MMRel, CacheOp<"pref", mem, II_PREF>, CACHEOP_FM<0b110011>, 2131 INSN_MIPS3_32_NOT_32R6_64R6; 2132 2133 def ROL : MipsAsmPseudoInst<(outs), 2134 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2135 "rol\t$rs, $rt, $rd">; 2136 def ROLImm : MipsAsmPseudoInst<(outs), 2137 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2138 "rol\t$rs, $rt, $imm">; 2139 def : MipsInstAlias<"rol $rd, $rs", 2140 (ROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; 2141 def : MipsInstAlias<"rol $rd, $imm", 2142 (ROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; 2143 2144 def ROR : MipsAsmPseudoInst<(outs), 2145 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2146 "ror\t$rs, $rt, $rd">; 2147 def RORImm : MipsAsmPseudoInst<(outs), 2148 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2149 "ror\t$rs, $rt, $imm">; 2150 def : MipsInstAlias<"ror $rd, $rs", 2151 (ROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>; 2152 def : MipsInstAlias<"ror $rd, $imm", 2153 (RORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>; 2154 2155 def DROL : MipsAsmPseudoInst<(outs), 2156 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2157 "drol\t$rs, $rt, $rd">, ISA_MIPS64; 2158 def DROLImm : MipsAsmPseudoInst<(outs), 2159 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2160 "drol\t$rs, $rt, $imm">, ISA_MIPS64; 2161 def : MipsInstAlias<"drol $rd, $rs", 2162 (DROL GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, ISA_MIPS64; 2163 def : MipsInstAlias<"drol $rd, $imm", 2164 (DROLImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, ISA_MIPS64; 2165 2166 def DROR : MipsAsmPseudoInst<(outs), 2167 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, GPR32Opnd:$rd), 2168 "dror\t$rs, $rt, $rd">, ISA_MIPS64; 2169 def DRORImm : MipsAsmPseudoInst<(outs), 2170 (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 2171 "dror\t$rs, $rt, $imm">, ISA_MIPS64; 2172 def : MipsInstAlias<"dror $rd, $rs", 2173 (DROR GPR32Opnd:$rd, GPR32Opnd:$rd, GPR32Opnd:$rs), 0>, ISA_MIPS64; 2174 def : MipsInstAlias<"dror $rd, $imm", 2175 (DRORImm GPR32Opnd:$rd, GPR32Opnd:$rd, simm16:$imm), 0>, ISA_MIPS64; 2176 2177 def ABSMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), 2178 "abs\t$rd, $rs">; 2179 2180 //===----------------------------------------------------------------------===// 2181 // Instruction aliases 2182 //===----------------------------------------------------------------------===// 2183 def : MipsInstAlias<"move $dst, $src", 2184 (OR GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, 2185 GPR_32 { 2186 let AdditionalPredicates = [NotInMicroMips]; 2187 } 2188 def : MipsInstAlias<"move $dst, $src", 2189 (ADDu GPR32Opnd:$dst, GPR32Opnd:$src, ZERO), 1>, 2190 GPR_32 { 2191 let AdditionalPredicates = [NotInMicroMips]; 2192 } 2193 def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>, 2194 ISA_MIPS1_NOT_32R6_64R6; 2195 def : MipsInstAlias< 2196 "addu $rs, $rt, $imm", 2197 (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2198 def : MipsInstAlias< 2199 "addu $rs, $imm", 2200 (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2201 def : MipsInstAlias< 2202 "add $rs, $rt, $imm", 2203 (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>, 2204 ISA_MIPS1_NOT_32R6_64R6; 2205 def : MipsInstAlias< 2206 "add $rs, $imm", 2207 (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>, 2208 ISA_MIPS1_NOT_32R6_64R6; 2209 def : MipsInstAlias< 2210 "and $rs, $rt, $imm", 2211 (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2212 def : MipsInstAlias< 2213 "and $rs, $imm", 2214 (ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2215 def : MipsInstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>; 2216 let Predicates = [NotInMicroMips] in { 2217 def : MipsInstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>; 2218 } 2219 def : MipsInstAlias<"jalr.hb $rs", (JALR_HB RA, GPR32Opnd:$rs), 1>, ISA_MIPS32; 2220 def : MipsInstAlias<"neg $rt, $rs", 2221 (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>; 2222 def : MipsInstAlias<"negu $rt", 2223 (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 0>; 2224 def : MipsInstAlias<"negu $rt, $rs", 2225 (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>; 2226 def : MipsInstAlias< 2227 "slt $rs, $rt, $imm", 