Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Class definitions
     12 //===----------------------------------------------------------------------===//
     13 
     14 class ImmediateAsmOperand<string name>
     15   : AsmOperandClass {
     16   let Name = name;
     17   let RenderMethod = "addImmOperands";
     18 }
     19 class ImmediateTLSAsmOperand<string name>
     20   : AsmOperandClass {
     21   let Name = name;
     22   let RenderMethod = "addImmTLSOperands";
     23 }
     24 
     25 // Constructs both a DAG pattern and instruction operand for an immediate
     26 // of type VT.  PRED returns true if a node is acceptable and XFORM returns
     27 // the operand value associated with the node.  ASMOP is the name of the
     28 // associated asm operand, and also forms the basis of the asm print method.
     29 class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
     30   : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
     31   let PrintMethod = "print"##asmop##"Operand";
     32   let DecoderMethod = "decode"##asmop##"Operand";
     33   let ParserMatchClass = !cast<AsmOperandClass>(asmop);
     34 }
     35 
     36 // Constructs an asm operand for a PC-relative address.  SIZE says how
     37 // many bits there are.
     38 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
     39   let PredicateMethod = "isImm";
     40   let ParserMethod = "parsePCRel"##size;
     41 }
     42 class PCRelTLSAsmOperand<string size>
     43   : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
     44   let PredicateMethod = "isImmTLS";
     45   let ParserMethod = "parsePCRelTLS"##size;
     46 }
     47 
     48 // Constructs an operand for a PC-relative address with address type VT.
     49 // ASMOP is the associated asm operand.
     50 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
     51   let PrintMethod = "printPCRelOperand";
     52   let ParserMatchClass = asmop;
     53 }
     54 class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
     55   let PrintMethod = "printPCRelTLSOperand";
     56   let ParserMatchClass = asmop;
     57 }
     58 
     59 // Constructs both a DAG pattern and instruction operand for a PC-relative
     60 // address with address size VT.  SELF is the name of the operand and
     61 // ASMOP is the associated asm operand.
     62 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
     63   : ComplexPattern<vt, 1, "selectPCRelAddress",
     64                    [z_pcrel_wrapper, z_pcrel_offset]>,
     65     PCRelOperand<vt, asmop> {
     66   let MIOperandInfo = (ops !cast<Operand>(self));
     67 }
     68 
     69 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
     70 // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
     71 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
     72 // is "".
     73 class AddressAsmOperand<string format, string bitsize, string dispsize,
     74                         string length = "">
     75   : AsmOperandClass {
     76   let Name = format##bitsize##"Disp"##dispsize##length;
     77   let ParserMethod = "parse"##format##bitsize;
     78   let RenderMethod = "add"##format##"Operands";
     79 }
     80 
     81 // Constructs an instruction operand for an addressing mode.  FORMAT,
     82 // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
     83 // AddressAsmOperand.  OPERANDS is a list of individual operands
     84 // (base register, displacement, etc.).
     85 class AddressOperand<string bitsize, string dispsize, string length,
     86                      string format, dag operands>
     87   : Operand<!cast<ValueType>("i"##bitsize)> {
     88   let PrintMethod = "print"##format##"Operand";
     89   let EncoderMethod = "get"##format##dispsize##length##"Encoding";
     90   let DecoderMethod =
     91     "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
     92   let MIOperandInfo = operands;
     93   let ParserMatchClass =
     94     !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
     95 }
     96 
     97 // Constructs both a DAG pattern and instruction operand for an addressing mode.
     98 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
     99 // AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
    100 // (base register, displacement, etc.).  SELTYPE is the type of the memory
    101 // operand for selection purposes; sometimes we want different selection
    102 // choices for the same underlying addressing mode.  SUFFIX is similarly
    103 // a suffix appended to the displacement for selection purposes;
    104 // e.g. we want to reject small 20-bit displacements if a 12-bit form
    105 // also exists, but we want to accept them otherwise.
    106 class AddressingMode<string seltype, string bitsize, string dispsize,
    107                      string suffix, string length, int numops, string format,
    108                      dag operands>
    109   : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
    110                    "select"##seltype##dispsize##suffix##length,
    111                    [add, sub, or, frameindex, z_adjdynalloc]>,
    112     AddressOperand<bitsize, dispsize, length, format, operands>;
    113 
    114 // An addressing mode with a base and displacement but no index.
