1 //==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Move instructions 12 //===----------------------------------------------------------------------===// 13 14 let Predicates = [FeatureVector] in { 15 // Register move. 16 def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>; 17 def VLR32 : UnaryAliasVRR<null_frag, v32eb, v32eb>; 18 def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>; 19 20 // Load GR from VR element. 21 def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>; 22 def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>; 23 def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>; 24 def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>; 25 26 // Load VR element from GR. 27 def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert, 28 v128b, v128b, GR32, 0>; 29 def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert, 30 v128h, v128h, GR32, 1>; 31 def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert, 32 v128f, v128f, GR32, 2>; 33 def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert, 34 v128g, v128g, GR64, 3>; 35 36 // Load VR from GRs disjoint. 37 def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>; 38 def VLVGP32 : BinaryAliasVRRf<GR32>; 39 } 40 41 // Extractions always assign to the full GR64, even if the element would 42 // fit in the lower 32 bits. Sub-i64 extracts therefore need to take a 43 // subreg of the result. 44 class VectorExtractSubreg<ValueType type, Instruction insn> 45 : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)), 46 (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>; 47 48 def : VectorExtractSubreg<v16i8, VLGVB>; 49 def : VectorExtractSubreg<v8i16, VLGVH>; 50 def : VectorExtractSubreg<v4i32, VLGVF>; 51 52 //===----------------------------------------------------------------------===// 53 // Immediate instructions 54 //===----------------------------------------------------------------------===// 55 56 let Predicates = [FeatureVector] in { 57 // Generate byte mask. 58 def VZERO : InherentVRIa<"vzero", 0xE744, 0>; 59 def VONE : InherentVRIa<"vone", 0xE744, 0xffff>; 60 def VGBM : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>; 61 62 // Generate mask. 63 def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>; 64 def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>; 65 def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>; 66 def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>; 67 68 // Load element immediate. 69 // 70 // We want these instructions to be used ahead of VLVG* where possible. 71 // However, VLVG* takes a variable BD-format index whereas VLEI takes 72 // a plain immediate index. This means that VLVG* has an extra "base" 73 // register operand and is 3 units more complex. Bumping the complexity 74 // of the VLEI* instructions by 4 means that they are strictly better 75 // than VLVG* in cases where both forms match. 76 let AddedComplexity = 4 in { 77 def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert, 78 v128b, v128b, imm32sx16trunc, imm32zx4>; 79 def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert, 80 v128h, v128h, imm32sx16trunc, imm32zx3>; 81 def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert, 82 v128f, v128f, imm32sx16, imm32zx2>; 83 def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert, 84 v128g, v128g, imm64sx16, imm32zx1>; 85 } 86 87 // Replicate immediate. 88 def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>; 89 def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>; 90 def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>; 91 def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>; 92 } 93 94 //===----------------------------------------------------------------------===// 95 // Loads 96 //===----------------------------------------------------------------------===// 97 98 let Predicates = [FeatureVector] in { 99 // Load. 100 def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>; 101 102 // Load to block boundary. The number of loaded bytes is only known 103 // at run time. The instruction is really polymorphic, but v128b matches 104 // the return type of the associated intrinsic. 105 def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>; 106 107 // Load count to block boundary. 108 let Defs = [CC] in 109 def LCBB : InstRXE<0xE727, (outs GR32:$R1), 110 (ins bdxaddr12only:$XBD2, imm32zx4:$M3), 111 "lcbb\t$R1, $XBD2, $M3", 112 [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2, 113 imm32zx4:$M3))]>; 114 115 // Load with length. The number of loaded bytes is only known at run time. 116 def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>; 117 118 // Load multiple. 119 def VLM : LoadMultipleVRSa<"vlm", 0xE736>; 120 121 // Load and replicate 122 def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8, v128b, 1, 0>; 123 def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>; 124 def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>; 125 def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>; 126 def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)), 127 (VLREPF bdxaddr12only:$addr)>; 128 def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)), 129 (VLREPG bdxaddr12only:$addr)>; 130 131 // Use VLREP to load subvectors. These patterns use "12pair" because 132 // LEY and LDY offer full 20-bit displacement fields. It's often better 133 // to use those instructions rather than force a 20-bit displacement 134 // into a GPR temporary. 135 def VL32 : UnaryAliasVRX<load, v32eb, bdxaddr12pair>; 136 def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>; 137 138 // Load logical element and zero. 139 def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>; 140 def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>; 141 def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>; 142 def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>; 143 def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)), 144 (VLLEZF bdxaddr12only:$addr)>; 145 def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)), 146 (VLLEZG bdxaddr12only:$addr)>; 147 148 // Load element. 