2228 (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2229 def : MipsInstAlias< 2230 "sltu $rt, $rs, $imm", 2231 (SLTiu GPR32Opnd:$rt, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2232 let AdditionalPredicates = [NotInMicroMips] in { 2233 def : MipsInstAlias< 2234 "and $rs, $rt, $imm", 2235 (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2236 def : MipsInstAlias< 2237 "and $rs, $imm", 2238 (ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2239 def : MipsInstAlias< 2240 "xor $rs, $rt, $imm", 2241 (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2242 def : MipsInstAlias< 2243 "xor $rs, $imm", 2244 (XORi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2245 def : MipsInstAlias< 2246 "or $rs, $rt, $imm", 2247 (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, simm32_relaxed:$imm), 0>; 2248 def : MipsInstAlias< 2249 "or $rs, $imm", 2250 (ORi GPR32Opnd:$rs, GPR32Opnd:$rs, simm32_relaxed:$imm), 0>; 2251 def : MipsInstAlias< 2252 "not $rt, $rs", 2253 (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>; 2254 def : MipsInstAlias<"nop", (SLL ZERO, ZERO, 0), 1>; 2255 } 2256 def : MipsInstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>; 2257 def : MipsInstAlias<"mtc0 $rt, $rd", (MTC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>; 2258 def : MipsInstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, COP2Opnd:$rd, 0), 0>; 2259 def : MipsInstAlias<"mtc2 $rt, $rd", (MTC2 COP2Opnd:$rd, GPR32Opnd:$rt, 0), 0>; 2260 let AdditionalPredicates = [NotInMicroMips] in { 2261 def : MipsInstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>; 2262 } 2263 def : MipsInstAlias<"bnez $rs,$offset", 2264 (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; 2265 def : MipsInstAlias<"bnezl $rs,$offset", 2266 (BNEL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; 2267 def : MipsInstAlias<"beqz $rs,$offset", 2268 (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; 2269 def : MipsInstAlias<"beqzl $rs,$offset", 2270 (BEQL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>; 2271 let AdditionalPredicates = [NotInMicroMips] in { 2272 def : MipsInstAlias<"syscall", (SYSCALL 0), 1>; 2273 } 2274 2275 def : MipsInstAlias<"break", (BREAK 0, 0), 1>; 2276 def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>; 2277 let AdditionalPredicates = [NotInMicroMips] in { 2278 def : MipsInstAlias<"ei", (EI ZERO), 1>, ISA_MIPS32R2; 2279 def : MipsInstAlias<"di", (DI ZERO), 1>, ISA_MIPS32R2; 2280 } 2281 let AdditionalPredicates = [NotInMicroMips] in { 2282 def : MipsInstAlias<"teq $rs, $rt", 2283 (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2284 def : MipsInstAlias<"tge $rs, $rt", 2285 (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2286 def : MipsInstAlias<"tgeu $rs, $rt", 2287 (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2288 def : MipsInstAlias<"tlt $rs, $rt", 2289 (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2290 def : MipsInstAlias<"tltu $rs, $rt", 2291 (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2292 def : MipsInstAlias<"tne $rs, $rt", 2293 (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2; 2294 } 2295 def : MipsInstAlias<"sub, $rd, $rs, $imm", 2296 (ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, 2297 InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6; 2298 def : MipsInstAlias<"sub $rs, $imm", 2299 (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm), 2300 0>, ISA_MIPS1_NOT_32R6_64R6; 2301 def : MipsInstAlias<"subu, $rd, $rs, $imm", 2302 (ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, 2303 InvertedImOperand:$imm), 0>; 2304 def : MipsInstAlias<"subu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, 2305 InvertedImOperand:$imm), 0>; 2306 let AdditionalPredicates = [NotInMicroMips] in { 2307 def : MipsInstAlias<"sll $rd, $rt, $rs", 2308 (SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2309 def : MipsInstAlias<"sra $rd, $rt, $rs", 2310 (SRAV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2311 def : MipsInstAlias<"srl $rd, $rt, $rs", 2312 (SRLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>; 2313 } 2314 def : MipsInstAlias<"sdbbp", (SDBBP 0)>, ISA_MIPS32_NOT_32R6_64R6; 2315 def : MipsInstAlias<"sync", 2316 (SYNC 0), 1>, ISA_MIPS2; 2317 //===----------------------------------------------------------------------===// 2318 // Assembler Pseudo Instructions 2319 //===----------------------------------------------------------------------===// 2320 2321 // We use i32imm on li/la to defer range checking to the assembler. 