    115 class BDMode<string type, string bitsize, string dispsize, string suffix>
    116   : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
    117                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    118                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
    119 
    120 // An addressing mode with a base, displacement and index.
    121 class BDXMode<string type, string bitsize, string dispsize, string suffix>
    122   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
    123                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    124                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
    125                         !cast<RegisterOperand>("ADDR"##bitsize))>;
    126 
    127 // A BDMode paired with an immediate length operand of LENSIZE bits.
    128 class BDLMode<string type, string bitsize, string dispsize, string suffix,
    129               string lensize>
    130   : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
    131                    "BDLAddr",
    132                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    133                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
    134                         !cast<Immediate>("imm"##bitsize))>;
    135 
    136 // An addressing mode with a base, displacement and a vector index.
    137 class BDVMode<string bitsize, string dispsize>
    138   : AddressOperand<bitsize, dispsize, "", "BDVAddr",
    139                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    140                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
    141                         !cast<RegisterOperand>("VR128"))>;
    142 
    143 //===----------------------------------------------------------------------===//
    144 // Extracting immediate operands from nodes
    145 // These all create MVT::i64 nodes to ensure the value is not sign-extended
    146 // when converted from an SDNode to a MachineOperand later on.
    147 //===----------------------------------------------------------------------===//
    148 
    149 // Bits 0-15 (counting from the lsb).
    150 def LL16 : SDNodeXForm<imm, [{
    151   uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
    152   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    153 }]>;
    154 
    155 // Bits 16-31 (counting from the lsb).
    156 def LH16 : SDNodeXForm<imm, [{
    157   uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
    158   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    159 }]>;
    160 
    161 // Bits 32-47 (counting from the lsb).
    162 def HL16 : SDNodeXForm<imm, [{
    163   uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
    164   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    165 }]>;
    166 
    167 // Bits 48-63 (counting from the lsb).
    168 def HH16 : SDNodeXForm<imm, [{
    169   uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
    170   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    171 }]>;
    172 
    173 // Low 32 bits.
    174 def LF32 : SDNodeXForm<imm, [{
    175   uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
    176   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    177 }]>;
    178 
    179 // High 32 bits.
    180 def HF32 : SDNodeXForm<imm, [{
    181   uint64_t Value = N->getZExtValue() >> 32;
    182   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    183 }]>;
    184 
    185 // Truncate an immediate to a 8-bit signed quantity.
    186 def SIMM8 : SDNodeXForm<imm, [{
    187   return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
    188                                    MVT::i64);
    189 }]>;
    190 
    191 // Truncate an immediate to a 8-bit unsigned quantity.
    192 def UIMM8 : SDNodeXForm<imm, [{
    193   return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
    194                                    MVT::i64);
    195 }]>;
    196 
    197 // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
    198 def UIMM8EVEN : SDNodeXForm<imm, [{
    199   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
    200                                    MVT::i64);
    201 }]>;
    202 
    203 // Truncate an immediate to a 12-bit unsigned quantity.
    204 def UIMM12 : SDNodeXForm<imm, [{
    205   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
    206                                    MVT::i64);
    207 }]>;
    208 
    209 // Truncate an immediate to a 16-bit signed quantity.
    210 def SIMM16 : SDNodeXForm<imm, [{
    211   return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
    212                                    MVT::i64);
    213 }]>;
    214 
    215 // Truncate an immediate to a 16-bit unsigned quantity.
    216 def UIMM16 : SDNodeXForm<imm, [{
    217   return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
    218                                    MVT::i64);
    219 }]>;
    220 
    221 // Truncate an immediate to a 32-bit signed quantity.
    222 def SIMM32 : SDNodeXForm<imm, [{
    223   return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
    224                                    MVT::i64);
    225 }]>;
    226 
    227 // Truncate an immediate to a 32-bit unsigned quantity.
    228 def UIMM32 : SDNodeXForm<imm, [{
    229   return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
    230                                    MVT::i64);
    231 }]>;
    232 
    233 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
    234 def NEGIMM32 : SDNodeXForm<imm, [{
    235   return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
    236                                    MVT::i64);
    237 }]>;
    238 
    239 //===----------------------------------------------------------------------===//
    240 // Immediate asm operands.