149 def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>; 150 def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>; 151 def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>; 152 def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>; 153 def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), 154 (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; 155 def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), 156 (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; 157 158 // Gather element. 159 def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>; 160 def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>; 161 } 162 163 // Use replicating loads if we're inserting a single element into an 164 // undefined vector. This avoids a false dependency on the previous 165 // register contents. 166 multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype, 167 SDPatternOperator load, ValueType scalartype> { 168 def : Pat<(vectype (z_vector_insert 169 (undef), (scalartype (load bdxaddr12only:$addr)), 0)), 170 (vlrep bdxaddr12only:$addr)>; 171 def : Pat<(vectype (scalar_to_vector 172 (scalartype (load bdxaddr12only:$addr)))), 173 (vlrep bdxaddr12only:$addr)>; 174 } 175 defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>; 176 defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>; 177 defm : ReplicatePeephole<VLREPF, v4i32, load, i32>; 178 defm : ReplicatePeephole<VLREPG, v2i64, load, i64>; 179 defm : ReplicatePeephole<VLREPF, v4f32, load, f32>; 180 defm : ReplicatePeephole<VLREPG, v2f64, load, f64>; 181 182 //===----------------------------------------------------------------------===// 183 // Stores 184 //===----------------------------------------------------------------------===// 185 186 let Predicates = [FeatureVector] in { 187 // Store. 188 def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>; 189 190 // Store with length. The number of stored bytes is only known at run time. 191 def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>; 192 193 // Store multiple. 194 def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>; 195 196 // Store element. 197 def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8, v128b, 1, imm32zx4>; 198 def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>; 199 def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>; 200 def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>; 201 def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr, 202 imm32zx2:$index), 203 (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; 204 def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr, 205 imm32zx1:$index), 206 (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; 207 208 // Use VSTE to store subvectors. These patterns use "12pair" because 209 // STEY and STDY offer full 20-bit displacement fields. It's often better 210 // to use those instructions rather than force a 20-bit displacement 211 // into a GPR temporary. 212 def VST32 : StoreAliasVRX<store, v32eb, bdxaddr12pair>; 213 def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>; 214 215 // Scatter element. 216 def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>; 217 def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Selects and permutes 222 //===----------------------------------------------------------------------===// 223 224 let Predicates = [FeatureVector] in { 225 // Merge high. 226 def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>; 227 def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>; 228 def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>; 229 def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>; 230 def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>; 231 def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>; 232 233 // Merge low. 234 def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>; 235 def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>; 236 def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>; 237 def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>; 238 def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>; 239 def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>; 240 241 // Permute. 242 def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>; 243 244 // Permute doubleword immediate. 245 def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>; 246 247 // Replicate. 248 def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>; 249 def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>; 250 def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>; 251 def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>; 252 def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)), 253 (VREPF VR128:$vec, imm32zx16:$index)>; 254 def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)), 255 (VREPG VR128:$vec, imm32zx16:$index)>; 256 257 // Select. 258 def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Widening and narrowing 263 //===----------------------------------------------------------------------===// 264 265 let Predicates = [FeatureVector] in { 266 // Pack 267 def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>; 268 def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>; 269 def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>; 270 271 // Pack saturate. 272 defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc, 273 v128b, v128h, 1>; 274 defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc, 275 v128h, v128f, 2>; 276 defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc, 277 v128f, v128g, 3>; 278 279 // Pack saturate logical. 280 defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc, 281 v128b, v128h, 1>; 282 defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc, 283 v128h, v128f, 2>; 284 defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc, 285 v128f, v128g, 3>; 286 287 // Sign-extend to doubleword. 