2322 class LoadImmediate32<string instr_asm, Operand Od, RegisterOperand RO> : 2323 MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), 2324 !strconcat(instr_asm, "\t$rt, $imm32")> ; 2325 def LoadImm32 : LoadImmediate32<"li", i32imm, GPR32Opnd>; 2326 2327 class LoadAddressFromReg32<string instr_asm, Operand MemOpnd, 2328 RegisterOperand RO> : 2329 MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr), 2330 !strconcat(instr_asm, "\t$rt, $addr")> ; 2331 def LoadAddrReg32 : LoadAddressFromReg32<"la", mem, GPR32Opnd>; 2332 2333 class LoadAddressFromImm32<string instr_asm, Operand Od, RegisterOperand RO> : 2334 MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), 2335 !strconcat(instr_asm, "\t$rt, $imm32")> ; 2336 def LoadAddrImm32 : LoadAddressFromImm32<"la", i32imm, GPR32Opnd>; 2337 2338 def JalTwoReg : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs), 2339 "jal\t$rd, $rs"> ; 2340 def JalOneReg : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs), 2341 "jal\t$rs"> ; 2342 2343 def NORImm : MipsAsmPseudoInst< 2344 (outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, simm32:$imm), 2345 "nor\t$rs, $rt, $imm"> ; 2346 2347 let hasDelaySlot = 1, isCTI = 1 in { 2348 def BneImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 2349 (ins imm64:$imm64, brtarget:$offset), 2350 "bne\t$rt, $imm64, $offset">; 2351 def BeqImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), 2352 (ins imm64:$imm64, brtarget:$offset), 2353 "beq\t$rt, $imm64, $offset">; 2354 2355 class CondBranchPseudo<string instr_asm> : 2356 MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt, 2357 brtarget:$offset), 2358 !strconcat(instr_asm, "\t$rs, $rt, $offset")>; 2359 } 2360 2361 def BLT : CondBranchPseudo<"blt">; 2362 def BLE : CondBranchPseudo<"ble">; 2363 def BGE : CondBranchPseudo<"bge">; 2364 def BGT : CondBranchPseudo<"bgt">; 2365 def BLTU : CondBranchPseudo<"bltu">; 2366 def BLEU : CondBranchPseudo<"bleu">; 2367 def BGEU : CondBranchPseudo<"bgeu">; 2368 def BGTU : CondBranchPseudo<"bgtu">; 2369 def BLTL : CondBranchPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; 2370 def BLEL : CondBranchPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; 2371 def BGEL : CondBranchPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; 2372 def BGTL : CondBranchPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; 2373 def BLTUL: CondBranchPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; 2374 def BLEUL: CondBranchPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; 2375 def BGEUL: CondBranchPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; 2376 def BGTUL: CondBranchPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; 2377 2378 let isCTI = 1 in 2379 class CondBranchImmPseudo<string instr_asm> : 2380 MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, imm64:$imm, brtarget:$offset), 2381 !strconcat(instr_asm, "\t$rs, $imm, $offset")>; 2382 2383 def BLTImmMacro : CondBranchImmPseudo<"blt">; 2384 def BLEImmMacro : CondBranchImmPseudo<"ble">; 2385 def BGEImmMacro : CondBranchImmPseudo<"bge">; 2386 def BGTImmMacro : CondBranchImmPseudo<"bgt">; 2387 def BLTUImmMacro : CondBranchImmPseudo<"bltu">; 2388 def BLEUImmMacro : CondBranchImmPseudo<"bleu">; 2389 def BGEUImmMacro : CondBranchImmPseudo<"bgeu">; 2390 def BGTUImmMacro : CondBranchImmPseudo<"bgtu">; 2391 def BLTLImmMacro : CondBranchImmPseudo<"bltl">, ISA_MIPS2_NOT_32R6_64R6; 2392 def BLELImmMacro : CondBranchImmPseudo<"blel">, ISA_MIPS2_NOT_32R6_64R6; 2393 def BGELImmMacro : CondBranchImmPseudo<"bgel">, ISA_MIPS2_NOT_32R6_64R6; 2394 def BGTLImmMacro : CondBranchImmPseudo<"bgtl">, ISA_MIPS2_NOT_32R6_64R6; 2395 def BLTULImmMacro : CondBranchImmPseudo<"bltul">, ISA_MIPS2_NOT_32R6_64R6; 2396 def BLEULImmMacro : CondBranchImmPseudo<"bleul">, ISA_MIPS2_NOT_32R6_64R6; 2397 def BGEULImmMacro : CondBranchImmPseudo<"bgeul">, ISA_MIPS2_NOT_32R6_64R6; 2398 def BGTULImmMacro : CondBranchImmPseudo<"bgtul">, ISA_MIPS2_NOT_32R6_64R6; 2399 2400 // FIXME: Predicates are removed because instructions are matched regardless of 2401 // predicates, because PredicateControl was not in the hierarchy. This was 2402 // done to emit more precise error message from expansion function. 