    241 //===----------------------------------------------------------------------===//
    242 
    243 def U1Imm  : ImmediateAsmOperand<"U1Imm">;
    244 def U2Imm  : ImmediateAsmOperand<"U2Imm">;
    245 def U3Imm  : ImmediateAsmOperand<"U3Imm">;
    246 def U4Imm  : ImmediateAsmOperand<"U4Imm">;
    247 def U6Imm  : ImmediateAsmOperand<"U6Imm">;
    248 def S8Imm  : ImmediateAsmOperand<"S8Imm">;
    249 def U8Imm  : ImmediateAsmOperand<"U8Imm">;
    250 def U12Imm : ImmediateAsmOperand<"U12Imm">;
    251 def S16Imm : ImmediateAsmOperand<"S16Imm">;
    252 def U16Imm : ImmediateAsmOperand<"U16Imm">;
    253 def S32Imm : ImmediateAsmOperand<"S32Imm">;
    254 def U32Imm : ImmediateAsmOperand<"U32Imm">;
    255 
    256 //===----------------------------------------------------------------------===//
    257 // i32 immediates
    258 //===----------------------------------------------------------------------===//
    259 
    260 // Immediates for the lower and upper 16 bits of an i32, with the other
    261 // bits of the i32 being zero.
    262 def imm32ll16 : Immediate<i32, [{
    263   return SystemZ::isImmLL(N->getZExtValue());
    264 }], LL16, "U16Imm">;
    265 
    266 def imm32lh16 : Immediate<i32, [{
    267   return SystemZ::isImmLH(N->getZExtValue());
    268 }], LH16, "U16Imm">;
    269 
    270 // Immediates for the lower and upper 16 bits of an i32, with the other
    271 // bits of the i32 being one.
    272 def imm32ll16c : Immediate<i32, [{
    273   return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
    274 }], LL16, "U16Imm">;
    275 
    276 def imm32lh16c : Immediate<i32, [{
    277   return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
    278 }], LH16, "U16Imm">;
    279 
    280 // Short immediates
    281 def imm32zx1 : Immediate<i32, [{
    282   return isUInt<1>(N->getZExtValue());
    283 }], NOOP_SDNodeXForm, "U1Imm">;
    284 
    285 def imm32zx2 : Immediate<i32, [{
    286   return isUInt<2>(N->getZExtValue());
    287 }], NOOP_SDNodeXForm, "U2Imm">;
    288 
    289 def imm32zx3 : Immediate<i32, [{
    290   return isUInt<3>(N->getZExtValue());
    291 }], NOOP_SDNodeXForm, "U3Imm">;
    292 
    293 def imm32zx4 : Immediate<i32, [{
    294   return isUInt<4>(N->getZExtValue());
    295 }], NOOP_SDNodeXForm, "U4Imm">;
    296 
    297 // Note: this enforces an even value during code generation only.
    298 // When used from the assembler, any 4-bit value is allowed.
    299 def imm32zx4even : Immediate<i32, [{
    300   return isUInt<4>(N->getZExtValue());
    301 }], UIMM8EVEN, "U4Imm">;
    302 
    303 def imm32zx6 : Immediate<i32, [{
    304   return isUInt<6>(N->getZExtValue());
    305 }], NOOP_SDNodeXForm, "U6Imm">;
    306 
    307 def imm32sx8 : Immediate<i32, [{
    308   return isInt<8>(N->getSExtValue());
    309 }], SIMM8, "S8Imm">;
    310 
    311 def imm32zx8 : Immediate<i32, [{
    312   return isUInt<8>(N->getZExtValue());
    313 }], UIMM8, "U8Imm">;
    314 
    315 def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
    316 
    317 def imm32zx12 : Immediate<i32, [{
    318   return isUInt<12>(N->getZExtValue());
    319 }], UIMM12, "U12Imm">;
    320 
    321 def imm32sx16 : Immediate<i32, [{
    322   return isInt<16>(N->getSExtValue());
    323 }], SIMM16, "S16Imm">;
    324 
    325 def imm32zx16 : Immediate<i32, [{
    326   return isUInt<16>(N->getZExtValue());
    327 }], UIMM16, "U16Imm">;
    328 
    329 def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
    330 
    331 // Full 32-bit immediates.  we need both signed and unsigned versions
    332 // because the assembler is picky.  E.g. AFI requires signed operands
    333 // while NILF requires unsigned ones.
