Home | History | Annotate | only in /external/llvm/lib/Target/PowerPC
Up to higher level directory
NameDateSize
AsmParser/05-Oct-2017
CMakeLists.txt05-Oct-20171.4K
Disassembler/05-Oct-2017
InstPrinter/05-Oct-2017
LLVMBuild.txt05-Oct-20171.1K
MCTargetDesc/05-Oct-2017
p9-instrs.txt05-Oct-201714.1K
PPC.h05-Oct-20173.3K
PPC.td05-Oct-201723.5K
PPCAsmPrinter.cpp05-Oct-201754.8K
PPCBoolRetToInt.cpp05-Oct-20178.8K
PPCBranchSelector.cpp05-Oct-20178.4K
PPCCallingConv.h05-Oct-20171.1K
PPCCallingConv.td05-Oct-201712.6K
PPCCCState.cpp05-Oct-20171.1K
PPCCCState.h05-Oct-20171.2K
PPCCTRLoops.cpp05-Oct-201723.6K
PPCEarlyReturn.cpp05-Oct-20177.2K
PPCFastISel.cpp05-Oct-201781.3K
PPCFrameLowering.cpp05-Oct-201769.1K
PPCFrameLowering.h05-Oct-20176.4K
PPCHazardRecognizers.cpp05-Oct-201714.1K
PPCHazardRecognizers.h05-Oct-20173.8K
PPCInstr64Bit.td05-Oct-201760K
PPCInstrAltivec.td05-Oct-201767.1K
PPCInstrBuilder.h05-Oct-20171.5K
PPCInstrFormats.td05-Oct-201749.3K
PPCInstrHTM.td05-Oct-20175.1K
PPCInstrInfo.cpp05-Oct-201770K
PPCInstrInfo.h05-Oct-201711.4K
PPCInstrInfo.td05-Oct-2017188.6K
PPCInstrQPX.td05-Oct-201757.4K
PPCInstrSPE.td05-Oct-201726.5K
PPCInstrVSX.td05-Oct-2017103.7K
PPCISelDAGToDAG.cpp05-Oct-2017161.2K
PPCISelLowering.cpp05-Oct-2017473.6K
PPCISelLowering.h05-Oct-201742.7K
PPCLoopPreIncPrep.cpp05-Oct-201714.9K
PPCMachineFunctionInfo.cpp05-Oct-20171.8K
PPCMachineFunctionInfo.h05-Oct-20177.7K
PPCMCInstLower.cpp05-Oct-20176K
PPCMIPeephole.cpp05-Oct-20177.6K
PPCPerfectShuffle.h05-Oct-2017397.5K
PPCQPXLoadSplat.cpp05-Oct-20175.4K
PPCRegisterInfo.cpp05-Oct-201739.5K
PPCRegisterInfo.h05-Oct-20175.5K
PPCRegisterInfo.td05-Oct-201713.1K
PPCSchedule.td05-Oct-20174.9K
PPCSchedule440.td05-Oct-201735K
PPCScheduleA2.td05-Oct-20177.9K
PPCScheduleE500mc.td05-Oct-201719.2K
PPCScheduleE5500.td05-Oct-201723.7K
PPCScheduleG3.td05-Oct-20174.4K
PPCScheduleG4.td05-Oct-20175.3K
PPCScheduleG4Plus.td05-Oct-20176.5K
PPCScheduleG5.td05-Oct-20177.1K
PPCScheduleP7.td05-Oct-201721.7K
PPCScheduleP8.td05-Oct-201723.4K
PPCSubtarget.cpp05-Oct-20177.9K
PPCSubtarget.h05-Oct-201710.2K
PPCTargetMachine.cpp05-Oct-201715.8K
PPCTargetMachine.h05-Oct-20172.7K
PPCTargetObjectFile.cpp05-Oct-20172.5K
PPCTargetObjectFile.h05-Oct-20171.2K
PPCTargetStreamer.h05-Oct-2017866
PPCTargetTransformInfo.cpp05-Oct-201714.8K
PPCTargetTransformInfo.h05-Oct-20173.7K
PPCTLSDynamicCall.cpp05-Oct-20175.7K
PPCTOCRegDeps.cpp05-Oct-20175.2K
PPCVSXCopy.cpp05-Oct-20176.3K
PPCVSXFMAMutate.cpp05-Oct-201715.2K
PPCVSXSwapRemoval.cpp05-Oct-201736K
README.txt05-Oct-201718.1K
README_ALTIVEC.txt05-Oct-201711.7K
README_P9.txt05-Oct-201722.2K
TargetInfo/05-Oct-2017

README.txt

      1 //===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
      2 
      3 TODO:
      4 * lmw/stmw pass a la arm load store optimizer for prolog/epilog
      5 
      6 ===-------------------------------------------------------------------------===
      7 
      8 This code:
      9 
     10 unsigned add32carry(unsigned sum, unsigned x) {
     11  unsigned z = sum + x;
     12  if (sum + x < x)
     13      z++;
     14  return z;
     15 }
     16 
     17 Should compile to something like:
     18 
     19 	addc r3,r3,r4
     20 	addze r3,r3
     21 
     22 instead we get:
     23 
     24 	add r3, r4, r3
     25 	cmplw cr7, r3, r4
     26 	mfcr r4 ; 1
     27 	rlwinm r4, r4, 29, 31, 31
     28 	add r3, r3, r4
     29 
     30 Ick.
     31 
     32 ===-------------------------------------------------------------------------===
     33 
     34 We compile the hottest inner loop of viterbi to:
     35 
     36         li r6, 0
     37         b LBB1_84       ;bb432.i
     38 LBB1_83:        ;bb420.i
     39         lbzx r8, r5, r7
     40         addi r6, r7, 1
     41         stbx r8, r4, r7
     42 LBB1_84:        ;bb432.i
     43         mr r7, r6
     44         cmplwi cr0, r7, 143
     45         bne cr0, LBB1_83        ;bb420.i
     46 
     47 The CBE manages to produce:
     48 
     49 	li r0, 143
     50 	mtctr r0
     51 loop:
     52 	lbzx r2, r2, r11
     53 	stbx r0, r2, r9
     54 	addi r2, r2, 1
     55 	bdz later
     56 	b loop
     57 
     58 This could be much better (bdnz instead of bdz) but it still beats us.  If we
     59 produced this with bdnz, the loop would be a single dispatch group.
     60 
     61 ===-------------------------------------------------------------------------===
     62 
     63 Lump the constant pool for each function into ONE pic object, and reference
     64 pieces of it as offsets from the start.  For functions like this (contrived
     65 to have lots of constants obviously):
     66 
     67 double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
     68 
     69 We generate:
     70 
     71 _X:
     72         lis r2, ha16(.CPI_X_0)
     73         lfd f0, lo16(.CPI_X_0)(r2)
     74         lis r2, ha16(.CPI_X_1)
     75         lfd f2, lo16(.CPI_X_1)(r2)
     76         fmadd f0, f1, f0, f2
     77         lis r2, ha16(.CPI_X_2)
     78         lfd f1, lo16(.CPI_X_2)(r2)
     79         lis r2, ha16(.CPI_X_3)
     80         lfd f2, lo16(.CPI_X_3)(r2)
     81         fmadd f1, f0, f1, f2
     82         blr
     83 
     84 It would be better to materialize .CPI_X into a register, then use immediates
     85 off of the register to avoid the lis's.  This is even more important in PIC 
     86 mode.