2403 // Once the tablegen-erated errors are made better, this needs to be fixed and 2404 // predicates needs to be restored. 2405 2406 def SDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2407 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2408 "div\t$rd, $rs, $rt">, 2409 ISA_MIPS1_NOT_32R6_64R6; 2410 def UDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2411 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2412 "divu\t$rd, $rs, $rt">, 2413 ISA_MIPS1_NOT_32R6_64R6; 2414 def : MipsInstAlias<"div $rt, $rs", (SDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 2415 GPR32Opnd:$rs), 0>, 2416 ISA_MIPS1_NOT_32R6_64R6; 2417 def : MipsInstAlias<"divu $rt, $rs", (UDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 2418 GPR32Opnd:$rs), 0>, 2419 ISA_MIPS1_NOT_32R6_64R6; 2420 def DSDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2421 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2422 "ddiv\t$rd, $rs, $rt">, 2423 ISA_MIPS64_NOT_64R6; 2424 def DUDivMacro : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), 2425 (ins GPR32Opnd:$rs, GPR32Opnd:$rt), 2426 "ddivu\t$rd, $rs, $rt">, 2427 ISA_MIPS64_NOT_64R6; 2428 def : MipsInstAlias<"ddiv $rt, $rs", (DSDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 2429 GPR32Opnd:$rs), 0>, 2430 ISA_MIPS64_NOT_64R6; 2431 def : MipsInstAlias<"ddivu $rt, $rs", (DUDivMacro GPR32Opnd:$rt, GPR32Opnd:$rt, 2432 GPR32Opnd:$rs), 0>, 2433 ISA_MIPS64_NOT_64R6; 2434 2435 def Ulh : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 2436 "ulh\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 2437 2438 def Ulhu : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 2439 "ulhu\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 2440 2441 def Ulw : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr), 2442 "ulw\t$rt, $addr">; //, ISA_MIPS1_NOT_32R6_64R6; 2443 2444 //===----------------------------------------------------------------------===// 2445 // Arbitrary patterns that map to one or more instructions 2446 //===----------------------------------------------------------------------===// 2447 2448 // Load/store pattern templates. 2449 class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> : 2450 MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>; 2451 2452 class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> : 2453 MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>; 2454 2455 // Small immediates 2456 let AdditionalPredicates = [NotInMicroMips] in { 2457 def : MipsPat<(i32 immSExt16:$in), 2458 (ADDiu ZERO, imm:$in)>; 2459 def : MipsPat<(i32 immZExt16:$in), 2460 (ORi ZERO, imm:$in)>; 2461 } 2462 def : MipsPat<(i32 immLow16Zero:$in), 2463 (LUi (HI16 imm:$in))>; 2464 2465 // Arbitrary immediates 2466 def : MipsPat<(i32 imm:$imm), 2467 (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; 2468 2469 // Carry MipsPatterns 2470 let AdditionalPredicates = [NotInMicroMips] in { 2471 def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs), 2472 (SUBu GPR32:$lhs, GPR32:$rhs)>; 2473 } 2474 def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs), 2475 (ADDu GPR32:$lhs, GPR32:$rhs)>, ASE_NOT_DSP; 2476 def : MipsPat<(addc GPR32:$src, immSExt16:$imm), 2477 (ADDiu GPR32:$src, imm:$imm)>, ASE_NOT_DSP; 2478 2479 // Support multiplication for pre-Mips32 targets that don't have 2480 // the MUL instruction. 2481 def : MipsPat<(mul GPR32:$lhs, GPR32:$rhs), 2482 (PseudoMFLO (PseudoMULT GPR32:$lhs, GPR32:$rhs))>, 2483 ISA_MIPS1_NOT_32R6_64R6; 2484 2485 // SYNC 2486 def : MipsPat<(MipsSync (i32 immz)), 2487 (SYNC 0)>, ISA_MIPS2; 2488 2489 // Call 2490 def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)), 2491 (JAL texternalsym:$dst)>; 2492 //def : MipsPat<(MipsJmpLink GPR32:$dst), 2493 // (JALR GPR32:$dst)>; 2494 2495 // Tail call 2496 def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)), 2497 (TAILCALL tglobaladdr:$dst)>; 2498 def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)), 2499 (TAILCALL texternalsym:$dst)>; 2500 // hi/lo relocs 2501 