    334 def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
    335 def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
    336 
    337 def imm32 : ImmLeaf<i32, [{}]>;
    338 
    339 //===----------------------------------------------------------------------===//
    340 // 64-bit immediates
    341 //===----------------------------------------------------------------------===//
    342 
    343 // Immediates for 16-bit chunks of an i64, with the other bits of the
    344 // i32 being zero.
    345 def imm64ll16 : Immediate<i64, [{
    346   return SystemZ::isImmLL(N->getZExtValue());
    347 }], LL16, "U16Imm">;
    348 
    349 def imm64lh16 : Immediate<i64, [{
    350   return SystemZ::isImmLH(N->getZExtValue());
    351 }], LH16, "U16Imm">;
    352 
    353 def imm64hl16 : Immediate<i64, [{
    354   return SystemZ::isImmHL(N->getZExtValue());
    355 }], HL16, "U16Imm">;
    356 
    357 def imm64hh16 : Immediate<i64, [{
    358   return SystemZ::isImmHH(N->getZExtValue());
    359 }], HH16, "U16Imm">;
    360 
    361 // Immediates for 16-bit chunks of an i64, with the other bits of the
    362 // i32 being one.
    363 def imm64ll16c : Immediate<i64, [{
    364   return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
    365 }], LL16, "U16Imm">;
    366 
    367 def imm64lh16c : Immediate<i64, [{
    368   return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
    369 }], LH16, "U16Imm">;
    370 
    371 def imm64hl16c : Immediate<i64, [{
    372   return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
    373 }], HL16, "U16Imm">;
    374 
    375 def imm64hh16c : Immediate<i64, [{
    376   return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
    377 }], HH16, "U16Imm">;
    378 
    379 // Immediates for the lower and upper 32 bits of an i64, with the other
    380 // bits of the i32 being zero.
    381 def imm64lf32 : Immediate<i64, [{
    382   return SystemZ::isImmLF(N->getZExtValue());
    383 }], LF32, "U32Imm">;
    384 
    385 def imm64hf32 : Immediate<i64, [{
    386   return SystemZ::isImmHF(N->getZExtValue());
    387 }], HF32, "U32Imm">;
    388 
    389 // Immediates for the lower and upper 32 bits of an i64, with the other
    390 // bits of the i32 being one.
    391 def imm64lf32c : Immediate<i64, [{
    392   return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
    393 }], LF32, "U32Imm">;
    394 
    395 def imm64hf32c : Immediate<i64, [{
    396   return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
    397 }], HF32, "U32Imm">;
    398 
    399 // Short immediates.
    400 def imm64sx8 : Immediate<i64, [{
    401   return isInt<8>(N->getSExtValue());
    402 }], SIMM8, "S8Imm">;
    403 
    404 def imm64zx8 : Immediate<i64, [{
    405   return isUInt<8>(N->getSExtValue());
    406 }], UIMM8, "U8Imm">;
    407 
    408 def imm64sx16 : Immediate<i64, [{
    409   return isInt<16>(N->getSExtValue());
    410 }], SIMM16, "S16Imm">;
    411 
    412 def imm64zx16 : Immediate<i64, [{
    413   return isUInt<16>(N->getZExtValue());
    414 }], UIMM16, "U16Imm">;
    415 
    416 def imm64sx32 : Immediate<i64, [{
    417   return isInt<32>(N->getSExtValue());
    418 }], SIMM32, "S32Imm">;
    419 
    420 def imm64zx32 : Immediate<i64, [{
    421   return isUInt<32>(N->getZExtValue());
    422 }], UIMM32, "U32Imm">;
    423 
    424 def imm64zx32n : Immediate<i64, [{
    425   return isUInt<32>(-N->getSExtValue());
    426 }], NEGIMM32, "U32Imm">;
    427 
    428 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
    429 
    430 //===----------------------------------------------------------------------===//
    431 // Floating-point immediates
    432 //===----------------------------------------------------------------------===//
    433 
    434 // Floating-point zero.
    435 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
    436 
    437 // Floating point negative zero.
    438 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
    439 
    440 //===----------------------------------------------------------------------===//
    441 // Symbolic address operands
    442 //===----------------------------------------------------------------------===//
    443 
    444 // PC-relative asm operands.