     87 
     88 Note that this (and the static variable version) is discussed here for GCC:
     89 http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
     90 
     91 Here's another example (the sgn function):
     92 double testf(double a) {
     93        return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
     94 }
     95 
     96 it produces a BB like this:
     97 LBB1_1: ; cond_true
     98         lis r2, ha16(LCPI1_0)
     99         lfs f0, lo16(LCPI1_0)(r2)
    100         lis r2, ha16(LCPI1_1)
    101         lis r3, ha16(LCPI1_2)
    102         lfs f2, lo16(LCPI1_2)(r3)
    103         lfs f3, lo16(LCPI1_1)(r2)
    104         fsub f0, f0, f1
    105         fsel f1, f0, f2, f3
    106         blr 
    107 
    108 ===-------------------------------------------------------------------------===
    109 
    110 PIC Code Gen IPO optimization:
    111 
    112 Squish small scalar globals together into a single global struct, allowing the 
    113 address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
    114 of the GOT on targets with one).
    115 
    116 Note that this is discussed here for GCC:
    117 http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
    118 
    119 ===-------------------------------------------------------------------------===
    120 
    121 Darwin Stub removal:
    122 
    123 We still generate calls to foo$stub, and stubs, on Darwin.  This is not
    124 necessary when building with the Leopard (10.5) or later linker, as stubs are
    125 generated by ld when necessary.  Parameterizing this based on the deployment
    126 target (-mmacosx-version-min) is probably enough.  x86-32 does this right, see
    127 its logic.
    128 
    129 ===-------------------------------------------------------------------------===
    130 
    131 Darwin Stub LICM optimization:
    132 
    133 Loops like this:
    134   
    135   for (...)  bar();
    136 
    137 Have to go through an indirect stub if bar is external or linkonce.  It would 
    138 be better to compile it as:
    139 
    140      fp = &bar;
    141      for (...)  fp();
    142 
    143 which only computes the address of bar once (instead of each time through the 
    144 stub).  This is Darwin specific and would have to be done in the code generator.
    145 Probably not a win on x86.
    146 
    147 ===-------------------------------------------------------------------------===
    148 
    149 Simple IPO for argument passing, change:
    150   void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
    151 
    152 the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
    153 of arguments get assigned to r3 through r10. That is, if you have a function
    154 foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
    155 argument bytes for r4 and r5. The trick then would be to shuffle the argument
    156 order for functions we can internalize so that the maximum number of 
    157 integers/pointers get passed in regs before you see any of the fp arguments.
    158 
    159 Instead of implementing this, it would actually probably be easier to just 
    160 implement a PPC fastcc, where we could do whatever we wanted to the CC, 
    161 including having this work sanely.
    162 
    163 ===-------------------------------------------------------------------------===
    164 
    165 Fix Darwin FP-In-Integer Registers ABI
    166 
    167 Darwin passes doubles in structures in integer registers, which is very very 
    168 bad.  Add something like a BITCAST to LLVM, then do an i-p transformation that
    169 percolates these things out of functions.
    170 
    171 Check out how horrible this is:
    172 http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
    173 
    174 This is an extension of "interprocedural CC unmunging" that can't be done with
    175 just fastcc.
    176 
    177 ===-------------------------------------------------------------------------===
    178 
    179 Fold add and sub with constant into non-extern, non-weak addresses so this:
    180 
    181 static int a;
    182 void bar(int b) { a = b; }
    183 void foo(unsigned char *c) {
    184   *c = a;
    185 }
    186 
    187 So that 
    188 
    189 _foo:
    190         lis r2, ha16(_a)
    191         la r2, lo16(_a)(r2)
    192         lbz r2, 3(r2)
    193         stb r2, 0(r3)
    194         blr
    195 
    196 Becomes
    197 
    198 _foo:
    199         lis r2, ha16(_a+3)
    200         lbz r2, lo16(_a+3)(r2)
    201         stb r2, 0(r3)
    202         blr
    203 
    204 ===-------------------------------------------------------------------------===
    205 
    206 We should compile these two functions to the same thing:
    207 
    208 #include <stdlib.h>
    209 void f(int a, int b, int *P) {
    210   *P = (a-b)>=0?(a-b):(b-a);
    211 }
    212 void g(int a, int b, int *P) {
    213   *P = abs(a-b);
    214 }
    215 
    216 Further, they should compile to something better than:
    217 
    218 _g:
    219         subf r2, r4, r3
    220         subfic r3, r2, 0
    221         cmpwi cr0, r2, -1
    222         bgt cr0, LBB2_2 ; entry
    223 LBB2_1: ; entry
    224         mr r2, r3
    225 LBB2_2: ; entry
    226         stw r2, 0(r5)
    227         blr
    228 
    229 GCC produces:
    230 
    231 _g:
    232         subf r4,r4,r3
    233         srawi r2,r4,31
    234         xor r0,r2,r4
    235         subf r0,r2,r0
    236         stw r0,0(r5)
    237         blr
    238 
    239 ... which is much nicer.
    240 
    241 This theoretically may help improve twolf slightly (used in dimbox.c:142?).
    242 
    243 ===-------------------------------------------------------------------------===
    244 
    245 PR5945: This: 
    246 define i32 @clamp0g(i32 %a) {
    247 entry:
    248         %cmp = icmp slt i32 %a, 0
    249         %sel = select i1 %cmp, i32 0, i32 %a
    250         ret i32 %sel
    251 }
    252 
    253 Is compile to this with the PowerPC (32-bit) backend:
    254 
    255 _clamp0g:
    256         cmpwi cr0, r3, 0
    257         li r2, 0
    258         blt cr0, LBB1_2
    259 ; BB#1:                                                     ; %entry
    260         mr r2, r3
    261 LBB1_2:                                                     ; %entry
    262         mr r3, r2
    263         blr
    264 
    265 This could be reduced to the much simpler:
    266 
    267 _clamp0g:
    268         srawi r2, r3, 31
    269         andc r3, r3, r2
    270         blr
    271 
    272 ===-------------------------------------------------------------------------===
    273 
    274 int foo(int N, int ***W, int **TK, int X) {
    275   int t, i;
    276   
    277   for (t = 0; t < N; ++t)
    278     for (i = 0; i < 4; ++i)
    279       W[t / X][i][t % X] = TK[i][t];
    280       
    281   return 5;