def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; 2502 def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; 2503 def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; 2504 def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; 2505 def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; 2506 def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>; 2507 2508 def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; 2509 def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; 2510 def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; 2511 def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; 2512 def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; 2513 def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>; 2514 2515 def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)), 2516 (ADDiu GPR32:$hi, tglobaladdr:$lo)>; 2517 def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)), 2518 (ADDiu GPR32:$hi, tblockaddress:$lo)>; 2519 def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)), 2520 (ADDiu GPR32:$hi, tjumptable:$lo)>; 2521 def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)), 2522 (ADDiu GPR32:$hi, tconstpool:$lo)>; 2523 def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)), 2524 (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>; 2525 2526 // gp_rel relocs 2527 def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)), 2528 (ADDiu GPR32:$gp, tglobaladdr:$in)>; 2529 def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)), 2530 (ADDiu GPR32:$gp, tconstpool:$in)>; 2531 2532 // wrapper_pic 2533 class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>: 2534 MipsPat<(MipsWrapper RC:$gp, node:$in), 2535 (ADDiuOp RC:$gp, node:$in)>; 2536 2537 def : WrapperPat<tglobaladdr, ADDiu, GPR32>; 2538 def : WrapperPat<tconstpool, ADDiu, GPR32>; 2539 def : WrapperPat<texternalsym, ADDiu, GPR32>; 2540 def : WrapperPat<tblockaddress, ADDiu, GPR32>; 2541 def : WrapperPat<tjumptable, ADDiu, GPR32>; 2542 def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>; 2543 2544 let AdditionalPredicates = [NotInMicroMips] in { 2545 // Mips does not have "not", so we expand our way 2546 def : MipsPat<(not GPR32:$in), 2547 (NOR GPR32Opnd:$in, ZERO)>; 2548 } 2549 2550 // extended loads 2551 def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>; 2552 def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; 2553 let AdditionalPredicates = [NotInMicroMips] in { 2554 def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>; 2555 } 2556 2557 // peepholes 2558 def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; 2559 2560 // brcond patterns 2561 multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp, 2562 Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp, 2563 Instruction SLTiuOp, Register ZEROReg> { 2564 def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), 2565 (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; 2566 def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), 2567 (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; 2568 2569 def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), 2570 (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 2571 def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), 2572 (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; 2573 def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), 2574 (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 2575 def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), 2576 (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; 2577 def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), 2578 (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; 2579 def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst), 2580 (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>; 2581 2582 def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), 2583 (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 2584 def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), 2585 (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; 2586 2587 def : MipsPat<(brcond RC:$cond, bb:$dst), 2588 (BNEOp RC:$cond, ZEROReg, bb:$dst)>; 2589 } 2590 2591 defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>; 2592 2593 