288 def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8, v128g, v128g, 0>; 289 def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>; 290 def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>; 291 def : Pat<(z_vsei8_by_parts (v16i8 VR128:$src)), (VSEGB VR128:$src)>; 292 def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>; 293 def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>; 294 295 // Unpack high. 296 def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>; 297 def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>; 298 def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>; 299 300 // Unpack logical high. 301 def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>; 302 def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>; 303 def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>; 304 305 // Unpack low. 306 def VUPLB : UnaryVRRa<"vuplb", 0xE7D6, z_unpack_low, v128h, v128b, 0>; 307 def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>; 308 def VUPLF : UnaryVRRa<"vuplf", 0xE7D6, z_unpack_low, v128g, v128f, 2>; 309 310 // Unpack logical low. 311 def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>; 312 def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>; 313 def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>; 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Instantiating generic operations for specific types. 318 //===----------------------------------------------------------------------===// 319 320 multiclass GenericVectorOps<ValueType type, ValueType inttype> { 321 let Predicates = [FeatureVector] in { 322 def : Pat<(type (load bdxaddr12only:$addr)), 323 (VL bdxaddr12only:$addr)>; 324 def : Pat<(store (type VR128:$src), bdxaddr12only:$addr), 325 (VST VR128:$src, bdxaddr12only:$addr)>; 326 def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)), 327 (VSEL VR128:$y, VR128:$z, VR128:$x)>; 328 def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)), 329 (VSEL VR128:$z, VR128:$y, VR128:$x)>; 330 } 331 } 332 333 defm : GenericVectorOps<v16i8, v16i8>; 334 defm : GenericVectorOps<v8i16, v8i16>; 335 defm : GenericVectorOps<v4i32, v4i32>; 336 defm : GenericVectorOps<v2i64, v2i64>; 337 defm : GenericVectorOps<v4f32, v4i32>; 338 defm : GenericVectorOps<v2f64, v2i64>; 339 340 //===----------------------------------------------------------------------===// 341 // Integer arithmetic 342 //===----------------------------------------------------------------------===// 343 344 let Predicates = [FeatureVector] in { 345 // Add. 346 def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>; 347 def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>; 348 def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>; 349 def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>; 350 def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>; 351 352 // Add compute carry. 353 def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>; 354 def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>; 355 def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>; 356 def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>; 357 def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>; 358 359 // Add with carry. 360 def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>; 361 362 // Add with carry compute carry. 363 def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>; 364 365 // And. 366 def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>; 367 368 // And with complement. 369 def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>; 370 371 // Average. 372 def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>; 373 def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>; 374 def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>; 375 def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>; 376 377 // Average logical. 378 def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>; 379 def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>; 380 def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>; 381 def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>; 382 383 // Checksum. 384 def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>; 385 386 // Count leading zeros. 387 def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>; 388 def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>; 389 def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>; 390 def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>; 391 392 // Count trailing zeros. 393 def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>; 394 def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>; 395 def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>; 396 def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>; 397 398 // Exclusive or. 399 def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>; 400 401 // Galois field multiply sum. 402 def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>; 403 def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>; 404 def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>; 405 def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>; 406 407 // Galois field multiply sum and accumulate. 408 def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>; 409 def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>; 410 def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>; 411 def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>; 412 413 // Load complement. 414 def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>; 415 def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>; 416 def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>; 417 def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>; 418 419 // Load positive. 420 def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8, v128b, v128b, 0>; 421 def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>; 422 def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>; 423 def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>; 424 425 // Maximum. 