    282 }
    283 
    284 We generate relatively atrocious code for this loop compared to gcc.
    285 
    286 We could also strength reduce the rem and the div:
    287 http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
    288 
    289 ===-------------------------------------------------------------------------===
    290 
    291 We generate ugly code for this:
    292 
    293 void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
    294   unsigned code = 0;
    295   if(dx < -dw) code |= 1;
    296   if(dx > dw)  code |= 2;
    297   if(dy < -dw) code |= 4;
    298   if(dy > dw)  code |= 8;
    299   if(dz < -dw) code |= 16;
    300   if(dz > dw)  code |= 32;
    301   *ret = code;
    302 }
    303 
    304 ===-------------------------------------------------------------------------===
    305 
    306 %struct.B = type { i8, [3 x i8] }
    307 
    308 define void @bar(%struct.B* %b) {
    309 entry:
    310         %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
    311         %tmp = load i32* %tmp          ; <uint> [#uses=1]
    312         %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
    313         %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
    314         %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
    315         %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
    316         %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
    317         %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
    318         %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
    319         %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
    320         %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
    321         %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
    322         store i32 %tmp13, i32* %tmp8
    323         ret void
    324 }
    325 
    326 We emit:
    327 
    328 _foo:
    329         lwz r2, 0(r3)
    330         slwi r4, r2, 1
    331         or r4, r4, r2
    332         rlwimi r2, r4, 0, 0, 0
    333         stw r2, 0(r3)
    334         blr
    335 
    336 We could collapse a bunch of those ORs and ANDs and generate the following
    337 equivalent code:
    338 
    339 _foo:
    340         lwz r2, 0(r3)
    341         rlwinm r4, r2, 1, 0, 0
    342         or r2, r2, r4
    343         stw r2, 0(r3)
    344         blr
    345 
    346 ===-------------------------------------------------------------------------===
    347 
    348 Consider a function like this:
    349 
    350 float foo(float X) { return X + 1234.4123f; }
    351 
    352 The FP constant ends up in the constant pool, so we need to get the LR register.
    353  This ends up producing code like this:
    354 
    355 _foo:
    356 .LBB_foo_0:     ; entry
    357         mflr r11
    358 ***     stw r11, 8(r1)
    359         bl "L00000$pb"
    360 "L00000$pb":
    361         mflr r2
    362         addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
    363         lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
    364         fadds f1, f1, f0
    365 ***     lwz r11, 8(r1)
    366         mtlr r11
    367         blr
    368 
    369 This is functional, but there is no reason to spill the LR register all the way
    370 to the stack (the two marked instrs): spilling it to a GPR is quite enough.
    371 
    372 Implementing this will require some codegen improvements.  Nate writes:
    373 
    374 "So basically what we need to support the "no stack frame save and restore" is a
    375 generalization of the LR optimization to "callee-save regs".
    376 
    377 Currently, we have LR marked as a callee-save reg.  The register allocator sees
    378 that it's callee save, and spills it directly to the stack.
    379 
    380 Ideally, something like this would happen:
    381 
    382 LR would be in a separate register class from the GPRs. The class of LR would be
    383 marked "unspillable".  When the register allocator came across an unspillable
    384 reg, it would ask "what is the best class to copy this into that I *can* spill"
    385 If it gets a class back, which it will in this case (the gprs), it grabs a free
    386 register of that class.  If it is then later necessary to spill that reg, so be
    387 it.
    388 
    389 ===-------------------------------------------------------------------------===
    390 
    391 We compile this:
    392 int test(_Bool X) {
    393   return X ? 524288 : 0;
    394 }
    395 
    396 to: 
    397 _test:
    398         cmplwi cr0, r3, 0
    399         lis r2, 8
    400         li r3, 0
    401         beq cr0, LBB1_2 ;entry
    402 LBB1_1: ;entry
    403         mr r3, r2
    404 LBB1_2: ;entry
    405         blr 
    406 
    407 instead of:
    408 _test:
    409         addic r2,r3,-1
    410         subfe r0,r2,r3
    411         slwi r3,r0,19
    412         blr
    413 
    414 This sort of thing occurs a lot due to globalopt.
    415 
    416 ===-------------------------------------------------------------------------===
    417 
    418 We compile:
    419 
    420 define i32 @bar(i32 %x) nounwind readnone ssp {
    421 entry:
    422   %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
    423   %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
    424   ret i32 %neg
    425 }
    426 
    427 to:
    428 
    429 _bar:
    430 	cntlzw r2, r3
    431 	slwi r2, r2, 26
    432 	srawi r3, r2, 31
    433 	blr 
    434 
    435 it would be better to produce:
    436 
    437 _bar: 
    438         addic r3,r3,-1
    439         subfe r3,r3,r3
    440         blr
    441 
    442 ===-------------------------------------------------------------------------===
    443 
    444 We generate horrible ppc code for this:
    445 
    446 #define N  2000000
    447 double   a[N],c[N];
    448 void simpleloop() {
    449    int j;
    450    for (j=0; j<N; j++)
    451      c[j] = a[j];
    452 }
    453 
    454 LBB1_1: ;bb
    455         lfdx f0, r3, r4
    456         addi r5, r5, 1                 ;; Extra IV for the exit value compare.
    457         stfdx f0, r2, r4
    458         addi r4, r4, 8
    459 
    460         xoris r6, r5, 30               ;; This is due to a large immediate.
    461         cmplwi cr0, r6, 33920
    462         bne cr0, LBB1_1
    463 
    464 //===---------------------------------------------------------------------===//
    465 
    466 This:
    467         #include <algorithm>
    468         inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
    469         { return std::make_pair(a + b, a + b < a); }
    470         bool no_overflow(unsigned a, unsigned b)
    471         { return !full_add(a, b).second; }
    472 
    473 Should compile to:
    474 
    475 __Z11no_overflowjj:
    476         add r4,r3,r4
    477         subfc r3,r3,r4
    478         li r3,0
    479         adde r3,r3,r3
    480         blr
    481 
    482 (or better) not:
    483 
    484 __Z11no_overflowjj:
    485         add r2, r4, r3
    486         cmplw cr7, r2, r3
    487         mfcr r2
    488         rlwinm r2, r2, 29, 31, 31
    489         xori r3, r2, 1
    490         blr 
    491 
    492 //===---------------------------------------------------------------------===//
    493 
    494 We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
    495 example:
    496 #include <math.h>
    497 int test(double x, double y) { return islessequal(x, y);}
    498 int test2(double x, double y) {  return islessgreater(x, y);}
    499 int test3(double x, double y) {  return !islessequal(x, y);}
    500 
    501 Compiles into (all three are similar, but the bits differ):
    502 
    503 _test:
    504 	fcmpu cr7, f1, f2
    505 	mfcr r2
    506 	rlwinm r3, r2, 29, 31, 31
    507 	rlwinm r2, r2, 31, 31, 31
    508 	or r3, r2, r3
    509 	blr 
    510 
    511 GCC compiles this into:
    512 
    513  _test:
    514 	fcmpu cr7,f1,f2
    515 	cror 30,28,30
    516 	mfcr r3
    517 	rlwinm r3,r3,31,1
    518 	blr
    519         
    520 which is more efficient and can use mfocr.  See PR642 for some more context.
    521 
    522 //===---------------------------------------------------------------------===//
    523 
    524 void foo(float *data, float d) {
    525    long i;
    526    for (i = 0; i < 8000; i++)
    527       data[i] = d;
    528 }
    529 void foo2(float *data, float d) {
    530    long i;
    531    data--;
    532    for (i = 0; i < 8000; i++) {
    533       data[1] = d;
    534       data++;
    535    }
    536 }
    537 
    538 These compile to:
    539 
    540 _foo:
    541 	li r2, 0
    542 LBB1_1:	; bb
    543 	addi r4, r2, 4
    544 	stfsx f1, r3, r2
    545 	cmplwi cr0, r4, 32000
    546 	mr r2, r4
    547 	bne cr0, LBB1_1	; bb
    548 	blr 
    549 _foo2:
    550 	li r2, 0
    551 LBB2_1:	; bb
    552 	addi r4, r2, 4
    553 	stfsx f1, r3, r2
    554 	cmplwi cr0, r4, 32000
    555 	mr r2, r4
    556 	bne cr0, LBB2_1	; bb
    557 	blr 
    558 
    559 The 'mr' could be eliminated to folding the add into the cmp better.
    560 
    561 //===---------------------------------------------------------------------===//
    562 Codegen for the following (low-probability) case deteriorated considerably 
    563 when the correctness fixes for unordered comparisons went in (PR 642, 58871).