    445 def PCRel16 : PCRelAsmOperand<"16">;
    446 def PCRel32 : PCRelAsmOperand<"32">;
    447 def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
    448 def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
    449 
    450 // PC-relative offsets of a basic block.  The offset is sign-extended
    451 // and multiplied by 2.
    452 def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
    453   let EncoderMethod = "getPC16DBLEncoding";
    454   let DecoderMethod = "decodePC16DBLBranchOperand";
    455 }
    456 def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
    457   let EncoderMethod = "getPC32DBLEncoding";
    458   let DecoderMethod = "decodePC32DBLBranchOperand";
    459 }
    460 
    461 // Variants of brtarget16/32 with an optional additional TLS symbol.
    462 // These are used to annotate calls to __tls_get_offset.
    463 def tlssym : Operand<i64> { }
    464 def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
    465   let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
    466   let EncoderMethod = "getPC16DBLTLSEncoding";
    467   let DecoderMethod = "decodePC16DBLBranchOperand";
    468 }
    469 def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
    470   let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
    471   let EncoderMethod = "getPC32DBLTLSEncoding";
    472   let DecoderMethod = "decodePC32DBLBranchOperand";
    473 }
    474 
    475 // A PC-relative offset of a global value.  The offset is sign-extended
    476 // and multiplied by 2.
    477 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
    478   let EncoderMethod = "getPC32DBLEncoding";
    479   let DecoderMethod = "decodePC32DBLOperand";
    480 }
    481 
    482 //===----------------------------------------------------------------------===//
    483 // Addressing modes
    484 //===----------------------------------------------------------------------===//
    485 
    486 // 12-bit displacement operands.
    487 def disp12imm32 : Operand<i32>;
    488 def disp12imm64 : Operand<i64>;
    489 
    490 // 20-bit displacement operands.
    491 def disp20imm32 : Operand<i32>;
    492 def disp20imm64 : Operand<i64>;
    493 
    494 def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
    495 def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
    496 def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
    497 def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
    498 def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
    499 def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
    500 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
    501 def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
    502 
    503 // DAG patterns and operands for addressing modes.  Each mode has
    504 // the form <type><range><group>[<len>] where:
    505 //
    506 // <type> is one of:
    507 //   shift    : base + displacement (32-bit)
    508 //   bdaddr   : base + displacement
    509 //   mviaddr  : like bdaddr, but reject cases with a natural index
    510 //   bdxaddr  : base + displacement + index
    511 //   laaddr   : like bdxaddr, but used for Load Address operations
    512 //   dynalloc : base + displacement + index + ADJDYNALLOC
    513 //   bdladdr  : base + displacement with a length field
    514 //   bdvaddr  : base + displacement with a vector index
    515 //
    516 // <range> is one of:
    517 //   12       : the displacement is an unsigned 12-bit value
    518 //   20       : the displacement is a signed 20-bit value
    519 //
    520 // <group> is one of:
    521 //   pair     : used when there is an equivalent instruction with the opposite
    522 //              range value (12 or 20)
    523 //   only     : used when there is no equivalent instruction with the opposite
    524 //              range value
    525 //
    526 // <len> is one of:
    527 //
    528 //   <empty>  : there is no length field
    529 //   len8     : the length field is 8 bits, with a range of [1, 0x100].
    530 def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
    531 def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
    532 def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
    533 def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
    534 def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
    535 def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
    536 def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
    537 def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
    538 def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
    539 def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
    540 def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
    541 def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
    542 def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
    543 def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
    544 def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
    545 def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
    546 def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
    547 def bdvaddr12only     : BDVMode<            "64", "12">;
    548 
    549 //===----------------------------------------------------------------------===//
    550 // Miscellaneous
    551 //===----------------------------------------------------------------------===//
    552 
    553 // Access registers.  At present we just use them for accessing the thread
    554 // pointer, so we don't expose them as register to LLVM.
    555 def AccessReg : AsmOperandClass {
    556   let Name = "AccessReg";
    557   let ParserMethod = "parseAccessReg";
    558 }
    559 def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
    560                            NOOP_SDNodeXForm, "AccessReg"> {
    561   let ParserMatchClass = AccessReg;
    562 }
    563 
    564 // A 4-bit condition-code mask.
    565 def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
    566             Operand<i32> {
    567   let PrintMethod = "printCond4Operand";
    568 }
    569