426 def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>; 427 def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>; 428 def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>; 429 def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>; 430 431 // Maximum logical. 432 def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>; 433 def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>; 434 def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>; 435 def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>; 436 437 // Minimum. 438 def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>; 439 def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>; 440 def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>; 441 def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>; 442 443 // Minimum logical. 444 def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>; 445 def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>; 446 def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>; 447 def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>; 448 449 // Multiply and add low. 450 def VMALB : TernaryVRRd<"vmalb", 0xE7AA, z_muladd, v128b, v128b, 0>; 451 def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>; 452 def VMALF : TernaryVRRd<"vmalf", 0xE7AA, z_muladd, v128f, v128f, 2>; 453 454 // Multiply and add high. 455 def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>; 456 def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>; 457 def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>; 458 459 // Multiply and add logical high. 460 def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>; 461 def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>; 462 def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>; 463 464 // Multiply and add even. 465 def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>; 466 def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>; 467 def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>; 468 469 // Multiply and add logical even. 470 def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>; 471 def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>; 472 def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>; 473 474 // Multiply and add odd. 475 def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>; 476 def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>; 477 def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>; 478 479 // Multiply and add logical odd. 480 def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>; 481 def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>; 482 def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>; 483 484 // Multiply high. 485 def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>; 486 def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>; 487 def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>; 488 489 // Multiply logical high. 490 def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>; 491 def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>; 492 def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>; 493 494 // Multiply low. 495 def VMLB : BinaryVRRc<"vmlb", 0xE7A2, mul, v128b, v128b, 0>; 496 def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>; 497 def VMLF : BinaryVRRc<"vmlf", 0xE7A2, mul, v128f, v128f, 2>; 498 499 // Multiply even. 500 def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>; 501 def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>; 502 def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>; 503 504 // Multiply logical even. 505 def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>; 506 def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>; 507 def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>; 508 509 // Multiply odd. 510 def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>; 511 def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>; 512 def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>; 513 514 // Multiply logical odd. 515 def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>; 516 def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>; 517 def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>; 518 519 // Nor. 520 def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>; 521 522 // Or. 523 def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>; 524 525 // Population count. 526 def VPOPCT : BinaryVRRa<"vpopct", 0xE750>; 527 def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>; 528 529 // Element rotate left logical (with vector shift amount). 530 def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb, 531 v128b, v128b, 0>; 532 def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh, 533 v128h, v128h, 1>; 534 def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf, 535 v128f, v128f, 2>; 536 def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg, 537 v128g, v128g, 3>; 538 539 // Element rotate left logical (with scalar shift amount). 540 def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>; 541 def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>; 542 def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>; 543 def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>; 544 545 // Element rotate and insert under mask. 546 def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>; 547 def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>; 548 def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>; 549 def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>; 550 551 // Element shift left (with vector shift amount). 552 def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>; 553 def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>; 554 def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>; 555 def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>; 556 557 // Element shift left (with scalar shift amount). 