    564 It should be possible to recover the code quality described in the comments.
    565 
    566 ; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
    567 ; This should produce one 'or' or 'cror' instruction per function.
    568 
    569 ; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
    570 ; PR2964
    571 
    572 define i32 @test(double %x, double %y) nounwind  {
    573 entry:
    574 	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
    575 	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
    576 	ret i32 %tmp345
    577 }
    578 
    579 define i32 @test2(double %x, double %y) nounwind  {
    580 entry:
    581 	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
    582 	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
    583 	ret i32 %tmp345
    584 }
    585 
    586 define i32 @test3(double %x, double %y) nounwind  {
    587 entry:
    588 	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
    589 	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
    590 	ret i32 %tmp34
    591 }
    592 
    593 //===---------------------------------------------------------------------===//
    594 for the following code:
    595 
    596 void foo (float *__restrict__ a, int *__restrict__ b, int n) {
    597       a[n] = b[n]  * 2.321;
    598 }
    599 
    600 we load b[n] to GPR, then move it VSX register and convert it float. We should 
    601 use vsx scalar integer load instructions to avoid direct moves
    602 
    603 //===----------------------------------------------------------------------===//
    604 ; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
    605 
    606 ; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and 
    607 ; should not be generated except with -enable-finite-only-fp-math or the like).
    608 ; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
    609 ; recognize a more elaborate tree than a simple SETxx.
    610 
    611 define double @test_FNEG_sel(double %A, double %B, double %C) {
    612         %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
    613         %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
    614         %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
    615         ret double %E
    616 }
    617 
    618 //===----------------------------------------------------------------------===//
    619 The save/restore sequence for CR in prolog/epilog is terrible:
    620 - Each CR subreg is saved individually, rather than doing one save as a unit.
    621 - On Darwin, the save is done after the decrement of SP, which means the offset
    622 from SP of the save slot can be too big for a store instruction, which means we
    623 need an additional register (currently hacked in 96015+96020; the solution there
    624 is correct, but poor).
    625 - On SVR4 the same thing can happen, and I don't think saving before the SP
    626 decrement is safe on that target, as there is no red zone.  This is currently
    627 broken AFAIK, although it's not a target I can exercise.
    628 The following demonstrates the problem:
    629 extern void bar(char *p);
    630 void foo() {
    631   char x[100000];
    632   bar(x);
    633   __asm__("" ::: "cr2");
    634 }
    635 
    636 //===-------------------------------------------------------------------------===
    637 Naming convention for instruction formats is very haphazard.
    638 We have agreed on a naming scheme as follows:
    639 
    640 <INST_form>{_<OP_type><OP_len>}+
    641 
    642 Where:
    643 INST_form is the instruction format (X-form, etc.)
    644 OP_type is the operand type - one of OPC (opcode), RD (register destination),
    645                               RS (register source),
    646                               RDp (destination register pair),
    647                               RSp (source register pair), IM (immediate),
    648                               XO (extended opcode)
    649 OP_len is the length of the operand in bits
    650 
    651 VSX register operands would be of length 6 (split across two fields),
    652 condition register fields of length 3.
    653 We would not need denote reserved fields in names of instruction formats.
    654 
    655 //===----------------------------------------------------------------------===//
    656 
    657 Instruction fusion was introduced in ISA 2.06 and more opportunities added in
    658 ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
    659 and force instruction pairs to be scheduled together.
    660 
    661 

README_ALTIVEC.txt

      1 //===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
      2 
      3 Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
      4 registers, to generate better spill code.
      5 
      6 //===----------------------------------------------------------------------===//
      7 
      8 The first should be a single lvx from the constant pool, the second should be 
      9 a xor/stvx:
     10 
     11 void foo(void) {
     12   int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
     13   bar (x);
     14 }
     15 
     16 #include <string.h>
     17 void foo(void) {
     18   int x[8] __attribute__((aligned(128)));
     19   memset (x, 0, sizeof (x));
     20   bar (x);
     21 }
     22 
     23 //===----------------------------------------------------------------------===//
     24 
     25 Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
     26 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
     27 
     28 When -ffast-math is on, we can use 0.0.
     29 
     30 //===----------------------------------------------------------------------===//
     31 
     32   Consider this:
     33   v4f32 Vector;
     34   v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
     35 
     36 Since we know that "Vector" is 16-byte aligned and we know the element offset 
     37 of ".X", we should change the load into a lve*x instruction, instead of doing
     38 a load/store/lve*x sequence.
     39 
     40 //===----------------------------------------------------------------------===//
     41 
     42 For functions that use altivec AND have calls, we are VRSAVE'ing all call
     43 clobbered regs.
     44 
     45 //===----------------------------------------------------------------------===//
     46 
     47 Implement passing vectors by value into calls and receiving them as arguments.
     48 
     49 //===----------------------------------------------------------------------===//
     50 
     51 GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
     52 of C1/C2/C3, then a load and vperm of Variable.
     53 
     54 //===----------------------------------------------------------------------===//
     55 
     56 We need a way to teach tblgen that some operands of an intrinsic are required to
     57 be constants.  The verifier should enforce this constraint.
     58 
     59 //===----------------------------------------------------------------------===//
     60 
     61 We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
     62 aligned stack slot, followed by a load/vperm.  We should probably just store it
     63 to a scalar stack slot, then use lvsl/vperm to load it.  If the value is already
     64 in memory this is a big win.
     65 
     66 //===----------------------------------------------------------------------===//
     67 
     68 extract_vector_elt of an arbitrary constant vector can be done with the 
     69 following instructions:
     70 
     71 vTemp = vec_splat(v0,2);    // 2 is the element the src is in.
     72 vec_ste(&destloc,0,vTemp);
     73 
     74 We can do an arbitrary non-constant value by using lvsr/perm/ste.
     75 
     76 //===----------------------------------------------------------------------===//
     77 
     78 If we want to tie instruction selection into the scheduler, we can do some
     79 constant formation with different instructions.  For example, we can generate
     80 "vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
     81 "vsplti 0" or "vxor", each of which use different execution units, thus could
     82 help scheduling.
     83 
     84 This is probably only reasonable for a post-pass scheduler.
     85 
     86 //===----------------------------------------------------------------------===//
     87 
     88 For this function:
     89 
     90 void test(vector float *A, vector float *B) {
     91   vector float C = (vector float)vec_cmpeq(*A, *B);
     92   if (!vec_any_eq(*A, *B))
     93     *B = (vector float){0,0,0,0};
     94   *A = C;
     95 }
     96 
     97 we get the following basic block:
     98 
     99 	...
    100         lvx v2, 0, r4
    101         lvx v3, 0, r3
    102         vcmpeqfp v4, v3, v2
    103         vcmpeqfp. v2, v3, v2
    104         bne cr6, LBB1_2 ; cond_next
    105 
    106 The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
    107 vcmpeqfp. result is used by a branch.  This can be improved.