def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst), 2594 (BLEZ i32:$lhs, bb:$dst)>; 2595 def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst), 2596 (BGEZ i32:$lhs, bb:$dst)>; 2597 2598 // setcc patterns 2599 multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, 2600 Instruction SLTuOp, Register ZEROReg> { 2601 def : MipsPat<(seteq RC:$lhs, 0), 2602 (SLTiuOp RC:$lhs, 1)>; 2603 def : MipsPat<(setne RC:$lhs, 0), 2604 (SLTuOp ZEROReg, RC:$lhs)>; 2605 def : MipsPat<(seteq RC:$lhs, RC:$rhs), 2606 (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; 2607 def : MipsPat<(setne RC:$lhs, RC:$rhs), 2608 (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; 2609 } 2610 2611 multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 2612 def : MipsPat<(setle RC:$lhs, RC:$rhs), 2613 (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; 2614 def : MipsPat<(setule RC:$lhs, RC:$rhs), 2615 (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; 2616 } 2617 2618 multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 2619 def : MipsPat<(setgt RC:$lhs, RC:$rhs), 2620 (SLTOp RC:$rhs, RC:$lhs)>; 2621 def : MipsPat<(setugt RC:$lhs, RC:$rhs), 2622 (SLTuOp RC:$rhs, RC:$lhs)>; 2623 } 2624 2625 multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { 2626 def : MipsPat<(setge RC:$lhs, RC:$rhs), 2627 (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; 2628 def : MipsPat<(setuge RC:$lhs, RC:$rhs), 2629 (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; 2630 } 2631 2632 multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp, 2633 Instruction SLTiuOp> { 2634 def : MipsPat<(setge RC:$lhs, immSExt16:$rhs), 2635 (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; 2636 def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs), 2637 (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; 2638 } 2639 2640 defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>; 2641 defm : SetlePats<GPR32, SLT, SLTu>; 2642 defm : SetgtPats<GPR32, SLT, SLTu>; 2643 defm : SetgePats<GPR32, SLT, SLTu>; 2644 defm : SetgeImmPats<GPR32, SLTi, SLTiu>; 2645 2646 // bswap pattern 2647 def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>; 2648 2649 // Load halfword/word patterns. 2650 let AddedComplexity = 40 in { 2651 def : LoadRegImmPat<LBu, i32, zextloadi8>; 2652 let AdditionalPredicates = [NotInMicroMips] in { 2653 def : LoadRegImmPat<LH, i32, sextloadi16>; 2654 def : LoadRegImmPat<LW, i32, load>; 2655 } 2656 } 2657 2658 // Atomic load patterns. 2659 def : MipsPat<(atomic_load_8 addr:$a), (LB addr:$a)>; 2660 let AdditionalPredicates = [NotInMicroMips] in { 2661 def : MipsPat<(atomic_load_16 addr:$a), (LH addr:$a)>; 2662 } 2663 def : MipsPat<(atomic_load_32 addr:$a), (LW addr:$a)>; 2664 2665 // Atomic store patterns. 2666 def : MipsPat<(atomic_store_8 addr:$a, GPR32:$v), (SB GPR32:$v, addr:$a)>; 2667 def : MipsPat<(atomic_store_16 addr:$a, GPR32:$v), (SH GPR32:$v, addr:$a)>; 2668 def : MipsPat<(atomic_store_32 addr:$a, GPR32:$v), (SW GPR32:$v, addr:$a)>; 2669 2670 //===----------------------------------------------------------------------===// 2671 // Floating Point Support 2672 //===----------------------------------------------------------------------===// 2673 2674 include "MipsInstrFPU.td" 2675 include "Mips64InstrInfo.td" 2676 include "MipsCondMov.td" 2677 2678 include "Mips32r6InstrInfo.td" 2679 include "Mips64r6InstrInfo.td" 2680 2681 // 2682 // Mips16 2683 2684 include "Mips16InstrFormats.td" 2685 include "Mips16InstrInfo.td" 2686 2687 // DSP 2688 include "MipsDSPInstrFormats.td" 2689 include "MipsDSPInstrInfo.td" 2690 2691 // MSA 2692 include "MipsMSAInstrFormats.td" 2693 include "MipsMSAInstrInfo.td" 2694 2695 // EVA 2696 include "MipsEVAInstrFormats.td" 2697 include "MipsEVAInstrInfo.td" 2698 2699 // Micromips 2700 include "MicroMipsInstrFormats.td" 2701 include "MicroMipsInstrInfo.td" 2702 include "MicroMipsInstrFPU.td" 2703 2704 // Micromips r6 2705 include "MicroMips32r6InstrFormats.td" 2706 include "MicroMips32r6InstrInfo.td" 2707 2708 // Micromips64 r6 2709 include "MicroMips64r6InstrFormats.td" 2710 include "MicroMips64r6InstrInfo.td" 2711 2712 // Micromips DSP 2713 include "MicroMipsDSPInstrFormats.td" 2714 include "MicroMipsDSPInstrInfo.td" 2715