558 def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>; 559 def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>; 560 def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>; 561 def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>; 562 563 // Element shift right arithmetic (with vector shift amount). 564 def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>; 565 def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>; 566 def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>; 567 def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>; 568 569 // Element shift right arithmetic (with scalar shift amount). 570 def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>; 571 def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>; 572 def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>; 573 def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>; 574 575 // Element shift right logical (with vector shift amount). 576 def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>; 577 def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>; 578 def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>; 579 def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>; 580 581 // Element shift right logical (with scalar shift amount). 582 def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>; 583 def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>; 584 def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>; 585 def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>; 586 587 // Shift left. 588 def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>; 589 590 // Shift left by byte. 591 def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>; 592 593 // Shift left double by byte. 594 def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>; 595 def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z), 596 (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>; 597 598 // Shift right arithmetic. 599 def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>; 600 601 // Shift right arithmetic by byte. 602 def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>; 603 604 // Shift right logical. 605 def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>; 606 607 // Shift right logical by byte. 608 def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>; 609 610 // Subtract. 611 def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>; 612 def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>; 613 def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>; 614 def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>; 615 def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>; 616 617 // Subtract compute borrow indication. 618 def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>; 619 def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>; 620 def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>; 621 def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>; 622 def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>; 623 624 // Subtract with borrow indication. 625 def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>; 626 627 // Subtract with borrow compute borrow indication. 628 def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq, 629 v128q, v128q, 4>; 630 631 // Sum across doubleword. 632 def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>; 633 def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>; 634 635 // Sum across quadword. 636 def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>; 637 def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>; 638 639 // Sum across word. 640 def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>; 641 def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>; 642 } 643 644 // Instantiate the bitwise ops for type TYPE. 645 multiclass BitwiseVectorOps<ValueType type> { 646 let Predicates = [FeatureVector] in { 647 def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>; 648 def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))), 649 (VNC VR128:$x, VR128:$y)>; 650 def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>; 651 def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>; 652 def : Pat<(type (or (and VR128:$x, VR128:$z), 653 (and VR128:$y, (z_vnot VR128:$z)))), 654 (VSEL VR128:$x, VR128:$y, VR128:$z)>; 655 def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))), 656 (VNO VR128:$x, VR128:$y)>; 657 def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>; 658 } 659 } 660 661 defm : BitwiseVectorOps<v16i8>; 662 defm : BitwiseVectorOps<v8i16>; 663 defm : BitwiseVectorOps<v4i32>; 664 defm : BitwiseVectorOps<v2i64>; 665 666 // Instantiate additional patterns for absolute-related expressions on 667 // type TYPE. LC is the negate instruction for TYPE and LP is the absolute 668 // instruction. 669 multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc, 670 Instruction lp, int shift> { 671 let Predicates = [FeatureVector] in { 672 def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)), 673 (z_vneg VR128:$x), VR128:$x)), 674 (lc (lp VR128:$x))>; 675 def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))), 676 VR128:$x, (z_vneg VR128:$x))), 677 (lc (lp VR128:$x))>; 678 def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)), 679 VR128:$x, (z_vneg VR128:$x))), 680 (lc (lp VR128:$x))>; 681 def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))), 682 (z_vneg VR128:$x), VR128:$x)), 683 (lc (lp VR128:$x))>; 684 def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), 685 (z_vneg VR128:$x)), 686 (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), 687 VR128:$x))), 688 (lp VR128:$x)>; 689 def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), 690 VR128:$x), 691 (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), 692 (z_vneg VR128:$x)))), 693 (lc (lp VR128:$x))>; 694 } 695 } 696 697 defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>; 698 defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>; 699 defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>; 700 defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>; 701 702 // Instantiate minimum- and maximum-related patterns for TYPE. CMPH is the 703 // signed or unsigned "set if greater than" comparison instruction and 704 // MIN and MAX are the associated minimum and maximum instructions. 