    108 
    109 //===----------------------------------------------------------------------===//
    110 
    111 The code generated for this is truly aweful:
    112 
    113 vector float test(float a, float b) {
    114  return (vector float){ 0.0, a, 0.0, 0.0}; 
    115 }
    116 
    117 LCPI1_0:                                        ;  float
    118         .space  4
    119         .text
    120         .globl  _test
    121         .align  4
    122 _test:
    123         mfspr r2, 256
    124         oris r3, r2, 4096
    125         mtspr 256, r3
    126         lis r3, ha16(LCPI1_0)
    127         addi r4, r1, -32
    128         stfs f1, -16(r1)
    129         addi r5, r1, -16
    130         lfs f0, lo16(LCPI1_0)(r3)
    131         stfs f0, -32(r1)
    132         lvx v2, 0, r4
    133         lvx v3, 0, r5
    134         vmrghw v3, v3, v2
    135         vspltw v2, v2, 0
    136         vmrghw v2, v2, v3
    137         mtspr 256, r2
    138         blr
    139 
    140 //===----------------------------------------------------------------------===//
    141 
    142 int foo(vector float *x, vector float *y) {
    143         if (vec_all_eq(*x,*y)) return 3245; 
    144         else return 12;
    145 }
    146 
    147 A predicate compare being used in a select_cc should have the same peephole
    148 applied to it as a predicate compare used by a br_cc.  There should be no
    149 mfcr here:
    150 
    151 _foo:
    152         mfspr r2, 256
    153         oris r5, r2, 12288
    154         mtspr 256, r5
    155         li r5, 12
    156         li r6, 3245
    157         lvx v2, 0, r4
    158         lvx v3, 0, r3
    159         vcmpeqfp. v2, v3, v2
    160         mfcr r3, 2
    161         rlwinm r3, r3, 25, 31, 31
    162         cmpwi cr0, r3, 0
    163         bne cr0, LBB1_2 ; entry
    164 LBB1_1: ; entry
    165         mr r6, r5
    166 LBB1_2: ; entry
    167         mr r3, r6
    168         mtspr 256, r2
    169         blr
    170 
    171 //===----------------------------------------------------------------------===//
    172 
    173 CodeGen/PowerPC/vec_constants.ll has an and operation that should be
    174 codegen'd to andc.  The issue is that the 'all ones' build vector is
    175 SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
    176 which prevents the vnot pattern from matching.
    177 
    178 
    179 //===----------------------------------------------------------------------===//
    180 
    181 An alternative to the store/store/load approach for illegal insert element 
    182 lowering would be:
    183 
    184 1. store element to any ol' slot
    185 2. lvx the slot
    186 3. lvsl 0; splat index; vcmpeq to generate a select mask
    187 4. lvsl slot + x; vperm to rotate result into correct slot
    188 5. vsel result together.
    189 
    190 //===----------------------------------------------------------------------===//
    191 
    192 Should codegen branches on vec_any/vec_all to avoid mfcr.  Two examples:
    193 
    194 #include <altivec.h>
    195  int f(vector float a, vector float b)
    196  {
    197   int aa = 0;
    198   if (vec_all_ge(a, b))
    199     aa |= 0x1;
    200   if (vec_any_ge(a,b))
    201     aa |= 0x2;
    202   return aa;
    203 }
    204 
    205 vector float f(vector float a, vector float b) { 
    206   if (vec_any_eq(a, b)) 
    207     return a; 
    208   else 
    209     return b; 
    210 }
    211 
    212 //===----------------------------------------------------------------------===//
    213 
    214 We should do a little better with eliminating dead stores.
    215 The stores to the stack are dead since %a and %b are not needed
    216 
    217 ; Function Attrs: nounwind
    218 define <16 x i8> @test_vpmsumb() #0 {
    219   entry:
    220   %a = alloca <16 x i8>, align 16
    221   %b = alloca <16 x i8>, align 16
    222   store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
    223   store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
    224   %0 = load <16 x i8>* %a, align 16
    225   %1 = load <16 x i8>* %b, align 16
    226   %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
    227   ret <16 x i8> %2
    228 }
    229 
    230 
    231 ; Function Attrs: nounwind readnone
    232 declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
    233 
    234 
    235 Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
    236 # BB#0:                                 # %entry
    237     addis 3, 2, .LCPI0_0@toc@ha
    238     addis 4, 2, .LCPI0_1@toc@ha
    239     addi 3, 3, .LCPI0_0@toc@l
    240     addi 4, 4, .LCPI0_1@toc@l
    241     lxvw4x 0, 0, 3
    242     addi 3, 1, -16
    243     lxvw4x 35, 0, 4
    244     stxvw4x 0, 0, 3
    245     ori 2, 2, 0
    246     lxvw4x 34, 0, 3
    247     addi 3, 1, -32
    248     stxvw4x 35, 0, 3
    249     vpmsumb 2, 2, 3
    250     blr
    251     .long   0
    252     .quad   0
    253 
    254 The two stxvw4x instructions are not needed.
    255 With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
    256 are present too.
    257 
    258 //===----------------------------------------------------------------------===//
    259 
    260 The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
    261 
    262 define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
    263        %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
    264        %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
    265        %result = add <2 x i64> %x, %tmpvec2
    266        ret <2 x i64> %result
    267 
    268 This will generate the following instruction sequence:
    269         std 5, -8(1)
    270         std 5, -16(1)
    271         addi 3, 1, -16
    272         ori 2, 2, 0
    273         lxvd2x 35, 0, 3
    274         vaddudm 2, 2, 3
    275         blr
    276 
    277 This will almost certainly cause a load-hit-store hazard.  
    278 Since val is a value parameter, it should not need to be saved onto
    279 the stack, unless it's being done set up the vector register. Instead,
    280 it would be better to splat the value into a vector register, and then
    281 remove the (dead) stores to the stack.
    282 
    283 //===----------------------------------------------------------------------===//
    284 
    285 At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
    286 preference to stfd.  When we have a reg-immediate addressing mode, this is a
    287 poor choice, since we have to load the address into an index register.  This
    288 should be fixed for P7/P8. 
    289 
    290 //===----------------------------------------------------------------------===//
    291 
    292 Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
    293 However, we could actually support both kinds on either endianness, if we check
    294 for the appropriate shufflevector pattern for each case ...  this would cause
    295 some additional shufflevectors to be recognized and implemented via the
    296 "swapped" form.
    297 
    298 //===----------------------------------------------------------------------===//
    299 
    300 There is a utility program called PerfectShuffle that generates a table of the
    301 shortest instruction sequence for implementing a shufflevector operation on
    302 PowerPC.  However, this was designed for big-endian code generation.  We could
    303 modify this program to create a little endian version of the table.  The table
    304 is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
    305 
    306 //===----------------------------------------------------------------------===//
    307 
    308 Opportunies to use instructions from PPCInstrVSX.td during code gen
    309   - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
    310   - Scalar comparisons (xscmpodp and xscmpudp)
    311   - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
    312 
    313 Related to this: we currently do not generate the lxvw4x instruction for either
    314 v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
    315 a single target type.  This should probably be addressed in the PPCISelDAGToDAG logic.
    316 
    317 //===----------------------------------------------------------------------===//
    318 
    319 Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
    320 for v2f64 with VSX available.  We should create custom lowering
    321 support for the other vector types.  Without this support, we generate
    322 sequences with load-hit-store hazards.