705 multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph, 706 Instruction min, Instruction max> { 707 let Predicates = [FeatureVector] in { 708 def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)), 709 (max VR128:$x, VR128:$y)>; 710 def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)), 711 (min VR128:$x, VR128:$y)>; 712 def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), 713 VR128:$x, VR128:$y)), 714 (min VR128:$x, VR128:$y)>; 715 def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), 716 VR128:$y, VR128:$x)), 717 (max VR128:$x, VR128:$y)>; 718 } 719 } 720 721 // Signed min/max. 722 defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>; 723 defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>; 724 defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>; 725 defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>; 726 727 // Unsigned min/max. 728 defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>; 729 defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>; 730 defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>; 731 defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>; 732 733 //===----------------------------------------------------------------------===// 734 // Integer comparison 735 //===----------------------------------------------------------------------===// 736 737 let Predicates = [FeatureVector] in { 738 // Element compare. 739 let Defs = [CC] in { 740 def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>; 741 def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>; 742 def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>; 743 def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>; 744 } 745 746 // Element compare logical. 747 let Defs = [CC] in { 748 def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>; 749 def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>; 750 def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>; 751 def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>; 752 } 753 754 // Compare equal. 755 defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes, 756 v128b, v128b, 0>; 757 defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes, 758 v128h, v128h, 1>; 759 defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes, 760 v128f, v128f, 2>; 761 defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes, 762 v128g, v128g, 3>; 763 764 // Compare high. 765 defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs, 766 v128b, v128b, 0>; 767 defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs, 768 v128h, v128h, 1>; 769 defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs, 770 v128f, v128f, 2>; 771 defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs, 772 v128g, v128g, 3>; 773 774 // Compare high logical. 775 defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls, 776 v128b, v128b, 0>; 777 defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls, 778 v128h, v128h, 1>; 779 defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls, 780 v128f, v128f, 2>; 781 defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls, 782 v128g, v128g, 3>; 783 784 // Test under mask. 785 let Defs = [CC] in 786 def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>; 787 } 788 789 //===----------------------------------------------------------------------===// 790 // Floating-point arithmetic 791 //===----------------------------------------------------------------------===// 792 793 // See comments in SystemZInstrFP.td for the suppression flags and 794 // rounding modes. 795 multiclass VectorRounding<Instruction insn, TypedReg tr> { 796 def : FPConversion<insn, frint, tr, tr, 0, 0>; 797 def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>; 798 def : FPConversion<insn, ffloor, tr, tr, 4, 7>; 799 def : FPConversion<insn, fceil, tr, tr, 4, 6>; 800 def : FPConversion<insn, ftrunc, tr, tr, 4, 5>; 801 def : FPConversion<insn, frnd, tr, tr, 4, 1>; 802 } 803 804 let Predicates = [FeatureVector] in { 805 // Add. 806 def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>; 807 def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>; 808 809 // Convert from fixed 64-bit. 810 def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>; 811 def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>; 812 def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>; 813 814 // Convert from logical 64-bit. 815 def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>; 816 def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>; 817 def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>; 818 819 // Convert to fixed 64-bit. 820 def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>; 821 def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>; 822 // Rounding mode should agree with SystemZInstrFP.td. 823 def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>; 824 825 // Convert to logical 64-bit. 826 def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>; 827 def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>; 828 // Rounding mode should agree with SystemZInstrFP.td. 829 def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>; 830 831 // Divide. 832 def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>; 833 def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>; 834 835 // Load FP integer. 836 def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>; 837 def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>; 838 defm : VectorRounding<VFIDB, v128db>; 839 defm : VectorRounding<WFIDB, v64db>; 840 841 // Load lengthened. 