    323 
    324 v4f32 can be supported with VSX by shifting the correct element into
    325 big-endian lane 0, using xscvspdpn to produce a double-precision
    326 representation of the single-precision value in big-endian
    327 double-precision lane 0, and reinterpreting lane 0 as an FPR or
    328 vector-scalar register.
    329 
    330 v2i64 can be supported with VSX and P8Vector in the same manner as
    331 v2f64, followed by a direct move to a GPR.
    332 
    333 v4i32 can be supported with VSX and P8Vector by shifting the correct
    334 element into big-endian lane 1, using a direct move to a GPR, and
    335 sign-extending the 32-bit result to 64 bits.
    336 
    337 v8i16 can be supported with VSX and P8Vector by shifting the correct
    338 element into big-endian lane 3, using a direct move to a GPR, and
    339 sign-extending the 16-bit result to 64 bits.
    340 
    341 v16i8 can be supported with VSX and P8Vector by shifting the correct
    342 element into big-endian lane 7, using a direct move to a GPR, and
    343 sign-extending the 8-bit result to 64 bits.
    344 

README_P9.txt

      1 //===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
      2 
      3 TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
      4 
      5 Altivec:
      6 - Vector Compare Not Equal (Zero):
      7   vcmpneb(.) vcmpneh(.) vcmpnew(.)
      8   vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
      9   . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
     10 
     11 - Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
     12   . Don't use llvm extractelement because they have different semantics
     13   . Use instrinstics:
     14     (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
     15     (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
     16     (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
     17     (set v2i64:$vD, (int_ppc_altivec_vextractd  v2i64:$vA, imm:$UIMM))
     18 
     19 - Vector Extract Unsigned Byte Left/Right-Indexed:
     20   vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
     21   . Use instrinstics:
     22     // Left-Indexed
     23     (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
     24     (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
     25     (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
     26 
     27     // Right-Indexed
     28     (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
     29     (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
     30     (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
     31 
     32 - Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
     33     (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
     34     (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
     35     (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
     36     (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
     37 
     38 - Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
     39   vclzlsbb vctzlsbb
     40   . Use intrinsic:
     41     (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
     42     (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
     43 
     44 - Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
     45   . Map to llvm cttz
     46     (set v16i8:$vD, (cttz v16i8:$vB))     // vctzb
     47     (set v8i16:$vD, (cttz v8i16:$vB))     // vctzh
     48     (set v4i32:$vD, (cttz v4i32:$vB))     // vctzw
     49     (set v2i64:$vD, (cttz v2i64:$vB))     // vctzd
     50 
     51 - Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
     52   . vextsb2w:
     53     (set v4i32:$vD, (sext v4i8:$vB))
     54 
     55     // PowerISA_V3.0:
     56     do i = 0 to 3
     57        VR[VRT].word[i]  EXTS32(VR[VRB].word[i].byte[3])
     58     end
     59 
     60   . vextsh2w:
     61     (set v4i32:$vD, (sext v4i16:$vB))
     62 
     63     // PowerISA_V3.0:
     64     do i = 0 to 3
     65        VR[VRT].word[i]  EXTS32(VR[VRB].word[i].hword[1])
     66     end
     67 
     68   . vextsb2d
     69     (set v2i64:$vD, (sext v2i8:$vB))
     70 
     71     // PowerISA_V3.0:
     72     do i = 0 to 1
     73        VR[VRT].dword[i]  EXTS64(VR[VRB].dword[i].byte[7])
     74     end
     75 
     76   . vextsh2d
     77     (set v2i64:$vD, (sext v2i16:$vB))
     78 
     79     // PowerISA_V3.0:
     80     do i = 0 to 1
     81        VR[VRT].dword[i]  EXTS64(VR[VRB].dword[i].hword[3])
     82     end
     83 
     84   . vextsw2d
     85     (set v2i64:$vD, (sext v2i32:$vB))
     86 
     87     // PowerISA_V3.0:
     88     do i = 0 to 1
     89        VR[VRT].dword[i]  EXTS64(VR[VRB].dword[i].word[1])
     90     end
     91 
     92 - Vector Integer Negate: vnegw vnegd
     93   . Map to llvm ineg
     94     (set v4i32:$rT, (ineg v4i32:$rA))       // vnegw
     95     (set v2i64:$rT, (ineg v2i64:$rA))       // vnegd
     96 
     97 - Vector Parity Byte: vprtybw vprtybd vprtybq
     98   . Use intrinsic:
     99     (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
    100     (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
    101     (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
    102 
    103 - Vector (Bit) Permute (Right-indexed):
    104   . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
    105     VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
    106 
    107   . vpermr: use VA1a_Int_Ty3
    108     VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
    109 
    110 - Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
    111   . Use intrinsic:
    112     VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
    113     VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
    114     VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
    115     VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
    116 
    117 - Vector Shift Left/Right: vslv vsrv
    118   . Use intrinsic, don't map to llvm shl and lshr, because they have different
    119     semantics, e.g. vslv:
    120 
    121       do i = 0 to 15
    122          sh  VR[VRB].byte[i].bit[5:7]
    123          VR[VRT].byte[i]  src.byte[i:i+1].bit[sh:sh+7]
    124       end
    125 
    126     VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
    127 
    128   . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
    129     VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
    130 
    131 - Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
    132   vmul10uq vmul10cuq
    133   . Use intrinsic:
    134     VX1_Int_Ty<513, "vmul10uq",   int_ppc_altivec_vmul10uq,  v1i128>;
    135     VX1_Int_Ty<  1, "vmul10cuq",  int_ppc_altivec_vmul10cuq, v1i128>;
    136 
    137 - Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
    138   vmul10euq vmul10ecuq
    139   . Use intrinsic:
    140     VX1_Int_Ty<577, "vmul10euq",  int_ppc_altivec_vmul10euq, v1i128>;
    141     VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
    142 
    143 - Decimal Convert From/to National/Zoned/Signed-QWord:
    144   bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
    145   . Use instrinstics:
    146     (set v1i128:$vD, (int_ppc_altivec_bcdcfno  v1i128:$vB, i1:$PS))
    147     (set v1i128:$vD, (int_ppc_altivec_bcdcfzo  v1i128:$vB, i1:$PS))
    148     (set v1i128:$vD, (int_ppc_altivec_bcdctno  v1i128:$vB))
    149     (set v1i128:$vD, (int_ppc_altivec_bcdctzo  v1i128:$vB, i1:$PS))
    150     (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
    151     (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
    152 
    153 - Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
    154   . Use instrinstics:
    155     (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
    156     (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
    157 
    158 - Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
    159   . Use instrinstics:
    160     (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
    161     (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
    162     (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
    163 
    164   . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
    165 
    166 - Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
    167   . Use instrinstics:
    168     (set v1i128:$vD, (int_ppc_altivec_bcdso  v1i128:$vA, v1i128:$vB, i1:$PS))
    169     (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
    170 
    171   . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
    172 
    173 VSX:
    174 - QP Copy Sign: xscpsgnqp
    175   . Similar to xscpsgndp
    176   . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
    177 
    178 - QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
    179   . Similar to xsabsdp/xsnabsdp/xsnegdp
    180   . (set f128:$vT, (fabs f128:$vB))             // xsabsqp
    181     (set f128:$vT, (fneg (fabs f128:$vB)))      // xsnabsqp
    182     (set f128:$vT, (fneg f128:$vB))             // xsnegqp
    183 
    184 - QP Add/Divide/Multiply/Subtract/Square-Root:
    185   xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
    186   . Similar to xsadddp
    187   . isCommutable = 1
    188     (set f128:$vT, (fadd f128:$vA, f128:$vB))   // xsaddqp
    189     (set f128:$vT, (fmul f128:$vA, f128:$vB))   // xsmulqp
    190 
    191   . isCommutable = 0
    192     (set f128:$vT, (fdiv f128:$vA, f128:$vB))   // xsdivqp
    193     (set f128:$vT, (fsub f128:$vA, f128:$vB))   // xssubqp
    194     (set f128:$vT, (fsqrt f128:$vB)))           // xssqrtqp
    195 
    196 - Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
    197   xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
    198   . Similar to xsrsqrtedp??