842 def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>; 843 def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fextend, v64db, v32eb, 2, 8>; 844 845 // Load rounded, 846 def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>; 847 def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>; 848 def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>; 849 def : FPConversion<WLEDB, fround, v32eb, v64db, 0, 0>; 850 851 // Multiply. 852 def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>; 853 def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>; 854 855 // Multiply and add. 856 def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>; 857 def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>; 858 859 // Multiply and subtract. 860 def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>; 861 def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>; 862 863 // Load complement, 864 def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>; 865 def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>; 866 867 // Load negative. 868 def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>; 869 def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>; 870 871 // Load positive. 872 def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>; 873 def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>; 874 875 // Square root. 876 def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>; 877 def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>; 878 879 // Subtract. 880 def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>; 881 def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>; 882 883 // Test data class immediate. 884 let Defs = [CC] in { 885 def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>; 886 def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>; 887 } 888 } 889 890 //===----------------------------------------------------------------------===// 891 // Floating-point comparison 892 //===----------------------------------------------------------------------===// 893 894 let Predicates = [FeatureVector] in { 895 // Compare scalar. 896 let Defs = [CC] in 897 def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>; 898 899 // Compare and signal scalar. 900 let Defs = [CC] in 901 def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>; 902 903 // Compare equal. 904 defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes, 905 v128g, v128db, 3, 0>; 906 defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag, 907 v64g, v64db, 3, 8>; 908 909 // Compare high. 910 defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs, 911 v128g, v128db, 3, 0>; 912 defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag, 913 v64g, v64db, 3, 8>; 914 915 // Compare high or equal. 916 defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes, 917 v128g, v128db, 3, 0>; 918 defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag, 919 v64g, v64db, 3, 8>; 920 } 921 922 //===----------------------------------------------------------------------===// 923 // Conversions 924 //===----------------------------------------------------------------------===// 925 926 def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; 927 def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; 928 def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; 929 def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; 930 def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; 931 932 def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; 933 def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; 934 def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; 935 def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; 936 def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; 937 938 def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; 939 def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; 940 def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; 941 def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; 942 def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; 943 944 def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; 945 def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; 946 def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; 947 def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; 948 def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; 949 950 def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; 951 def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; 952 def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; 953 def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; 954 def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; 955 956 def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; 957 def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; 958 def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; 959 def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; 960 def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; 961 962 //===----------------------------------------------------------------------===// 963 // Replicating scalars 964 //===----------------------------------------------------------------------===// 965 966 // Define patterns for replicating a scalar GR32 into a vector of type TYPE. 967 // INDEX is 8 minus the element size in bytes. 968 class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index> 969 : Pat<(type (z_replicate GR32:$scalar)), 970 (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>; 971 972 def : VectorReplicateScalar<v16i8, VREPB, 7>; 973 def : VectorReplicateScalar<v8i16, VREPH, 3>; 974 def : VectorReplicateScalar<v4i32, VREPF, 1>; 975 976 // i64 replications are just a single isntruction. 977 def : Pat<(v2i64 (z_replicate GR64:$scalar)), 978 (VLVGP GR64:$scalar, GR64:$scalar)>; 979 980 //===----------------------------------------------------------------------===// 981 // Floating-point insertion and extraction 982 //===----------------------------------------------------------------------===// 983 984 // Moving 32-bit values between GPRs and FPRs can be done using VLVGF 985 // and VLGVF. 986 def LEFR : UnaryAliasVRS<VR32, GR32>; 987 def LFER : UnaryAliasVRS<GR64, VR32>; 988 def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>; 989 def : Pat<(i32 (bitconvert (f32 VR32:$src))), 990 (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>; 991 992 // Floating-point values are stored in element 0 of the corresponding 993 // vector register. Scalar to vector conversion is just a subreg and 994 // scalar replication can just replicate element 0 of the vector register. 995 multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls, 996 SubRegIndex subreg> { 997 def : Pat<(vt (scalar_to_vector cls:$scalar)), 998 (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>; 999 def : Pat<(vt (z_replicate cls:$scalar)), 1000 (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, 1001 subreg), 0)>; 1002 } 1003 defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>; 1004 defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>; 1005 1006 // Match v2f64 insertions. The AddedComplexity counters the 3 added by 1007 // TableGen for the base register operand in VLVG-based integer insertions 1008 // and ensures that this version is strictly better. 1009 let AddedComplexity = 4 in { 1010 def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0), 1011 (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, 1012 subreg_r64), VR128:$vec, 1)>; 1013 def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1), 1014 (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, 1015 subreg_r64), 0)>; 1016 } 1017 1018 // We extract floating-point element X by replicating (for elements other 1019 // than 0) and then taking a high subreg. The AddedComplexity counters the 1020 // 3 added by TableGen for the base register operand in VLGV-based integer 1021 // extractions and ensures that this version is strictly better. 1022 let AddedComplexity = 4 in { 1023 def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)), 1024 (EXTRACT_SUBREG VR128:$vec, subreg_r32)>; 1025 def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)), 1026 (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>; 1027 1028 def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)), 1029 (EXTRACT_SUBREG VR128:$vec, subreg_r64)>; 1030 def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)), 1031 (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>; 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // String instructions 1036 //===----------------------------------------------------------------------===// 1037 1038 let Predicates = [FeatureVector] in { 1039 defm VFAEB : TernaryVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb, z_vfae_cc, 1040 v128b, v128b, 0, 0>; 1041 defm VFAEH : TernaryVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh, z_vfae_cc, 1042 v128h, v128h, 1, 0>; 1043 defm VFAEF : TernaryVRRbSPair<"vfaef", 0xE782, int_s390_vfaef, z_vfae_cc, 1044 v128f, v128f, 2, 0>; 1045 defm VFAEZB : TernaryVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb, z_vfaez_cc, 1046 v128b, v128b, 0, 2>; 1047 defm VFAEZH : TernaryVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh, z_vfaez_cc, 1048 v128h, v128h, 1, 2>; 1049 defm VFAEZF : TernaryVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf, z_vfaez_cc, 1050 v128f, v128f, 2, 2>; 1051 1052 defm VFEEB : BinaryVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb, z_vfee_cc, 1053 v128b, v128b, 0, 0, 1>; 1054 defm VFEEH : BinaryVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh, z_vfee_cc, 1055 v128h, v128h, 1, 0, 1>; 1056 defm VFEEF : BinaryVRRbSPair<"vfeef", 0xE780, int_s390_vfeef, z_vfee_cc, 1057 v128f, v128f, 2, 0, 1>; 1058 defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb, z_vfeez_cc, 1059 v128b, v128b, 0, 2, 3>; 1060 defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh, z_vfeez_cc, 1061 v128h, v128h, 1, 2, 3>; 1062 defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf, z_vfeez_cc, 1063 v128f, v128f, 2, 2, 3>; 1064 1065 defm VFENEB : BinaryVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb, z_vfene_cc, 1066 v128b, v128b, 0, 0, 1>; 1067 defm VFENEH : BinaryVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh, z_vfene_cc, 1068 v128h, v128h, 1, 0, 1>; 1069 defm VFENEF : BinaryVRRbSPair<"vfenef", 0xE781, int_s390_vfenef, z_vfene_cc, 1070 v128f, v128f, 2, 0, 1>; 1071 defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb, 1072 z_vfenez_cc, v128b, v128b, 0, 2, 3>; 1073 defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh, 1074 z_vfenez_cc, v128h, v128h, 1, 2, 3>; 1075 defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf, 1076 z_vfenez_cc, v128f, v128f, 2, 2, 3>; 1077 1078 defm VISTRB : UnaryVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb, z_vistr_cc, 1079 v128b, v128b, 0>; 1080 defm VISTRH : UnaryVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh, z_vistr_cc, 1081 v128h, v128h, 1>; 1082 defm VISTRF : UnaryVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf, z_vistr_cc, 1083 v128f, v128f, 2>; 1084 1085 defm VSTRCB : QuaternaryVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb, 1086 z_vstrc_cc, v128b, v128b, 0, 0>; 1087 defm VSTRCH : QuaternaryVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch, 1088 z_vstrc_cc, v128h, v128h, 1, 0>; 1089 defm VSTRCF : QuaternaryVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf, 1090 z_vstrc_cc, v128f, v128f, 2, 0>; 1091 defm VSTRCZB : QuaternaryVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb, 1092 z_vstrcz_cc, v128b, v128b, 0, 2>; 1093 defm VSTRCZH : QuaternaryVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh, 1094 z_vstrcz_cc, v128h, v128h, 1, 2>; 1095 defm VSTRCZF : QuaternaryVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf, 1096 z_vstrcz_cc, v128f, v128f, 2, 2>; 1097 } 1098