    199       def XSRSQRTEDP : XX2Form<60, 74,
    200                                (outs vsfrc:$XT), (ins vsfrc:$XB),
    201                                "xsrsqrtedp $XT, $XB", IIC_VecFP,
    202                                [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
    203 
    204   . Define DAG Node in PPCInstrInfo.td:
    205     def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
    206     def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
    207     def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
    208     def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
    209     def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
    210 
    211     DAG patterns of each instruction (PPCInstrVSX.td):
    212     . isCommutable = 1
    213       (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB))   // xsaddqpo
    214       (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB))   // xsmulqpo
    215 
    216     . isCommutable = 0
    217       (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB))   // xsdivqpo
    218       (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB))   // xssubqpo
    219       (set f128:$vT, (PPCfsqrtrto f128:$vB))            // xssqrtqpo
    220 
    221 - QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
    222   . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
    223 
    224   . isCommutable = 1
    225     // xsmaddqp
    226     [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
    227     RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    228     AltVSXFMARel;
    229 
    230     // xsmsubqp
    231     [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
    232     RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    233     AltVSXFMARel;
    234 
    235     // xsnmaddqp
    236     [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
    237     RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    238     AltVSXFMARel;
    239 
    240     // xsnmsubqp
    241     [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
    242     RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    243     AltVSXFMARel;
    244 
    245 - Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
    246   xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
    247   . Similar to xsrsqrtedp??
    248 
    249   . Define DAG Node in PPCInstrInfo.td:
    250     def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
    251 
    252     It looks like we only need to define "PPCfmarto" for these instructions,
    253     because according to PowerISA_V3.0, these instructions perform RTO on
    254     fma's result:
    255         xsmaddqp(o)
    256         v       bfp_MULTIPLY_ADD(src1, src3, src2)
    257         rnd     bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
    258         result  bfp_CONVERT_TO_BFP128(rnd)
    259 
    260         xsmsubqp(o)
    261         v       bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
    262         rnd     bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
    263         result  bfp_CONVERT_TO_BFP128(rnd)
    264 
    265         xsnmaddqp(o)
    266         v       bfp_MULTIPLY_ADD(src1,src3,src2)
    267         rnd     bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
    268         result  bfp_CONVERT_TO_BFP128(rnd)
    269 
    270         xsnmsubqp(o)
    271         v       bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
    272         rnd     bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
    273         result  bfp_CONVERT_TO_BFP128(rnd)
    274 
    275     DAG patterns of each instruction (PPCInstrVSX.td):
    276     . isCommutable = 1
    277       // xsmaddqpo
    278       [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
    279       RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    280       AltVSXFMARel;
    281 
    282       // xsmsubqpo
    283       [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
    284       RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    285       AltVSXFMARel;
    286 
    287       // xsnmaddqpo
    288       [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
    289       RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    290       AltVSXFMARel;
    291 
    292       // xsnmsubqpo
    293       [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
    294       RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
    295       AltVSXFMARel;
    296 
    297 - QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
    298   . ref: XSCMPUDP
    299       def XSCMPUDP : XX3Form_1<60, 35,
    300                                (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
    301                                "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
    302 
    303   . No SDAG, intrinsic, builtin are required??
    304     Or llvm fcmp order/unorder compare??
    305 
    306 - DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
    307   . No SDAG, intrinsic, builtin are required?
    308 
    309 - DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
    310   . I checked existing instruction "XSCMPUDP". They are different in target
    311     register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
    312 
    313   . Use instrinsic:
    314     (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
    315     (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
    316     (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
    317     (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
    318 
    319 - Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
    320   . Similar to xvcmpeqdp:
    321       defm XVCMPEQDP : XX3Form_Rcr<60, 99,
    322                                  "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
    323                                  int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
    324 
    325   . So we should use "XX3Form_Rcr" to implement instrinsic
    326 
    327 - Convert DP -> QP: xscvdpqp
    328   . Similar to XSCVDPSP:
    329       def XSCVDPSP : XX2Form<60, 265,
    330                           (outs vsfrc:$XT), (ins vsfrc:$XB),
    331                           "xscvdpsp $XT, $XB", IIC_VecFP, []>;
    332   . So, No SDAG, intrinsic, builtin are required??
    333 
    334 - Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
    335   . Similar to XSCVDPSP
    336   . No SDAG, intrinsic, builtin are required??
    337 
    338 - Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
    339   xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
    340   . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
    341     "XSCVDPUXDS", "XSCVDPUXWS"
    342 
    343   . DAG patterns:
    344     (set f128:$XT, (PPCfctidz f128:$XB))    // xscvqpsdz
    345     (set f128:$XT, (PPCfctiwz f128:$XB))    // xscvqpswz
    346     (set f128:$XT, (PPCfctiduz f128:$XB))   // xscvqpudz
    347     (set f128:$XT, (PPCfctiwuz f128:$XB))   // xscvqpuwz
    348 
    349 - Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
    350   . Similar to XSCVSXDSP
    351   . (set f128:$XT, (PPCfcfids f64:$XB))     // xscvsdqp
    352     (set f128:$XT, (PPCfcfidus f64:$XB))    // xscvudqp
    353 
    354 - (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
    355   . Similar to XSCVDPSP
    356   . No SDAG, intrinsic, builtin are required??
    357 
    358 - Vector HP -> SP: xvcvhpsp xvcvsphp
    359   . Similar to XVCVDPSP:
    360       def XVCVDPSP : XX2Form<60, 393,
    361                           (outs vsrc:$XT), (ins vsrc:$XB),
    362                           "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
    363   . No SDAG, intrinsic, builtin are required??
    364 
    365 - Round to Quad-Precision Integer: xsrqpi xsrqpix
    366   . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
    367     need to assign rounding mode in instruction
    368   . Provide builtin?
    369     (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
    370     (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
    371 
    372 - Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
    373   . Provide builtin?
    374     (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
    375 
    376 Fixed Point Facility:
    377 
    378 - Exploit cmprb and cmpeqb (perhaps for something like
    379   isalpha/isdigit/isupper/islower and isspace respectivelly). This can
    380   perhaps be done through a builtin.
    381 
    382 - Provide testing for cnttz[dw]
    383 - Insert Exponent DP/QP: xsiexpdp xsiexpqp
    384   . Use intrinsic?
    385   . xsiexpdp:
    386     // Note: rA and rB are the unsigned integer value.
    387     (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
    388 
    389   . xsiexpqp:
    390     (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
    391 
    392 - Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
    393   . Use intrinsic?
    394   . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB))    // xsxexpdp
    395     (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB))    // xsxsigdp
    396     (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB))  // xsxexpqp
    397     (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB))  // xsxsigqp
    398 
    399 - Vector Insert Word: xxinsertw
    400   - Useful for inserting f32/i32 elements into vectors (the element to be
    401     inserted needs to be prepared)
    402   . Note: llvm has insertelem in "Vector Operations"
    403     ; yields <n x <ty>>
    404     <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
    405 
    406     But how to map to it??
    407     [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
    408     RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
    409 
    410   . Or use intrinsic?
    411     (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
    412 
    413 - Vector Extract Unsigned Word: xxextractuw
    414   - Not useful for extraction of f32 from v4f32 (the current pattern is better -
    415     shift->convert)
    416   - It is useful for (uint_to_fp (vector_extract v4i32, N))
    417   - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
    418   . Note: llvm has extractelement in "Vector Operations"
    419     ; yields <ty>
    420     <result> = extractelement <n x <ty>> <val>, <ty2> <idx>
    421 
    422     How to map to it??
    423     [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
    424 
    425   . Or use intrinsic?
    426     (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
    427 
    428 - Vector Insert Exponent DP/SP: xviexpdp xviexpsp
    429   . Use intrinsic
    430     (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
    431     (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
    432 
    433 - Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
    434   . Use intrinsic
    435     (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
    436     (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
    437     (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
    438     (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
    439 
    440 - Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
    441   . No SDAG, intrinsic, builtin are required?
    442     Because it seems that we have no way to map BF field?
    443 
    444     Instruction Form: [PO T XO B XO BX TX]
    445     Asm: xststd* BF,XB,DCMX
    446 
    447     BF is an index to CR register field.
    448 
    449 - Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
    450   . Use intrinsic
    451     (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
    452     (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
    453 
    454 - Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
    455   . PowerISA_V3.0:
    456     "xsmaxcdp can be used to implement the C/C++/Java conditional operation
    457      (x>y)?x:y for single-precision and double-precision arguments."
    458 
    459     Note! c type and j type have different behavior when:
    460     1. Either input is NaN
    461     2. Both input are +-Infinity, +-Zero
    462 
    463   . dtype map to llvm fmaxnum/fminnum
    464     jtype use intrinsic
    465 
    466   . xsmaxcdp xsmincdp
    467     (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
    468     (set f64:$XT, (fminnum f64:$XA, f64:$XB))
    469 
    470   . xsmaxjdp xsminjdp
    471     (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
    472     (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
    473 
    474 - Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
    475   . Use intrinsic
    476     (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
    477     (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
    478     (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
    479     (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
    480 
    481 - Vector Permute: xxperm xxpermr
    482   . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
    483   . Use intrinsic
    484     (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
    485     (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
    486 
    487 - Vector Splat Immediate Byte: xxspltib
    488   . Similar to XXSPLTW:
    489       def XXSPLTW : XX2Form_2<60, 164,
    490                            (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
    491                            "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
    492 
    493   . No SDAG, intrinsic, builtin are required?
    494 
    495 - Load/Store Vector: lxv stxv
    496   . Has likely SDAG match:
    497     (set v?:$XT, (load ix16addr:$src))
    498     (set v?:$XT, (store ix16addr:$dst))
    499 
    500   . Need define ix16addr in PPCInstrInfo.td
    501     ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
    502 
    503 - Load/Store Vector Indexed: lxvx stxvx
    504   . Has likely SDAG match:
    505     (set v?:$XT, (load xoaddr:$src))
    506     (set v?:$XT, (store xoaddr:$dst))
    507 
    508 - Load/Store DWord: lxsd stxsd
    509   . Similar to lxsdx/stxsdx:
    510     def LXSDX : XX1Form<31, 588,
    511                         (outs vsfrc:$XT), (ins memrr:$src),
    512                         "lxsdx $XT, $src", IIC_LdStLFD,
    513                         [(set f64:$XT, (load xoaddr:$src))]>;
    514 
    515   . (set f64:$XT, (load ixaddr:$src))
    516     (set f64:$XT, (store ixaddr:$dst))
    517 
    518 - Load/Store SP, with conversion from/to DP: lxssp stxssp
    519   . Similar to lxsspx/stxsspx:
    520     def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
    521                          "lxsspx $XT, $src", IIC_LdStLFD,
    522                          [(set f32:$XT, (load xoaddr:$src))]>;
    523 
    524   . (set f32:$XT, (load ixaddr:$src))
    525     (set f32:$XT, (store ixaddr:$dst))
    526 
    527 - Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
    528   . Similar to lxsiwzx:
    529     def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
    530                           "lxsiwzx $XT, $src", IIC_LdStLFD,
    531                           [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
    532 
    533   . (set f64:$XT, (PPClfiwzx xoaddr:$src))
    534 
    535 - Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
    536   . Similar to stxsiwx:
    537     def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
    538                           "stxsiwx $XT, $dst", IIC_LdStSTFD,
    539                           [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
    540 
    541   . (PPCstfiwx f64:$XT, xoaddr:$dst)
    542 
    543 - Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
    544   . Similar to lxvd2x/lxvw4x:
    545     def LXVD2X : XX1Form<31, 844,
    546                          (outs vsrc:$XT), (ins memrr:$src),
    547                          "lxvd2x $XT, $src", IIC_LdStLFD,
    548                          [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
    549 
    550   . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
    551     (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
    552 
    553 - Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
    554   . Similar to stxvd2x/stxvw4x:
    555     def STXVD2X : XX1Form<31, 972,
    556                          (outs), (ins vsrc:$XT, memrr:$dst),
    557                          "stxvd2x $XT, $dst", IIC_LdStSTFD,
    558                          [(store v2f64:$XT, xoaddr:$dst)]>;
    559 
    560   . (store v8i16:$XT, xoaddr:$dst)
    561     (store v16i8:$XT, xoaddr:$dst)
    562 
    563 - Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
    564   . Likely needs an intrinsic
    565   . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
    566     (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
    567 
    568   . (int_ppc_vsx_stxvl xoaddr:$dst))
    569     (int_ppc_vsx_stxvll xoaddr:$dst))
    570 
    571 - Load Vector Word & Splat Indexed: lxvwsx
    572   . Likely needs an intrinsic
    573   . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
    574 
    575 Atomic operations (l[dw]at, st[dw]at):
    576 - Provide custom lowering for common atomic operations to use these
    577   instructions with the correct Function Code
    578 - Ensure the operands are in the correct register (i.e. RT+1, RT+2)
    579 - Provide builtins since not all FC's necessarily have an existing LLVM
    580   atomic operation
    581 
    582 Load Doubleword Monitored (ldmx):
    583 - Investigate whether there are any uses for this. It seems to be related to
    584   Garbage Collection so it isn't likely to be all that useful for most
    585   languages we deal with.
    586 
    587 Move to CR from XER Extended (mcrxrx):
    588 - Is there a use for this in LLVM?
    589 
    590 Fixed Point Facility:
    591 
    592 - Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
    593   . Use instrinstics:
    594     (int_ppc_copy_first i32:$rA, i32:$rB)
    595     (int_ppc_copy i32:$rA, i32:$rB)
    596 
    597     (int_ppc_paste i32:$rA, i32:$rB)
    598     (int_ppc_paste_last i32:$rA, i32:$rB)
    599 
    600     (int_cp_abort)
    601 
    602 - Message Synchronize: msgsync
    603 - SLB*: slbieg slbsync
    604 - stop
    605   . No instrinstics
    606